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Abstract: This study presents a new method for correcting the six degrees of freedom motion-induced
error in ZephIR 300 floating Doppler Wind-LiDAR-derived data, based on a Robust Adaptive
Unscented Kalman Filter. The filter takes advantage of the known floating Doppler Wind-LiDAR
(FDWL) dynamics, a velocity–azimuth display algorithm, and a wind model describing the LiDAR-
retrieved wind vector without motion influence. The filter estimates the corrected wind vector by
adapting itself to different atmospheric and motion scenarios, and by estimating the covariance
matrices of related noise processes. The measured turbulence intensity by the FDWL (with and
without correction) was compared against a reference fixed LiDAR over a 25-day period at “El
Pont del Petroli”, Barcelona. After correction, the apparent motion-induced turbulence was greatly
reduced, and the statistical indicators showed overall improvement. Thus, the Mean Difference
improved from −1.70% (uncorrected) to 0.36% (corrected), the Root Mean Square Error (RMSE)
improved from 2.01% to 0.86%, and coefficient of determination improved from 0.85 to 0.93.

Keywords: floating Doppler Wind LiDAR; apparent turbulence; motion compensation; adaptive
filtering; Kalman Filter; Unscented Kalman Filter; six degrees of freedom

1. Introduction

In recent decades, the wind energy (WE) industry has shown a rising interest in
deploying offshore wind farms, due to the higher and more homogeneous winds that
can be found in open-sea environments [1,2]. Important investments have been made in
Europe, in terms of deploying and operating offshore wind farms [3]. The high deployment
and operation cost of these facilities has motivated the industry to search for cost reduction
solutions [4,5]. One of the main concerns is to obtain trustable data to assess the viability
of future offshore wind farm projects [6]. Traditionally, meteorological masts (metmast)
have been used for this purpose [7]. As offshore wind farms are deployed further offshore
into deeper waters [8], metmasts are not a feasible solution. FDWLs are a cost-effective
alternative to metmasts, which can assess the wind resource in a more flexible way [5].

Multiple validation campaigns have shown the robustness and reliability of horizontal
wind speed (HWS) and wind direction (WD) FDWL measurements at the ten-minute
level [9–13]. However, FDWLs measure an increased turbulence intensity (TI), in contrast
to fixed Doppler Wind LiDARs (DWLs), due to wave-induced motion [14]. TI is defined
as the ratio between the standard deviation of the HWS to the mean HWS. Wave-induced
motion adds variance to FDWL HWS measurements, resulting in higher TI [15].

TI is a relevant parameter in wind farm design and operation [16]. For instance,
erroneous TI could lead to over-design of the wind turbines, causing extra costs. Therefore,
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there is a need to compensate for the effect of wave-induced motion on FDWL measure-
ments [17,18]. Both the rotational motion (roll, pitch, and yaw) and translational motion
(surge, sway, and heave) of the LiDAR induce errors in the retrieved HWS and WD [19,20].
The latter is of lesser concern because WD errors can easily be corrected by means of a
reference compass installed on the buoy [21]. Multiple approaches have been presented for
reduction of the motion-induced error in FDWL measurements. In the study published
by Gutiérrez-Antuñano et al. [21], a dual approach was proposed, in which an averaging
window technique was combined with mechanical compensation by means of a cardanic
frame; however, the cardanic frame increases the hardware costs of the device, and is not
able to compensate for translational motion. Moreover, the averaging window technique
is not able to compensate for motion frequencies higher than the LiDAR sampling rate.
Gutiérrez-Antuñano et al. [13] presented a statistical solution based on a FDWL system
simulator. The simulator considered basic motion parameters (lidar roll and pitch angular
amplitude and period), as well as reference HWS and WD, to simulate the motion-induced
error on TI measurements. This method showed overall good correction, but the results
differed under distinct wind and motion scenarios. Kelberlau et al. [20] proposed a signal
processing algorithm that took into account all 6 degrees of freedom (DoF) of LiDAR
motion, to correct for the motion-induced error at a line-of-sight (LoS) level. Although the
algorithm was able to eliminate the motion-induced TI error under virtually all motion
conditions, it requires access to the LiDAR LoS internal measurements, which is undis-
closed information for most of the commercial continuous-wave LiDARs. Last, but not
least, state-of-the-art motion-correction algorithms rely on off-line data post-processing,
which is disadvantageous.

In this study, we aim to correct the motion-induced error on wind measurements by a
floating continuous-wave conical-scanning DWL without accessing LoS information. We
rely on the fact that successively measured wind observations tend to be correlated and
that past measurements provide a priori information on the wind vector at the current
estimation time [22,23]. Moreover, the LiDAR measurement process and the wave-induced
6-DoF LiDAR motion can be accurately modelled. In this scenario, the Kalman Filter (KF)
is considered to be a promising candidate for tackling this problem. The KF is used to
estimate discrete time-series, which are governed by linear differential operators [24]. It
can estimate the hidden variables of a dynamic system from observations over time.

In non-linear systems, as in our case, the plain KF is not adequate to solve the problem.
Instead, upgrades of the KF, such as the Extended KF (EKF) or the Unscented KF (UKF) [25],
are used. In this study, we present a Robust Adaptive Unscented Kalman Filter (RAUKF)
based on the FDWL model proposed by Kelberlau et al. [20], to estimate the LiDAR-
retrieved wind vector without motion influence. We rely on the FDWL geometrical model
and the Velocity–Azimuth Display (VAD) LiDAR wind-retrieval algorithm [26].

Filter performance is assessed using experimental data from the “El Pont del Petroli”
(PdP) campaign, in which a proof-of-concept FDWL buoy was compared, with reference
to a fixed LiDAR [21]. This allowed us to compare the motion-corrected FDWL TI to the
fixed-LiDAR reference TI.

The remainder of this paper is structured as follows: Section 2 presents the instrumen-
tal setup and models the FDWL (motion and VAD algorithm counterparts) and the wind
process, Section 2.6 formulates the motion-compensation problem using the state-space
representation of the physical model, and Section 2.7 summarizes the RAUKF method.
Section 3 presents the PdP campaign and motion-correction results. Section 4 provides our
concluding remarks.

2. Materials and Methods
2.1. Instrumental Setup

In 2013, the Neptune project “proof-of-concept” LiDAR buoy validation campaign
at PdP took place between May 24th and June 31st [21,27]. During the campaign, a proof-
of-concept floating DWL buoy was compared against a fixed LiDAR, denoted “FDWL”
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and “fixed LiDAR”, respectively, in the following. Both the FDWL and the fixed LiDAR
were ZephIRTM 300 LiDARs. The fixed LiDAR was set up in stand-still configuration
on PdP pier, as the reference device. The FDWL and the fixed LiDAR were located 50 m
apart (see Figure 1). Both LiDARs were calibrated onshore, 1 m apart and over a period
of 3 h, to ensure identical measurements on a 1 s and 10 min time basis. PdP is located
on the coastline of Badalona (Barcelona, Spain), in the Barcelona metropolitan area. The
experiment location surroundings are defined by an urban topology of low-height buildings
(up to 20 m), which follow the coastline in the west and north cardinal directions, while the
rest is defined by a sea-type topology.

