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Abstract: Terrestrial laser scanning (TLS) can obtain tree point clouds with high precision and high
density. The efficient classification of wood points and leaf points is essential for the study of tree
structural parameters and ecological characteristics. Using both intensity and geometric information,
we present an automated wood–leaf classification with a three-step classification and wood point
verification. The tree point cloud was classified into wood points and leaf points using intensity
threshold, neighborhood density and voxelization successively, and was then verified. Twenty-four
willow trees were scanned using the RIEGL VZ-400 scanner. Our results were compared with the
manual classification results. To evaluate the classification accuracy, three indicators were introduced
into the experiment: overall accuracy (OA), Kappa coefficient (Kappa), and Matthews correlation
coefficient (MCC). The ranges of OA, Kappa, and MCC of our results were from 0.9167 to 0.9872,
0.7276 to 0.9191, and 0.7544 to 0.9211, respectively. The average values of OA, Kappa, and MCC were
0.9550, 0.8547, and 0.8627, respectively. The time costs of our method and another were also recorded
to evaluate the efficiency. The average processing time was 1.4 s per million points for our method.
The results show that our method represents a potential wood–leaf classification technique with the
characteristics of automation, high speed, and good accuracy.

Keywords: automation; intensity; point density; three-step classification; verification; wood–leaf sep-
aration

1. Introduction

Trees are very ecologically important to the environment [1]. Living trees and plants in
terrestrial ecosystems store approximately one trillion tons of carbon dioxide [2]. Therefore,
forests play an important role in mitigating global climate change due to their ability to
sequester carbon [3,4]. Above-ground biomass (AGB) is the main form of tree carbon stocks,
comprising trunks, branches, and leaves [5]. Leaves are associated with photosynthesis,
respiration, transpiration, and carbon sequestration, whereas trunks, composed of xylem
and conduits, are mainly used to transport water and nutrients. Due to the different
physiological functions of leaves and woody parts, separating leaves and woody parts is
the basis for many studies, such as leaf area index (LAI) estimation, tree crown volume
estimation, and diameter at breast height (DBH) estimation.

Laser scanning technology can be divided into three categories according to the
platform utilized, and these are spaceborne laser scanning, airborne laser scanning, and
terrestrial laser scanning (TLS) [6]. In forestry inventory, spaceborne and airborne laser
scanning are mainly used to obtain the information of large-scale forests to achieve the
biomass estimation [7], species classification [8,9], tree height estimation [10], basal area
estimation [11], carbon mapping [12], and estimated forest structure [13]. Compared
to spaceborne and airborne laser scanning, TLS has the advantage of obtaining trunk
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and branch information in detail from a viewpoint below the canopy with high leaf
density. Therefore, tree point clouds can reflect the structural characteristics of trees
better with less occlusion, and this is a good complementary measure to other large-scale
inventory methods [6].

In recent years, TLS has been widely used to obtain tree point cloud data that includes
the woody part and the leaf part. Leaf point clouds are usually used to estimate leaf area in-
dex (LAI) [14–16], leaf area density [17,18], and tree crown volume [19,20]. Similarly, wood
point clouds are often used to calculate parameters such as tree position, diameter at breast
height (DBH) [21], tree branch and stem biomass [22,23], tree volume [24,25], and stem
curve [26,27]. They can also be used together to calculate gap fractions, effective plant area
index values [28,29], and tree biomass estimation [30,31]. Wood–leaf classification forms
the basis of many forests inventory studies. Furthermore, to some extent, the accuracy of
wood–leaf classification affects the accuracy of estimating the above-mentioned parameters.

The intensity information obtained in laser scanning is different for wood and leaves.
Béland et al. performed wood–leaf classification using distance-based intensity normal-
ization [32]. Some researchers used dual-wavelength LiDAR systems to realize wood–leaf
classification based on the difference between the intensities of wood points and leaf
points [33–35]. Zhao et al. used intensity information of the multi-wavelength fluorescence
LiDAR (MWFL) system to determine the separation of vegetation stems and leaves [36].
However, random and variable leaf positions and postures result in a wide distribution of
leaf point intensity, which overlaps with the distribution of wood point intensity. There-
fore, it is hard to separate wood points and leaf points only using an intensity threshold.
Dual-wavelength systems and multi-wavelength systems can improve the classification
accuracy by using different thresholds or different wavelengths, respectively.