Figure 1. PdP campaign location map and experimental setup.

The ZephIR 300 is a continuous-wave focused Doppler LiDAR manufactured by
Zephir Ltd., United Kingdom (today ZX LiDARsTM), which is prepared for offshore
operation [28]. The device can measure the wind at user-defined heights between 10 m to
200 m, in steps of 1 m [29]. The LiDAR uses the VAD algorithm to retrieve the wind vector
by measuring 50 LoSs at equally spaced azimuth angles (7.2-deg azimuth step between
LoSs) along a conical scan of 30-deg aperture width from zenith. The ZephIR 300 can reach
up to 1 scan/s when there is no LiDAR re-focusing required or CPU dead-time internal
processes [29].

The FDWL was mounted on a proof-of-concept 3 m diameter buoy, designed as a
prototype for offshore LiDAR operations. The buoy design was optimized for LiDAR
measurements, as well as for tracking wave-induced motion on the device. The LiDAR
was placed on a cardanic frame, aimed to keep the instrument still and to reduce the
impact of buoy motion. The buoy was equipped with additional sensors, to measure
different wind and sea parameters. Specifically, it hosted two MicroStrain 3DM-GX3-45
inertial measurement units (IMU), which combined a high-precision GPS antenna, an
accelerometer, and a gyro. The first IMU (i.e., the LiDAR IMU) was located under the
LiDAR bottom, and the second IMU (i.e., the buoy IMU) was located on the buoy structure
bottom (see Figure 2), being able to measure the buoy and LiDAR attitude. During the
campaign, different LiDAR measurement configurations were tested.
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Figure 2. Instrumentation scheme of the FDWL proof-of-concept buoy used in PdP campaign.

2.2. Basic Theoretical Definitions

The wind vector, UUU, is defined as a three-component vector formed by the HWS, WD
(clockwise from north), and vertical wind speed (VWS), as

UUU =

HWS
WD

VWS

. (1)

In WE, a standard sampling period of 10 min was used. The mean wind conditions at
this resolution were obtained by simply averaging the high-resolution (1 s) wind-vector
components into a 10 min period. Thus, the mean HWS was computed as

HWS =
1
N

N

∑
n=1

HWSn, (2)

where HWSn is the high-resolution HWS measurement and N = 600 is the number of 1 s
measurements in one minute.

We are also interested in the HWS variations, with respect to the mean HWS. This
variability was measured by means of the TI, which is defined as

TI =
σHWS

HWS
, (3)

where σHWS is the 10 min HWS standard deviation. The standard deviation is defined as

σHWS =

√√√√ 1
N − 1

N

∑
n=1

(HWSn − HWS). (4)

2.3. The Estimation Viewpoint

The KF relies on two steps to estimate the hidden state-vector of the physical system
under study: The prediction step and the innovation step [24].

The prediction step is defined by two equations, which are formulated in state-space
notation as

xxxk|k−1 = f (xxxk−1|k−1) + vvvk, (5)

zzzk|k−1 = h(xxxk|k−1) + nnnk. (6)

The first equation is the prediction equation, in which xxxk|k−1 is the hidden state-vector
to be estimated, based on the previous state-vector estimate, xxxk−1|k−1. Sub-indices n|m
denote estimation at the discrete time instant n, conditioned to all available information up
to time m. Here, xxxk|k−1 is the motion-free wind vector to be estimated, based on previous
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wind-vector estimations. f (·) is the state-transition function predicting the state-vector at
discrete time k, xxxk|k−1, given previous knowledge of the state-vector, xxxk−1|k−1; that is, f (·)
describes the stochastic wind model (to be found) that predicts the measured wind vector
at the next time step from the wind vector at the previous one. vvvk is the process noise. The
temporal resolution is the scan period (1 s approximately, see Section 2.4).

The second equation is the measurement equation, which estimates the present-time
measurement, zzzk|k−1, given the a priori state-vector, xxxk|k−1, and motion information (to be
further developed in Section 2.6), through the measurement function h(·). In other words,
the measurement function models the FDWL motion dynamics and estimates the expected
motion-corrupted wind measurements, based on the a priori state-vector and IMU motion
information vector MMM (to be defined in Section 2.6). nnnk is the measurement noise.

On the other hand, the innovation step allows for the assimilation of the present-time
measurement information into the a priori state-vector estimate through a projection gain
(the so-called Kalman gain). Formally,

x̂xxk|k = xxxk|k−1 +KKKk(zzzk − zzzk|k−1), (7)

where zzzk is the wind-vector measurement and KKKk is the Kalman gain matrix. The latter
relates the measurement estimation error, ∆zzz = zzzk|k − zzzk|k−1, to the a priori state-vector
estimation error, ∆xxx = xxxk|k − xxxk|k−1.

To implement the UKF, both the state-transition wind model f (.) and FDWL motion-
dynamics measurement function h(.) must be found. This is tackled in the following
section.

2.4. The Measurement Model: FDWL Motion

The wind vector is retrieved from the Doppler wind projection along the LoSs in
the conical scan pattern by means of the VAD algorithm (see Section 2.4.3). In real oper-
ating conditions of the FDWL, sea-induced motion disturbs the conical scan, such that
the pointing direction and measured radial velocities become affected by rotational and
translational motion. In the motion-correction study by Kelberlau et al. [20], a complete
geometrical description of the problem is thoroughly given. Next, we summarize and adapt
information from this reference which are relevant to derive the measurement function h(.)
shown in Equation (6) above.

To describe the FDWL system, we first define the right-handed Cartesian XYZ “moving-
body” coordinate system of the buoy and the north–east–down right-handed Cartesian
NED “fixed” global frame of reference (see Figure 3). The latter is the inertial frame of
reference in which the wind vector and FDWL motion are defined. Without external
influence, the X, Y, and Z axes of the moving-body coordinate system are aligned with the
north, east, and vertically down vectors of the fixed NED frame of reference. Wind, waves,
and external forces cause translational motion in the N, E, and D directions (surge, sway,
and heave, respectively), and rotational motion along the N, E, and D axes (roll, pitch, and
yaw, respectively). We define x̂, ŷ, and ẑ as unit vectors aligned with the X, Y, and Z axes of
the moving-body coordinate system. On the other hand, n̂, ê, and d̂ are defined as the unit
vectors aligned with the north, east, and vertically down axes of the global NED frame of
reference. ĥ is defined as the LiDAR beam direction before the prism deflection. The vector
ĥ is defined as the opposite vector to ẑ. The LoSs are measured in a cone of φ0-deg width
from ĥ. Finally, we define θ0 as the LiDAR initial scan phase (i.e., the azimuth angle of the
LiDAR pointing direction at the first LoS; denoted r̂1), with respect to x̂ in the XY plane.
During a scan, the LiDAR pointing direction r̂ ranges from θ = −θ0 to θ = −θ0 + 360× 1s,
with a fixed step ∆θ between consecutive LoSs in a scan, which are denoted by r̂n and r̂n+1,
where n is the LoS number.
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Figure 3. Schematic of the motion geometry of the FDWL buoy. (a) The moving-body coordinate
system (red arrows) and the fixed coordinate system (blue arrows). (b) The LiDAR scanning cone
and LiDAR pointing direction (green arrows) in relation to the XYZ coordinate system.

2.4.1. Rotational Motion

The rotational model (to be formulated as function hrot(·) in Section 2.6) computes the
“true” LiDAR pointing direction vectors by means of a series of geometrical operations.
Rotational motion affects the LiDAR pointing direction in each LoS, r̂n, n = 1, . . . , 50. A
series of chained vector rotations (refer to [20], Equations (5)–(12)) are needed to re-encounter
r̂ in the NED reference frame (in the following, r̂ will be used as shorthand notation for the
vector set r̂n, n = 1, . . . , 50). This is derived next:

The Euler rotation matrix is used to express x̂, ŷ, and ẑ in the NED frame of reference
given roll, pitch, and yaw values ([20], Equations (5)–(7)). The unitary vector ĥ in the
direction of the laser beam, before it is deflected by the LiDAR prism, is computed as ([20],
Equation (8)):

ĥ = −ẑ. (8)

êθ0 , which denotes the vector in the direction of LiDAR heading in the N-E plane (i.e., the
azimuth angle of r̂1), is obtained by rotating x̂ along ĥ by θ deg, as:

êθ1 = R(ĥ, θ) · x̂, (9)

where R(ĥ, θ) is the rotation matrix about ĥ θ degrees ([20], Equation (9)). Then, auxiliary
vector êθ270 , defined as the unit vector perpendicular to êθ0 in the N-E plane, is encountered
as ([20], Equation (10)):

êθ270 = ĥ× êθ0 . (10)

Finally, the first LiDAR pointing direction r̂1 can be expressed in the NED frame of
reference by rotating ĥ by φ0 deg along êθ270 , as:

r̂1 = R(êθ270 , φ0) · ĥ. (11)
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The remaining LiDAR pointing directions in a scan, r̂n, n = 2, . . . , 50 are obtained by
changing the scan angle θ0 into θn−1, with n as above.

2.4.2. Translational Motion

The translational model (formulated as function htrans(·) in Section 2.6) computes the
set of 50 LiDAR-measured, LoS radial velocities during a scan, vvvLoS. Translational motion
also influences the measured LoS velocities. To study its effects, we need to account for
all the velocity components at the position of the LiDAR scanning prism (origin of the
scanning cone, O′ in Figure 3). First, we define ~d as the distance vector between the origin
of the NED coordinate system (O in Figure 3) and that of the scanning cone in the NED
frame of reference (O′ in Figure 3). The velocity experienced at measurement location O′,
~vlidar, becomes influenced by both the translational velocities experienced by the LiDAR

and rigid-body motion caused by the angular velocities. This composite effect can be
expressed as ([20], Equation (14))

~vlidar = n̂vn + êve + d̂vd + (n̂ωn)× ~d + (êωe)× ~d + (d̂ωd)× ~d, (12)

where vn, ve, and vd are surge, sway, and heave motions, respectively, and ωn, ωe and ωd
are roll, pitch, and yaw angular velocities, respectively.

Finally, the translational velocity contribution into a LoS ([20], Equation (15)) is the
projection of ~vlidar onto r̂ ([20], Equation (15)):

vLoS = r̂ · ~vlidar. (13)

The radial velocity measured by the LiDAR along a LoS is encountered as the differ-
ence between the wind-vector projection over r̂ and vLoS, as:

vr = ~U · r̂− vLoS. (14)

2.4.3. VAD Algorithm

The VAD model (formulated as hVAD(·) in Section 2.6) retrieves the wind vector UUU
from the measured LoS velocities, vvvLoS. Assuming a uniform wind field, the measured
radial wind, as a function of the azimuth LiDAR scan angle, takes the form of a cosine
wave [26]. The VAD algorithm uses the least-squares method (LSQ) to fit a sinusoidal
function to the measured radial velocities in the conical scan, vr, at LoS azimuth angles
φ. Formally,

vr(φ) = |A cos (φ− B) + C|, (15)

where A, B, and C are the LSQ solving variables, which yield the wind-vector informa-
tion as:

HWS = A/ sin (φ),

WD = B± 180 deg,

VWS = C/ cos (φ).

(16)

The sign ambiguity in the WD is due to the ZephIR 300 homodyne LiDAR detection,
i.e., the LiDAR can only measure unsigned Doppler frequency shifts, which leads to 180-
deg ambiguity in the WD retrieved by the VAD algorithm [26]. This ambiguity is resolved
by means of the wind vane installed on the buoy.

2.5. State-Transition Model
2.5.1. Wind Model

The LiDAR-retrieved wind vector is a non-stationary stochastic process dependent
on the atmospheric conditions [30]. For instance, the wind field gusty nature causes
high wind speed increments during short time periods [16]. Although physically rooted,
advanced turbulent models describing the spectral tensor for atmospheric surface-layer
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turbulence [22] provide a refined solution, their application is hampered by their complexity
and demand for computational resources. Instead, we propose a straightforward and
oversimplified approach, in which the wind process is modelled as a random-walk (RW)
stochastic process, in a similar fashion as what was used for the initial scan-phase model.
It is formulated as:

UUUk = UUUk−1 + εεεk, (17)

where εεεk is a random variable with zero-mean Gaussian distribution, N(0, σ).
Figure 4 compares the HWS time-series estimated from the RW model (Equation (17))

to that measured by the fixed LiDAR. Figure 4a) demonstrates a similar dynamic range and
process variability between both time-series, during most of the time. This is corroborated
in Figure 4b), in terms of their associated Power Spectral Densities (PSD). Both PSDs were
virtually coincident in the first spectral lobe (10 Hz cut off, −15 dB), indicating that RW
modelling is a promising candidate for our estimation purposes. Discrepancies above
10 Hz were responsible for partial time-series tracking around sample nos. 150–200 in
Figure 4a).

a)

b)

Figure 4. Comparison between the HWS RW model presented in Section 2.5.1 and experimental data:
(a) Temporal series; and (b) PSD.