The geometric information and density information of tree point cloud data were
also used to realize the wood–leaf classification. Skeleton points and k-dimensional tree
(KD-tree), based on the geometric information of point clouds, can be used to classify
wood points and leaf points [37]. Ma et al. also proposed a geometric method to separate
photosynthetic and non-photosynthetic substances [38]. Ferrara et al. proposed a method
to classify wood points and leaf points by using the density-based spatial clustering
of applications with noise (DBSCAN) algorithm [39]. Xiang et al. adopted skeleton
points to classify plant stems and leaves [40]. Wang et al. utilized the recursive point
cloud segmentation and regularization process to classify wood points and leaf points
automatically based on the geometric information [41].

Some machine learning algorithms have also been proposed to perform wood–leaf
classification. Yun et al. used the semi-supervised support vector machine (SVM) to classify
wood and leaves by extracting multiple features from point cloud data [42]. Zhu et al.
classified wood and leaves using a random forest (RF) algorithm [43]. Vicari et al. presented
a method combining the unsupervised classification of geometric features and the shortest
path analysis to classify wood and leaf points [44]. Liu et al. proposed different automated
SVM classification methods for stem–leaf and wood–leaf classifications for potted plant
point clouds [45] and tree point clouds [46]. Krishna Moorthy et al. realized wood–leaf
classification using radially bounded nearest neighbors on multiple spatial scales in a
machine learning model [47]. Morel et al. classified wood points and leaf points based
on deep learning and a class decision process [48]. The automation and the efficiency of
machine learning methods decreases due to the laborious and time-consuming manual
selection of training data for the classifier.

This paper proposes an automated and rapid wood–leaf classification method. A
three-step classification was constructed to classify the points into leaf points and wood
points. Additionally, wood point verification was fulfilled to correct some misclassified
wood points to improve the classification accuracy. The paper is organized as follows.
Section 2 describes the experimental dataset and explains our method in detail. Section 3
demonstrates the separation results of tree point clouds. Section 4 analyzes and discusses
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the results from different viewpoints. Section 5 summarizes the characteristics of our
method and suggests directions for future research.

2. Materials and Methods
2.1. Experimental Data

The experiment data were collected in Haidian Park, Haidian District, Beijing, China,
in June 2016. Three single scans were conducted using the RIEGL VZ-400 TLS scan-
ner, which was manufactured by the RIEGL company (RIEGL Laser Measurement Sys-
tems GmbH, 3580 Horn, Austria). The characteristics of the RIEGL VZ-400 scanner are
listed in Table 1.

Table 1. The characteristics of RIEGL VZ-400 scanner.

Technical Parameters

The farthest distance measurement 600 m
(Natural object reflectivity ≥ 90%)

The scanning rate (points/second) 300000 (emission),
125000 (reception)

The vertical scanning range −40◦–60◦

The horizontal scanning range 0◦–360◦

Laser divergence 0.3 mrad

The scanning accuracy 3 mm (single measurement),
2 mm (multiple measurements)

The angular resolution Better than 0.0005◦

(in both vertical and horizontal directions)

Some leaf-on plantation trees were scanned, and the obtained point cloud data con-
tained the 3D data and intensity data. Twenty-four willow trees (Salix babylonica Linn
and Salix matsudana Koidz) were manually extracted from three single-scan scene point
clouds by using the RISCAN PRO software. The 24 tree point clouds were numbered
and are presented in Figure 1. As shown in Table 2, the total tree heights (TTHs) of these
trees ranged from 8.82 m to 15.18 m, their DBHs ranged from 14.2 cm to 29.3 cm, and the
distances between the TLS scanner and each tree ranged from 3.74 m to 36.99 m.

To analyze the classification results and to evaluate our method, manual classification
was performed on each extracted tree point cloud in the CloudCompare software (an
open-source project as defined by the GNU General Public License (GPL)). The wood
points and leaf points of each tree were manually classified, and the processing time for
each tree was about 3–5 h. The manual classification results were regarded as the standard
classification results. Tree 5 was selected to demonstrate the typical manual classification
results (Figure 2). The wood points are shown in brown, and leaf points are shown in green.