2.5.2. Initial Scan-Phase Model

The LiDAR initial scan phase, θ0, has great influence on the measurement error and,
therefore, is of key importance for LiDAR motion correction [13]. However, θ0 is an
undisclosed parameter from the manufacturer’s side, which needs to be estimated. In the
motion-correction study by Gutiérrez-Antuñano et al. [13], θ0 is considered a random
variable with uniform probability density from 0 to 360 deg. Based on this assumption, the
LiDAR initial scan-phase process is modelled as a RW process, as:

θ0,k = θ0,k−1 + εk, (18)

where εk is a uniform random variable in [0, 360) deg.

2.6. State-Space Formulation of the Problem

Once the measurement (Section 2.4) and state-transition models (Section 2.5) have
been formulated, we aim to derive associated measurement and state-transition functions
h(.) and f (.), respectively, in accordance with the state-space formulation presented in
Section 2.3.

State-transition function f (.).- To derive the state-transition function, first we considered
the “clean” (i.e., motion-free) wind vector, UUUk, which is to be estimated from the motion-
corrupted wind vector UUUFDWL

k from the FDWL. The state-vector to be estimated, xkxkxk, is
formed by the clean wind vector at time k, UUUk, and the LiDAR initial scan phase at that
discrete time, θ0,k. This is formulated as

xxxk =
[
UUUT

k θ0,k
]T , (19)
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which using Equation (1), can be expanded to

xxxk =
[
HWSk WDk VWSk θ0,k

]T . (20)

By inserting the state-vector Equation (20) above, along with the RW models for the
wind and initial scan-phase processes (Equations (17) and (18), respectively) into prediction
Equation (5), we obtain

xxxk|k−1 = III · xxxk−1|k−1 + vvvk, (21)

where III is the identity matrix. This enables us to identify state-transition function f (·), as:

f (xxxk−1|k−1) = III · xxxk−1|k−1. (22)

In Equation (22) above, the state-vector is a 4-component vector, estimated at each
successive LiDAR scan (i.e., with approximately 1 s temporal resolution). Recall that
sub-indices n|m refer to estimation at discrete time n, based on past information up to
discrete time m.

Measurement function h(.)—The measurement equation (Equation (6)) predicts the
motion-corrupted wind-vector zzzk|k−1 measured by the FDWL (i.e., the observation vector)
from the estimated state-vector, xxxk|k−1. The observation vector is written as

zzzk = UUUFDWL
k = [HWSFDWL, WDFDWL, VWSFDWL]

T , (23)

where HWSFDWL, WDFDWL, and VWSFDWL are the FDWL measurements of HWS, WD,
and VWS, respectively. zzzk is a 3-component vector computed at each successive time scan.

As the measurement function h(·) is time variant depending on the attitude motion
of the LiDAR, we define the motion block-vector MMMk describing the 6-DoF motion of the
FDWL during a scan as:

MMMk = [RRRk, PPPk,YYYk, vxvxvxk, vyvyvyk, vdvdvdk], (24)

where RRRk, PPPk, YYYk, vxvxvxk, vyvyvyk, and vdvdvdk are the roll, pitch, yaw, surge, sway, and heave time-series
measured by the IMU at 10 Hz temporal resolution and interpolated at 50 Hz. Numerically,
the block-vector MMM is a 50 × 6 matrix, where each row is a LoS attitude measurement, and
each column is an attitude parameter.

Assuming uniform wind flow during the LiDAR scan at time k, the motion-corrupted
FDWL observations in a scan can be described by a set of three successive operations
(Section 2.4, and refer to Figure 5):

(i) retrieval of the motion-corrupted instantaneous LoS set, r̂rr;
(ii) estimation of the associated LoS velocities, vvvLoS; and
(iii) VAD retrieval of the motion-corrupted observation wind vector, zzzk|k−1;
where r̂rr denotes the block-vector [r̂1, r̂2, ..., r̂n], n = 1, · · · , 50, and each component

represents the nth LoS unit vector (Figure 3).

Figure 5. Block diagram depicting the measurement function h(.), as a chain process in which
rotation, translation, and VAD retrieval are modelled as elementary functions. Equation numbers
inside each block refer to pertinent equations in the text.
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Figure 5 block diagram depicts the filter measurement function h(·) as a chain calcu-
lus process:

First, at each discrete time k, the 50 motion-corrupted LoSs during the scan ([r̂1, r̂2, ..., r̂n],
n = 1, · · · , 50) are computed by means of the geometrical operations presented in Section 2.4.1
(Equations (9)–(12)). This set of operations is denoted hrot(·) in Figure 5. The function hrot(·)
computes the block-vector r̂rr = [r̂1, r̂2, ..., r̂50] in the global NED frame of reference based
on roll, pitch, and yaw instantaneous angles from attitude vector MMMk and predicted initial
phase θ0,k|k−1 from the state-vector, xxxk|k−1. Therefore, the block-vector r̂rr can be written as

r̂rr = hrot(xxxk|k−1, MMMk). (25)

Second, the motion-corrupted LoS velocities at time k, vvvLoS,k, are calculated through
the set of operations described in Section 2.4.2 (Equations (12) and (13)), and denoted
htrans(·) in Figure 5. Function htrans(·) computes this set of velocities given the predicted
wind vector, UUUk|k−1, the estimated LoS directions from the previous block, r̂rr, and by
considering the influence of LiDAR translational and rigid-body motion information,
through Equation (14) and Section 2.4.2, given MMMk. Then, vvvLoS,k is obtained as

vvvLoS,k = htrans(xxxk|k−1, MMM, r̂rr). (26)

Third, the motion-corrupted VAD-retrieved wind vector zzzk|k−1 is determined from
the 50-LoS set of velocities, vvvLoS,k, by means of the least-squares VAD algorithm presented
in Section 2.4.3 (Equations (15) and (16)). The VAD algorithm is denoted by hVAD(·) in
Figure 5. Hence,

zzzk|k−1 = hVAD(vvvLoS,k). (27)

This chain calculus to compute measurement function h(·) can be formulated as
the composition of hrot(·), htrans(·), and hVAD(·) functions (through the so-called “chain
rule”), as:

h(·) = hVAD(·) ◦ htrans(·) ◦ hrot(·). (28)

The time-variant observation model Equation (6) can be formulated as

zzzk|k−1 = h(xxxk|k−1, MMM) + nnnk. (29)

2.7. Estimation of State- and Observation-Noise Covariance Matrices

To ensure convergent, unbiased estimates, the UKF must have a priori knowledge of
both the process noise, vvvk, and measurement noise, nnnk. These are zero-mean, additive white
Gaussian noise processes with covariances, QQQk and RRRk, respectively, which must be found.

The process-noise covariance matrix, QQQk, is defined as

QQQk = E[vvvkvvvT
k ]. (30)

Likewise, the measurement-noise covariance is defined as

RRRk = E[nnnknnnT
k ]. (31)

As the measurement function h(.) is time variant with the LiDAR motion vector MMM,
so is the measurement noise. Additionally, the wind statistical moments are not stationary,
and the noise covariance matrices are difficult to accurately describe. Instead, we propose
the adaptive estimation of these matrices based on statistical physical inference [31–33]. In
this study, the Robust Adaptive UKF (RAUKF) [34] is chosen, due to its low computational
requirements, fast convergence, and overall good performance to adaptively estimate the
noise covariances. Moreover, the RAUKF uses a fault-detection mechanism to detect filter
failure due to inaccurate estimation of the noise covariance matrices. When a fault is
detected, QQQ and RRR are adjusted (see Appendix B for details).
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In contrast to Equation (30), the RAUKF does not estimate QQQ as the ensemble average of
vvvkvvvT

k [35,36]. A more straightforward approach is to estimate the matrix QQQk instantaneously
(i.e., at each discrete time k), using the approximation E[vvvkvvvT

k ], and to balance it with
previous estimates. As a further refinement, the RAUKF dynamically adjusts Q̂QQk by
blending present and past estimates of the covariance matrix through a forgetting factor,
λ, as:

Q̂QQk = (1− λ)Q̂QQk−1 + λvvvkvvvT
k . (32)

The RAUKF uses similar procedure as for Q̂QQk, to compute the instantaneous estima-
tions of RRRk through a forgetting factor δ, as:

R̂RRk = (1− δ)R̂RRk−1 + δnnnknnnT
k . (33)

A similar memory-fading procedure has been used in the radar application of the filter
for atmospheric boundary layer height estimation [37]. In practice, factors in the range
0.1–0.2 provided convergent, unbiased results, as shown in Section 3.

2.8. Filter Initialization

The UKF initial space vector takes the form

x̂xx0 = [UUUproxy
0 , θ0,0]

T , (34)

where UUUproxy
0 is the “proxy” wind time-series and θ0,0 is initial scan phase, θ0, at time k = 0.

To initialize the filter, a 10 min length, moving-average time-series [21] of the first 1
s-resolution wind measurements (the so-called “proxy” time-series, UUUproxy

k ) is computed.
The window length chosen is the wave period over the 10 min series, which is estimated
by means of the L-dB method [38] (other wave-period estimation methods in the litera-
ture [39,40] yielded virtually identical results). The wind component of the state-vector is
initialized by retaining the first-time sample of the proxy wind, UUUproxy

k . The initial scan-
phase component of the state-vector is initialized with a random value between 0 and
360 deg, as dictated by the assumption of the a priori unknown uniform phase distribution.

The state-noise covariance matrix is linked to RW process noise vvvk (Equation (5)). For
simplicity, this matrix is assumed to be diagonal. At time k = 0, this matrix is written as

QQQ0 = diag(
[
σ2

HWS σ2
WD σ2

VWS σ2
θ0

,
]
), (35)

where each component represents a variance.
As a RW process is characterized at each discrete time by incremental/detrimental

random steps away from the previous value of the variable, σ2
HWS, σ2

WD, and σ2
VWS are

estimated as the variance of difference between consecutive samples. For example, σ2
HWS is

calculated from UUUproxy as

σ2
HWS = E[(HWSproxy

k − HWSproxy
k−1 )2], (36)

where E(.) is the expectancy operator (in practice, a 10 min window average). Process
noise θ0 is initialized with the noise variance of a uniform distribution from 0 to 360 deg as

σ2
θ0
=

(b− a)2

12
=

3602

12
, (37)

where a = 0 and b = 360 deg are the lower and upper limits of the uniform distribution,
respectively.

The measurement-noise covariance matrix at initial time, k = 0, is formulated as

RRR0 = diag(
[
σ2

R,HWS σ2
R,WD σ2

R,VWS

]
), (38)
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where the subscript R is a remainder of covariance matrix RRRk and σR,i, i = HWS, WD, VWS
is the estimated measurement-noise standard deviation for each of the variables. We used
σR,HWS = 0.05 m/s, σR,WD = 50 deg, and σR,VWS = 0.025 m/s for the experimental data
of Section 3. These measurement-noise standard deviations were roughly estimated from
the 10 min proxy wind time-series, UUUproxy

k , used to initialize the filter. These values were
deliberately low, to ensure the smooth start-up of the filter, hence preventing divergence.

Finally, the a priori error covariance matrix, P̂PP
xx
0 , is initialized as

PPP−0 = QQQ0, (39)

which indicates that the user’s expected a priori error during initialization is comparable to
the state-noise “nervousness” of the filter, QQQ0.

3. Results

The motion-compensation algorithm was tested on the PdP experimental campaign by
comparing the FDWL with reference to the fixed LiDAR. This is discussed in the following:

3.1. Data Set

The data set used for validation of the motion-correction algorithm comprised data
from 6 to 30 June of 2013, with both LiDARs measuring at a fixed height of 100 m; specifi-
cally, (i) wind-LiDAR data from the FDWL, (ii) FDWL internal status parameters, and (iii)
6-DoF motion measurements by two IMUs, one on the LiDAR instrument (“lidar IMU” in
what follows) and another on the buoy (“buoy IMU”), were used.

Lidar internal status parameters were available, to assess the LiDAR status as well as
to ensure the quality of the VAD-retrieved wind-vector measurements. These parameters
include the spatial variation (SV), backscatter, and other system parameters. The SV
parameter is a LiDAR internal parameter representing the turbulence intensity of the
variation degree of the radial wind speeds (LoS) within the circle of scan of the LiDAR [21].
The SV can be understood as a goodness-of-fit parameter of the VAD algorithm which
is used to retrieve the wind vector at a given height [26,41]. By experiment, Gutiérrez-
Antuñano et al. [21] showed strong correlation between the wind TI and the SV values
measured by a fixed ZephIR 300 LiDAR at 100 m in height (SV = 0.02 was approximately
related to TI = 5% and SV = 0.1 to TI = 30% therein). The backscatter coefficient is an internal
dimensionless parameter indicative of the intensity of the backscattered light return. By
experiment, a backscatter threshold of 0.1 is reported in [42] to distinguish between normal
and low signal LiDAR returns.

Regarding the IMU data used for motion compensation, each of the IMUs was used
for a different purpose: On one hand, the LiDAR IMU was used to measure rotational
motion, as the LiDAR was mounted on the cardanic frame in such a way that its rotation
center coincided with the LiDAR scan cone apex (location of the scanning prism; point O
in Figure 3). On the other hand, the buoy IMU was used to measure translational motion.

3.2. Data Filtering

Lidar-measured data from both the fixed and FDWLs required outlier removal, which
encompassed 999X values (a label for system measurement error), too-high wind speed,
and rain-flagged data.