2.2. Method

Our method aimed for automated and detailed wood–leaf classification, as shown
in Figure 3. There are two main parts: first is the three-step classification based on the
intensity information, K-nearest neighbors, point density in the voxel, and voxel neighbors;
second is the wood point verification, which could correct some of the misclassified points.
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Table 2. The comprehensive information of 24 trees.

Tree/Number Total Points TTH (m) DBH (m) Distance (m)

1 876657 13.90 0.29 14.63

2 716701 13.33 0.20 10.26

3 629250 13.75 0.24 12.26

4 733233 15.12 0.26 13.03

5 1064546 13.08 0.18 6.07

6 971915 11.88 0.15 6.56

7 3398859 13.30 0.26 6.39

8 1162123 13.61 0.23 10.86

9 1068644 9.87 0.14 5.21

10 1210685 14.40 0.29 15.23

11 1318700 13.96 0.26 5.93

12 742280 14.87 0.27 14.22

13 203303 10.02 0.26 36.99

14 1896619 13.71 0.25 6.83

15 1080397 13.27 0.28 14.85

16 980776 12.41 0.20 14.25

17 841575 15.18 0.28 17.11

18 1357196 13.33 0.21 7.06

19 4925230 8.82 0.28 3.74

20 1716488 14.30 0.25 5.94

21 1275620 13.63 0.21 11.45

22 1301100 11.73 0.24 10.68

23 1315914 14.65 0.23 7.69

24 771395 11.05 0.23 11.45
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Figure 2. The manual standard classification result of tree 5. Brown: wood points; green: leaf points.

The above-mentioned three-step classification mainly focused on determining as much
as possible about the leaf points.

First, intensity information was used to classify the tree points into wood points and
leaf points. Trunk and branches are woody materials, and leaves are non-wood materials,
which exhibit different physical characteristics. Additionally, trunks and branches are
hard and stable, whereas leaves are soft, with variable postures. Moreover, VZ series TLS
scanners use a near-infrared laser with a frequency of greater than 1 µm, which is in the
region of the electromagnetic spectrum absorbed by water. Therefore, the intensity values
of trunk and branch points are generally greater than leaf points; however, the intensity
values of twig points have almost the similar magnitudes as leaves. A suitable intensity
threshold can help to classify raw tree points into wood points A and leaf points A, as
shown in Figure 3.

Second, after the intensity classification, some leaf points were still classified as
wood points A because of their intensity values. These leaf points are generally sparsely
distributed in 3D space, which results in longer distances between the nearest neighbors
than wood points. However, real wood points mostly have shorter distances from their
neighbor points than leaf points, as shown in Figure 4. Therefore, the K-nearest neighbors
were used to further determine these sparsely distributed leaf points B in wood points A.
The remaining parts of wood points A are wood points B.
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Figure 3. Flowchart of the proposed method.

Next, voxelization was used to evaluate the point density on a larger scale. Con-
sidering the homogeneity and connectivity of trunks and branches, generally, the points
belonging to the same voxel are most likely to exhibit the same properties. The whole point
cloud space was divided into many voxels, and wood points B were classified as wood
points C and leaf points C, according to voxel features and neighbor relationships.

After the above three-step classification process, most leaf points were extracted from
the total points. Additionally, the three leaf point components, leaf points A, leaf points B
and leaf points C, were combined into leaf points D. However, some wood points were
still misclassified as leaf points, which are usually further away from their neighboring
wood points, and they cannot meet the previous classification requirements of wood points.
Therefore, voxel and intensity information were both used to conduct comprehensive
verification to modify the categories of these points. At this phase, the number of wood
points increased whereas the number of leaf points decreased.

Finally, the classified wood and leaf points were ready to be evaluated using three
indicators of accuracy and two indicators of efficiency.
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Figure 4. The spatial details of wood points and leaf points in wood points A. Brown: wood points; green: leaf points.

2.2.1. Intensity Classification

As the first stage of the three-step classification, the intensity classification was em-
ployed to complete a rough wood–leaf classification. The generation of intensity infor-
mation is complicated, which is related to the material, surface roughness, incident angle,
measurement distance, object shape, etc. [49]. Generally, as mentioned above, the wood
points probably have greater intensity values than the leaf points under the same circum-
stances. However, there are some reasons that would decrease the intensity values of
wood points or increase the intensity values of leaf points. For example, the surface of
wood is rougher than the surface of leaves; some leaves may also face the scanner directly.
Therefore, the intensity value distributions of wood and leaf points would partially overlap.
Generally, most points could be classified into wood and leaf points using the simple
threshold of intensity value. A small portion of points were misclassified because of their
overlapped intensity values.