The ZephIR 300 LiDAR has a wind measurement range of 1–80 m/s [43]. In high-
motion scenarios, wind measurements by the FDWL exhibited high variances as compared
to the mean HWS. Ten-minute time-series with a HWS mean lower than 2.5 m/s were
removed, to ensure reliable instantaneous HWS measurements [13]. Complex-terrain effects
also cause non-negligible effects on the wind flow variability, which may well invalidate
the assumption of uniform wind flow during the LiDAR scan [44]. Thus, metropolitan
buildings along the coastline cause high spatial variability on the wind field [45], which
demonstrates as a non-uniform wind vector along the LiDAR scanning cone. On the other
hand, winds blowing from sea to land exhibit higher spatial homogeneity, which leads
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to more reliable LiDAR measurements. Following Section 3.1, 1-s data with SV greater
than 0.2, which were indicative of spatially non-homogeneous winds, were filtered out.
Similarly, data with associated backscatter coefficients smaller than a threshold of 0.02,
which is indicative of LiDAR measurements with very low signal return, were rejected.

3.3. Campaign Overview

During the measurement period (6–30 June 2013), the surface layer was dominated
by local thermal winds hardly rising above 15 m/s at 100 m in height [21]. The observed
HWS in this period ranged from 1 m/s to 15 m/s, with three predominant WDs: North
East (NE), North West (NW) and South (S); see Figure 6.

Figure 6. Wind rose representing the HWS and WD (after data filtering), measured during the PdP
campaign, by the reference LiDAR (10 min) from June 6 to June 30 of 2013 (1875 records).

During the night, the wind was light, coming predominantly from the urban area
(NW), showing low HWS values with high turbulence and spatial variability. During the
day, the atmosphere was dominated by winds coming from the sea towards land (S and
NE), with higher HWS and lower turbulence.

Both the fixed- and floating-lidar 10 min WD time-series showed unexpected high
noise (roughly about±5-deg uncertainty in Figure 7). This phenomenon is called “granular-
ity” herein, and was caused by a LiDAR flaw. This issue was solved in a later manufacturing
series of the instrument [10].
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Figure 7. WD time-series measured by the FDWL at 100 m height, showing the so-called “granularity”
effect.

3.4. UKF Results

Low/High-turbulence scenario analysis.—The filter was applied to the campaign data set
described in Section 3.3. The filter converged in most cases, achieving successful motion
correction when compared to the reference fixed LiDAR. Divergent cases (accounting for
less than 0.5% of the statistical sample) were attributable to strong wind shears, which
motivated retuning of the measurement-noise variance settings in Equation (38).

Figure 8 shows a low-turbulence case example, comparing a FDWL HWS measure-
ment time-series with and without correction against the reference fixed-LiDAR time-series.
Besides evident filter convergence, the motion-corrected HWS time-series matched almost
ideally that of the reference LiDAR. The motion-induced error was greatly reduced from
0.14 m/s to 0.05 m/s RMSE, thus achieving good performance. When analyzing the PSD
of these three time-series (see inset), it emerged that the RW model was able to emulate
the wind process with high accuracy, up to some 21 dB roll-off at 7 Hz. However, the high-
frequency components below −30 dB, which were not as relevant, were underestimated
(data not shown).

Figure 8. HWS time-series measured at 100 m height between the fixed LiDAR and the FDWL, with
and without correction (see legend). Inset: PSD comparison. Low HWS-variance scenario (7 June
2013, PdP).
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Underestimation of frequency components may lead to motion over-correction by
the UKF in high variance scenarios, as illustrated in Figure 9. It can be observed that the
motion-corrected FDWL and fixed-LiDAR temporal series only partially matched each
other. Spectral analysis underlined differences between the HWS PSDs (red and black
traces), being as high as 5 dB at low frequencies (0 to 5 Hz) and increasing to '10 dB at
high frequencies (5 to 20 Hz). This is a limitation of the used RW wind model, which was
not able to emulate the high-frequency components of the wind spectrum. Consequently,
the filter assimilated the wind model error as a measurement error, which led to biased
estimations at specific times in Figure 9. Regarding 10-min WD estimation in either high-or
low-variance scenarios (counterparts of Figures 8 and 9, respectively, data not shown), the
filter was able to retrieve the yaw-error-free WD with a RMSE as low as roughly 5 deg for
both the high- and low-variance cases. Regarding the so-called 1-s WD estimation, the
“granularity” effect showed up in the retrieved time-series in similar fashion as for the
retrieved HWS.

Figure 9. Same as Figure 8. High HWS-variance scenario (22 June 2013, PdP).

Overall campaign analysis.- With a view to assess the overall filter performance, the TIs
measured by the FDWL during the PdP campaign (25 days, 1875 records) with and without
correction (TI f loat.,corr. and TI f loat., respectively) were compared to the TI measured by
the fixed LiDAR (TI f ixed). In the context of WE, the typical temporal resolution of wind-
related data products is 10 min; thus, the comparison was carried out at 10 min temporal
resolution. To carry out this comparison, different statistical indicators were considered:
(i) The determination coefficient (R2), (ii) RMSE, and (iii) mean deviation (MD).

The RMSE for a sample of N motion-corrected measurements is defined as

RMSE =

√
∑N

n (TI f loat.,corr. − TI f ixed)2

N
, (40)
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and the MD is defined as

MD =
∑N

n TI f loat.,corr. − TI f ixed

N
. (41)

The MD accounts for the systematic error in the LiDAR-measured TI (equivalently,
HWS standard deviation) caused by wave-induced motion [9,46]. The RMSE and MD
definitional formulae to compare FDWL uncorrected measurements to fixed-LiDAR mea-
surements are analogous to Equations (40) and (41) above, by changing TI f loat.,corr to
TI f loat..

The scatter plot shown in Figure 10 compares the TI measured by the FDWL (with and
without correction) against the TI measured by the fixed LiDAR. Without correction, most
of the TI f loating values fell below the ideal 1:1 line. This was because buoy motion added
an apparent variance to the HWS measurements, which increased the LiDAR-measured
turbulence. The linear regression (LR, red dashed-dot line) offset of −0.0185 indicated
the amount of added turbulence [14]. The LR slope of 1.0358, which is virtually identical
to the ideal unity slope, indicates that the apparent turbulence equally affected all HWS
measurements.

Figure 10. Scatter plot comparing the TI measured by the FDWL with reference to the fixed Li-
DAR, with and without correction (Red, without motion correction; Black, with motion correction).
The dashed line indicates the ideal 1:1 line. Dot-dashed lines indicate corresponding color-coded
linear regressions.

Regarding the motion-corrected TI measurements (black dots), the scatter points
lay closer to the ideal 1:1 line, as demonstrated by an LR offset as low as 0.0032. This
represented an 83% reduction factor, in comparison to the uncorrected measurements
(offset term equal to 0.0185), and very small over-correction from the UKF side.

Scatter points away from the ideal 1:1 are a consequence of different filter model
limitations: First, the LiDAR initial scan-phase model (Section 2.5.2) was unknown, the
proposed RW models being only a reasonable rough approximation. Second, the retrieved
WD by any of the two LiDAR instruments showed the so-called “granularity” issue, which
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accounted for uncertainties of some ± 5 degrees (see Section 3.3), and which could have
well led to inaccurate correction by the UKF. Finally, in Figure 10, we did not include
the start-up period of the filter, in which the noise covariance matrices are still not well-
estimated. Third, a more homogeneous terrain experimental scenario should be used.
FDWLs are conceived for open-sea environments, and the motion-correction should be
tested in these scenarios.