The intensity threshold It used in our method was adaptively generated for different
tree point clouds. First, based on the principle of random sample consensus (RANSAC), n
points in the tree point cloud were randomly selected as seed points. Second, the tree point
cloud data were sampled spherically using the automatic random sampling method [45].
The spherical sampling took the seed points as the centers of the spheres and γ as the radius.
Then, the sampling points in each sphere were projected onto a horizontal plane, and the
projection density was calculated. The distribution of wood points was more concentrated
than leaf points. Due to the difference between the spatial distributions of wood points and
leaf points, their projection density was significantly different. The projection density of
wood points was larger than leaf points. Therefore, wood points and leaf points could be
distinguished based on the projection density. After the experimental tests, n was selected
as 1000, and γ was selected as 0.03 m.

As shown in Figure 5, the point cloud of tree 5 was sampled by 1000 spheres, and the
histograms of the projection density distributions of these spheres are plotted. According
to previous assumptions, most spheres with high projection densities are more likely to
contain wood points, whereas most spheres with low projection densities are more likely
to contain leaf points. Therefore, the entire density interval [ρmin,ρmax] was quartered.
The calculation of ρ1/4 and ρ3/4 is shown in Equation (1). Additionally, the red and blue
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vertical lines in Figure 5 represent ρ1/4 and ρ3/4, respectively. The points contained in the
sample spheres with densities greater than ρ3/4 are defined as wood points A in Figure 3;
the points contained in the sample spheres with densities less than ρ1/4 are defined as leaf
points A. As shown in Figure 6, the red points are the leaf sampling points, and the blue
points are the wood sampling points.{

ρ1/4 = ρmin +
ρmax−ρmin

4
ρ3/4 = ρmax − ρmax−]ρmin

4
(1)
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Figure 5. Histogram of the projection density distribution of randomly sampling spheres based on tree 5. The red line
represents ρ1/4, and the blue line represents ρ3/4.

Due to the RANSAC theory, the sampled points can approximately express the inten-
sity distribution of the original point cloud. Based on the wood–leaf classification results
of the sampled points, the intensity was analyzed. Although the intensity values of the
two parts displayed a relatively concentrated distribution, there was still a high probability
of overlapping areas. As shown in Figure 7, the intersection point of wood and leaf point
intensity distributions was used to separate the two parts. Most points could be classified
correctly, although some points were classified incorrectly.

The sampled and classified wood points and leaf points were used to fit the curves of
their intensity distributions. Additionally, the intersection point of these two fitted curves
was calculated and used as the separation threshold, It which is plotted in Figure 7b in red.
The separation threshold, It is adaptive for each tree point cloud in our method.
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Figure 7. Demonstration of sampling results and intensity threshold based on tree 5. (a) The sampling results of tree
5. (b) Intensity histograms of the sampling results. Cyan areas and pink areas represent the intensity histograms of the
sampled wood and leaf points, respectively. The red line represents the selected adaptive intensity threshold.
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2.2.2. Neighborhood Classification

Further classification was needed to improve the above coarse intensity classification.
As shown in Figure 7, the overlapping of the intensity resulted in some points being
classified into incorrect categories. The classified wood points A and leaf points A were
both composed of two elements. One is the correctly classified points, and the other is
the incorrectly classified points. The neighborhood classification was used to find the leaf
points that were the wrong classified points in the wood points A.

The wood points were more regularly distributed compared with the leaf points,
which were scattered in 3D space with different leaf positions. In a local area, wood points
are arranged closer to a plane, whereas leaf points are more discrete than wood points.
This is because the shape of the woody part of a tree is relatively stable in space, whereas
the leaves themselves exhibit a more chaotic distribution and may be affected by wind
during the data collection, which can cause jitters and further increases the dispersion of
leaf points. Therefore, it can be inferred that the spatial distribution of real wood points
in wood points A were also compact and dense, and misclassified leaf points were sparse
and discrete. The degree of dispersion of leaf points would even increase after intensity
classification because of the correct classification of most leaf points. Therefore, the KNN
algorithm was considered to further identify some leaf points now categorized as wood
points. In this study, the eight nearest neighbors were used to separate the wood and
leaf points.

We proposed to establish a KD-tree and calculate the average distance, da between
the target point and its eight nearest neighbors. If the target point was on the woody part,
the local area of the eight nearest neighbors could be hypothesized as a small plane with a
high probability, as shown in Figure 8a.

First, the spacing value, Ss of the target point was calculated at the range ρ with the
angular step width θs.

Ss = ρ× sin(θs) ≈ ρ× θs (2)

where ρ is the distance value between the target point and the scanner, and the spacing
value, Ss is the distance between two adjacent laser beams at a specific distance, ρ Then,
the da on the plane can be calculated as follows:

da =
∑8

n=1 dn

8
(3)

where dn represents the distances from the target point to its eight nearest neighbors.
As shown in Figure 8a, the red point represents the target point, the dn value of the

four yellow points is Ss and the dn value of the four green points is
√

2Ss. Then, the average
distance da can be calculated as 1+

√
2

2 Ss. Considering that the trunks and branches may be
inclined sometimes (Figure 8b), we assumed the angle of inclination, α to be no more than
45◦. Therefore, the maximum value of Ss (L in Figure 8b) was

√
2Ss. Thus, the maximum

value of da was about 1.71Ss.
The da value of each point may be different because of their different range values ρ.

Therefore, a ratio threshold, thr for da could be used to classify the points into wood and
leaf categories, for which thr was 1.71. If the ratio of the target point was smaller than thr,
the point was classified as wood; otherwise, the point was classified as a leaf.
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Figure 8. The demonstration of the eight nearest neighbors in the neighborhood classification. (a) Red point: target point;
yellow point: the point where the dn value is Ss; green point: the point where the dn value is

√
2Ss. (b) The black point SP

represents the position of scanner.

2.2.3. Voxel Classification

By using the intensity information and neighbor information, most points were classi-
fied correctly. In this phase, more leaf points could be identified by using voxel classification,
which is described as follows.

The wood points B were measured in three dimensions (x, y, and z). Each dimension
was divided into 100 equal parts according to the specific dimensional information of
points. Thus, a total 1,000,000 voxels covered the whole space containing the wood points
B. Considering the homogeneity and connectivity of trunks and branches, generally, the
points belonging to the same voxel are most likely to have the same properties.
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However, there were still a few leaf points in the classified wood points B, and the
remaining leaf points were equally sparse and discrete. This led us to hypothesize that
some voxels contained a small amount of leaf points, resulting in smaller point densities.
Therefore, the point density could be considered to determine the leaf points classified in
wood points B.

However, the number of points, Nums which should be contained in a voxel is
affected by the distance and the angular step width. To simplify the determination, a ratio
value, R was proposed to simplify the calculation.

First, Nums was calculated according to the distance, dv and the angular step width, θs.

Nums =
Zsize

dv × θs
×

√
X2

size + Y2
size

dv × θs
(4)

where Xsize, Ysize, Zsize are the voxel sizes in three dimensions, and dv is the distance
between the center of the voxel and the scanner.

Second, based on the actual number of points in the voxel, Numr the ratio, R could be
calculated as follows:

R =
Numr

Nums
(5)

The ratio was smaller for the voxel mainly containing the leaf points, and it was larger
for the voxel mainly containing the wood points. Taking tree 5 as an example (Figure 9),
when the ratios of all voxels in wood points B were calculated, the histogram fitting curve
(blue line in Figure 9a) and the derivative curve (blue line in Figure 9b) of the fitting curve
were calculated. As shown in Figure 9a, the fitting curve exhibited a decreasing trend.
The location where the curve changing trend declined significantly was selected as the
ratio threshold, which was 0.1 (a red vertical line). As shown in Figure 9b, in this case, the
derivative value was almost zero at R = 0.1. Therefore, in our method, it was hypothesized
that a voxel is determined as a leaf voxel when the voxel ratio is smaller than 0.1; otherwise,
the voxel is still determined as a wood voxel.