The overall campaign results demonstrated the good performance of the filter in
reducing the apparent TI caused by buoy motion. All statistical indicators (see Table 1)
improved: (i) the coefficient of determination, R2, rose from 0.85 (without compensation) to
0.90 (with compensation); (ii) the RMSE reduced from 2.01% (without) to 1.01% (with); and
(iii) the MD increased from −1.70% to 0.29%, accounting for an 83% factor improvement.

Table 1. Statistical indicators evaluating the comparison between FDWL (with and without correction)
and fixed LiDAR TI measurements at the 10 min level.

Uncorrected Motion-Corrected WD Filtered Motion-Corrected

R2 0.85 0.90 0.93
RMSE 2.01% 1.01% 0.86%

MD −1.70% 0.29% 0.36%

However, closer inspection of the measurement setup warrants some comments,
regarding the statistical indicators shown: First, the floating and the fixed LiDARs were
located 50 m apart and, although they measured similar wind conditions, the instantaneous
wind measurements were not the same. This would have required setting up two LiDARs
co-located at the same place. Specifically, winds blowing from/to the urban area (WDs
between 270 and 330 deg, and between 90 and 150 deg, respectively) experienced higher
spatial and temporal variation, due to terrain roughness [45], which led to different HWS
time-series being measured by the LiDARs (see Section 3.3).

According to Taylor’s frozen-atmosphere theory [47], turbulent eddies transported by
the mean wind hold their properties as if they were “frozen”, such that two points aligned
with the mean WD will observe the same wind stochastic realization, with a time delay.
This delay is inversely proportional to the mean HWS. The floating and the fixed LiDARs
were mainly aligned along the north-south direction and, therefore, only measurement
records with WDs within 180±30 deg will be considered for further, enhanced statistical
analysis. The maximum delay measured between the two LiDARs was 25 s, which is a
negligible value, compared to the measurement period of 10 min.

After the WD was filtered, as indicated, the statistical indicators improved, as shown
in the third column of Table 1. The coefficient of determination increased to 0.93 and the
RMSE decreased to 0.86%. The small increase in MD (0.36%) was not significant, on account
of the approximate WD filtering procedure.

4. Conclusions

An adaptive method for 6-DoF motion compensation of ZephIR 300 FDWL wind
measurements was presented in this paper. The RAUKF algorithm proved to be capable of
correcting the motion-induced error in the retrieved HWS (Figure 8) and TI (Figure 10),
without accessing LiDAR LoS velocity measurements, which is undisclosed information
from the manufacturer’s side for most of the commercial continuous-wave wind LiDARs.
To the best of our knowledge, this is a key state-of-the-art contribution of this work.

The proposed solution departed from the FDWL motion dynamics study [20] and the
well-known VAD wind-retrieval algorithm, to derive an ad-hoc state-space formulation of
the problem from the point of view of control theory, using an UKF and stochastic mod-
elling. The state-vector transition model relied on a RW model to describe the unknown
motion-corrected wind vector (to be found) and blind LiDAR initial scan phase. The mea-
surement model was time variant and combined the buoy’s 6-DoF IMU information with
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the filter’s estimated motion-corrected wind vector, to predict the FDWL motion-corrupted
wind measurements. The recursive loop of the filter, combined with run-time estimation
of the state-vector and measurement-noise covariance matrices, ensured successful and
convergent results.

The methodology was validated using the experimental data collected during a PdP
measurement campaign in Barcelona, using a fixed LiDAR on the PdP pier as the reference
instrument. To quantitatively assess filter performance, the 10 min TI measured by the
FDWL with and without correction was compared to the TI measured by the reference
LiDAR. Wind measurements were also WD screened, to ensure the validity of Taylor’s
frozen-atmosphere assumption along the connecting line between the two LiDARs. All
statistical indicators showed significant improvement Table 1: MD improved from −1.60%
(without correction) to 0.36% (with correction), the RMSE improved from 1.9% to 0.86%,
and the determination coefficient (R2) increased from 0.86 to 0.93. Linear regression
between floating- and fixed-TI measurements showed an offset equal to the apparent
motion-induced TI added; which, upon correction by the filter, was virtually removed.

A limitation of the filter was its underestimation of the high-frequency components
(i.e., fast transients) when comparing floating-lidar HWS temporal series with reference
to fixed-LiDAR ones. This was due to the oversimplified RW wind model used. Notwith-
standing the overall improvement in all the statistical indicators shown, a few outliers
departed from the ideal 1:1 line between the motion-corrected and fixed-LiDAR TI obser-
vations. We hypothesize that this may be due to the filter start-up time (about 60 s before
stable tracking condition is reached), as well as the so-called “granularity” effect in the
LiDAR-retrieved WD.

All in all, the RAUKF was demonstrated to be an effective tool for 6-DoF motion
correction of FDWL measurements and accurate TI measurements. Furthermore, the
recursive operation of the filter allows room for stand-alone, nearly real-time correction of
FDWL measurements.
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Abbreviations
The following abbreviations are used in this manuscript:

DoF Degrees of Freedom
DWL Doppler Wind LiDAR
EKF Extended Kalman Filter
FDWL Floating Doppler Wind LiDAR
HWS Horizontal Wind Speed
IMU Inertial Measurement Unit
KF Kalman Filter
LoS Line-of-Sight
LSQ Least Squares
MD Mean Deviation
metmast meteorological mast
PdP El Pont del Petroli
PSD Power Spectral Density
RAUKF Robust Adaptive Unscented Kalman Filter
RMSE Root Mean Square Error
RW Random Walk
SV Spatial Variation
TI Turbulence Intensity
UKF Unscented Kalman Filter
VAD Velocity–Azimuth Display
VWS Vertical Wind Speed
WD Wind Direction
WE Wind Energy

Appendix A. Kalman Filter Review

This Section summarizes the study on UKF by Wan et al. [48], for self-completeness of
the theoretical foundations given in Section 2.3. The reader is referred to this reference for
further insight.

The Kalman Filter (KF) is a recursive filter that optimally estimates the internal (i.e.,
hidden) state-vector of a linear dynamic system from noisy observations, as described in
Section 2.3. The KF is the optimal estimator for linear systems under a statistical minimum-
variance criterion over time. In contrast, the Extended Kalman Filter (EKF) is one of the
most widely used methods to estimate the state variables of non-linear systems, as is the
case of moving FDWLs. The main limitation of the EKF is that it linearizes system non-
linearities by first-order Taylor’s series expansion. This implies propagation of the random
variables distribution (RVD) through the system equations, which usually leads to large
errors in the statistical moments of the transformed variables and, hence, to sub-optimal
filter performance. The Unscented Kalman Filter (UKF) provides an elegant solution to
solve these weaknesses [48].