Additionally, considering the connectivity of trunks and branches, an isolated voxel
would be determined as a leaf voxel even if it has a ratio greater than 0.1. Additionally, all
points in the leaf voxel were classified into leaf points. Next, the wood points C and the
leaf points C were obtained.

2.2.4. Wood Point Verification

After the above-mentioned three-step classification operation, as many leaf points as
possible had been found. The leaf points D category was now composed of leaf points A,
leaf points B, and leaf points C. However, a few wood points had been misclassified in
the process.

To further improve the classification accuracy, the voxel space constructed in the pre-
vious section was also used to verify the misclassified wood points. For most experimental
tree point clouds, there are generally fewer leaves in the lower part of the tree, and more
in the upper part, which generally clustered close around the trunk. Therefore, different
processing procedures were used for the two parts.
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R = 1. (b) The blue line is the derivative curve of the fitting curve, the green line means the derivative
is 0, and the red line is ratio R = 1.

First, below one-third of the total tree height, the 3 × 3 voxel neighbors surrounding a
wood voxel in the same voxel layer were checked. The neighbor voxel was determined as
a new wood voxel if there were some points in it. The same process was repeated for new
wood voxels until no more could be found.

Second, above one-third of the total tree height, another procedure was followed to
process the points. The 3 × 3 × 3 neighbor voxels of a wood voxel were checked.

There were two different cases of misclassified wood points. First, some wood points
were misclassified because their intensity values were smaller than the intensity threshold,
It. Second, some points were far away from real wood points, even though their intensity
values were larger than It. To improve the two above cases, two variables, sd1 and sd2,
were introduced as the distance ratios. Among them, sd1 was used to process the first case,
and sd2 was used to process the second case. In our method, sd1 was 2 and sd2 was 6.

(1) The Ss value of each wood point in the voxels was calculated according to Equation (2);
(2) The distance du between each wood point and leaf point in the voxels was calculated;
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(3) Then, the new wood point was determined according to the following formula:{
du ≤ sd1 ∗ Ss (a)

du ≤ sd2 ∗ Ss & Pi ≥ It (b)
(6)

where Pi is the intensity value of each leaf point. If a leaf point meets condition (a) or
condition (b), the leaf point will be determined as a new wood point.

(4) Check each leaf point in the neighbor voxels to complete the new wood point verifica-
tion;

(5) These new wood points were subjected to the above process until no more new wood
points were found.

3. Results
3.1. Classification Results

Taking tree 5 as an example, the total process of wood–leaf classification is demon-
strated in Figure 10, and the point count of each stage is recorded in Table 3, corresponding
to the outline shown in Figure 3. It is clear that the points were gradually classified into
wood points and leaf points by using the three-step classification method, and they were
improved by using the wood point verification technique.
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Figure 10. Schematic diagram of classification process of tree 5.

Table 3. The number of wood points and leaf points in the classification process of tree 5.

Intensity
Classification

KNN
Classification

Voxel
Classification Combine Wood Point

Verification

wood points A wood points B wood points C / classified wood
points

301392 261408 242513 / 393211

leaf points A leaf points B leaf points C leaf points D classified leaf
points

763154 39984 18895 822033 671335
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All 24 tree point clouds were processed in the experiment. The classified wood points
and leaf points of each tree are displayed in Figure 11. The wood points are colored in
brown, and the leaf points are colored in green. Demonstrably, the classification process
performed well on most of the tree point cloud.
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leaf points.
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The total points of each tree are listed in Table 4. As mentioned in the experimental
data section, the manual classification results of all the trees were used as the standards.
Additionally, the numbers of wood points and leaf points in the standard results are listed
in Table 4. Furthermore, the numbers of classified wood points and leaf points are also
provided, including the number of true points and false points of each category.

Table 4. The point statistics information of 24 trees classification results.