Appendix A.1. The Unscented Transform

The UKF addresses the RVD approximation errors of the EKF by means of the un-
scented transform (UT). In the UT, a set of samples representative of the mean and co-
variance of the RVD are chosen. These samples are propagated through the non-linear
dynamics of the system, to accurately capture the system-propagated RVD mean and
covariance. This is formulated in the following:

Consider an N-dimensional random variable xxx (e.g., the state-vector previously in-
troduced in Section 2.3) with mean xxx and covariance PxPxPx propagating through a non-linear
function f (·) (e.g., the state-transition function of Section 2.3), yyy = f (xxx). The UT chooses
a set of 2N + 1 auxiliary vectors (the so-called sigma vectors), χiχiχi, to estimate the RVD [49].
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Their sample mean and sample covariance are xxx and PPPx, respectively. The sigma vectors are
chosen as

χχχ0 = xxx (A1)

χχχi = xxx + (
√
(L + λ)PPPxx)i i = 1, . . . , L (A2)

χχχi = xxx− (
√
(L + λ)PPPxx)i i = L + 1, . . . , 2L, (A3)

where (
√
(L + λ)PPPxx)i denotes the ith row of the square-root matrix, and λ is a scaling pa-

rameter (typically, λ = 3− N for Gaussian distributions). When sigma vectors χχχ propagate
through the non-linear function f (xxx), a transformed variable set, υiυiυi, is obtained,

υυυi = f (χχχi). (A4)

The sought-after mean and covariance of system output variable yyy are approximated
as a weighted mean of the propagated sigma points,

yyy '
2N

∑
i=0

Wm
i υυυi, (A5)

PPPyy '
2N

∑
i=0

Wm
i (υυυi − yyy)(υυυi − yyy)T , (A6)

where the weights are defined as

Wm
0 = Wc

0 = λ/(N + λ), (A7)

Wm
i = Wc

i = 1/(2(N + λ)). (A8)

Appendix A.2. The Unscented Kalman Filter

The UKF uses the UT to estimate the RVDs of both the state-vector and the observation
vector. The recursive algorithm of the filter can be summarized by the following ten-
step procedure:

Step 1. Initialize the filter with the initial-guess state-vector and state-vector covari-
ance, as:

x̂xx0 = E[xxxT
k ] (A9)

P̂PP
xx
0 = E

[
(xxx0 − x̂xx0)(xxx0 − x̂xx0)

T]. (A10)

Step 2. Calculate the sigma points at discrete time k − 1, used as a proxy of the
state-vector RVD (see Appendix A.1), as:

χχχk−1 =
[
x̂xxk−1 xxxk−1 ±

√
(L + P̂PP

xx
k−1|k−1)

]
. (A11)

Step 3. Compute the sigma-points output at time k, in response to the sigma points
input at time k− 1, by the system state-transition function, f (·), as:

χχχk|k−1 = f (χχχk−1). (A12)
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Step 4. Obtain the predicted a priori state-vector mean and covariance matrix at time
k, as:

xxxk|k−1 =
2N

∑
i=0

Wm
i χχχi

k|k−1 (A13)

PPPxx
k|k−1 =

2N

∑
i=0

Wc
i [χχχ

i
k|k−1 − xxxk|k−1][χχχ

i
k|k−1 − xxxk|k−1]

T +QQQk, (A14)

where QQQk is the state-noise covariance matrix defined in Section 2.7.
Step 5. Propagate the sigma-points set computed in Step 3 above, through the non-

linear measurement function h(·), to obtain the so-called sigma-Z points, as:

ZZZk|k−1 = h(χχχk|k−1). (A15)

Step 6. Estimate the mean and covariance of the innovation set at time k from the
obtained sigma-Z points and observation-noise covariance matrix, RRRk (refer to Section 2.7),

zzzk|k−1 =
2N

∑
i=0

Wm
i ZZZi

k|k−1. (A16)

PPPzz
k|k−1 =

2N

∑
i=0

Wc
i [ZZZ

i
k|k−1 − zzzk|k−1][ZZZ

i
k|k−1 − zzzk|k−1]

T + RRRk. (A17)

In Equation (A17) above, ZZZ denotes the sigma-Z points in the UT domain, whereas
zzz denotes the observation vector in the “non-transformed” measurement domain (e.g.,
the LiDAR wind-vector measurements). An overbar is used to indicate the approximated
mean, by means of the UT as computed in Appendix A.1.

Step 7. Compute the a priori state-vector covariance matrix at time k, as the cross
covariance between xxxk|k−1 and zzzk|k−1:

PPPxz
k|k−1 =

2N

∑
i=0

Wc
i [χχχ

i
k|k−1 − xxxk|k−1][ZZZ

i
k|k−1 − zzzk|k−1]

T . (A18)

Step 8. Derive the Kalman gain as

KKKk = PPPxz
k|k−1(PPP

zz
k|k−1)

−1. (A19)

Step 9. Compute the a posteriori state-vector and a posteriori covariance as:

x̂xxk = xxxk|k−1 + Kk(zzzk − zzzk|k−1) (A20)

P̂PP
xx
k|k = PPPxx

k|k−1 − PPPzz
k|k−1 −KKKkPPPzz

k|k−1KKKT . (A21)

Step 10. (Recursive step) Time update and go to Step 2:

x̂xxk−1 = x̂xxk (A22)

P̂PP
xx
k−1|k−1 = P̂PP

xx
k|k. (A23)

Appendix B. RAUKF Fault-Detection Mechanism

The RAUKF algorithm uses the fault-detection mechanism described in the study by
Zheng et al. [34]. In short, this method computes a test variable φk, which signals the need
to re-adjust the covariance matrices RRRk and QQQk. The test variable at time k is defined as

φk = [zzzk − h(xk|k−1)]
T [PPPzz

k|k−1]
−1[zzzk − h(xk|k−1)]. (A24)
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φk follows a χ2 distribution with s DoFs, where s is the dimension of vector µµµk = zzzk −
h(xk|k−1) (s = 3 in the case of Equation (1) wind vector). To detect a fault with reliability
1− σ (where σ is a preset value), a threshold χ2

s,σ is set, such that

P(φk > χ2
s,σ) = σ. (A25)

With these settings, a fault is detected with reliability 1− σ when φk > χ2
s,σ, which

means that covariance matrices RRR and QQQ must be re-adjusted. χ2
s,σ defines the error detec-

tion reliability (e.g., for 90% reliability, set σ = 0.1). If s = 3 DoF (as is the case here) then
χ2

3,0.1 must be set to 6.36. The variables σ and χ2
s,σ indicate the confidence we have in the

system model and the related noise covariance matrices. Thus, the higher the threshold
χ2

s,σ, the lower the probability that an error is interpreted as a model fault.
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