Tree/Number
Total

Points

Standard Results Classification Results

Wood
Points

Leaf
Points

Wood Points Leaf Points

True False True False

1 876657 150479 726178 128879 1215 724963 21600

2 716701 154548 562153 133791 5647 556506 20757

3 629250 190793 438457 166616 2080 436377 24177

4 733233 169071 564162 116880 651 563511 52191

5 1064546 427139 637407 384086 1592 635815 43053

6 971915 246251 725664 213843 1899 723765 32408

7 3398859 719573 2679286 638655 7436 2671850 80918

8 1162123 312819 849304 271612 4924 844380 41207

9 1068644 374865 693779 289835 3926 689853 85030

10 1210685 143532 1067153 105130 1653 1065500 38402

11 1318700 562884 755816 508514 1065 754751 54370

12 742280 193707 548573 140832 1491 547082 52875

13 203303 13301 190002 8801 37 189965 4500

14 1896619 482532 1414087 420063 7086 1407001 62469

15 1080397 109269 971128 88755 1962 969166 20514

16 980776 79224 901552 66944 184 901368 12280

17 841575 100118 741457 76668 8182 733275 23450

18 1357196 375669 981527 286918 4034 977493 88751

19 4925230 1329062 3596168 1128847 8731 3587437 200215

20 1716488 727900 988588 644566 6718 981870 83334

21 1275620 215761 1059859 179962 4550 1055309 35799

22 1301100 240684 1060416 150458 1391 1059025 90226

23 1315914 364161 951753 279447 3560 948193 84714

24 771395 165762 605623 118643 1805 603828 47119

3.2. Accuracy and Efficiency Analysis

Based on the results listed above, three indicators were used to assess the classification
accuracy by comparing them with the standard results. N is the total number of tree points,
as follows:

N = TP + FP + TN + FN (7)

Among them, TP indicates the number of correctly classified leaf points, TN indicates
the number of successfully marked wood points, FP means the number of wood points
that were incorrectly classified as leaf points, and FN describes the number of leaf points
that were incorrectly recognized as wood points.
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The first indicator was OA, which ranged from 0 to 1 and represented the probability
that the overall classification was correct. It was calculated using Equation (8). However,
OA did not perform very well when the dataset was unbalanced.

OA =
TP + TN

N
(8)

The second indicator was Kappa, which is often used for consistency testing and can
also be used to assess the effect of classification. For better performance in evaluating the
classification of unbalanced datasets, the Kappa coefficient is widely used for the evaluation
of classification accuracy. The calculation result of the Kappa coefficient ranges from -1 to
1, but usually it falls between 0 and 1. Additionally, the Kappa coefficient can be given by:

Kappa =
Po − Pe

1− Po
(9)

where Po =
TP+TN

N and Pe =
(TP+FP)×(TP+FN)+(TN+FN)×(TN+FP)

N×N
The third indicator was MCC [50], which is similar to the Kappa coefficient and is also

often used to measure the classification accuracy. MCC values range from -1 to 1, where
1 means perfect prediction, 0 means no better than a random prediction, and -1 means
complete inconsistency between the prediction and observation. MCC can be calculated
as follows:

MCC =
TP× TN − FP× FN√

(TP + FP)× (TP + FN)× (TN + FN)× (TN + FP)
(10)

Both MCC and Kappa can be used to evaluate the classification accuracy of unbal-
anced datasets, although some researchers believe that MCC is better than the Kappa
coefficient [51]. Therefore, both indicators were used to analyze the results. All three
indicators of each tree were calculated and are listed in Table 5. As shown, the OA values
of all 24 trees are very high, ranging from 0.9167 to 0.9872, and the average OA value was
0.9550; the Kappa coefficients ranged from 0.7276 to 0.9191, and the average value was
0.8547; the MCC values ranged from 0.7544 to 0.9211, and the average value was 0.8627. In
Table 5, there is almost no difference between Kappa and MCC values.

The OA, Kappa, and MCC values of each tree are also plotted in Figure 12. Clearly, the
overall classification accuracy evaluation given by OA is higher than that given by Kappa
and MCC. The plotted Kappa and MCC values are almost the same. The OA values of trees
4, 12, 13, 22, and 24 are larger than 0.9, although their Kappa values are smaller than 0.8.
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Table 5. The accuracy and efficiency analysis of 24 trees classification results.

Tree/Number
Accuracy Analysis Time Analysis

OA Kappa MCC Time Cost
(ms) TPMP (ms)

1 0.9739 0.9032 0.9066 935 1067

2 0.9631 0.8870 0.8889 930 1298

3 0.9582 0.8979 0.9012 870 1383

4 0.9279 0.7726 0.7923 912 1244

5 0.9580 0.9113 0.9144 1901 1786

6 0.9647 0.9027 0.9061 1350 1390

7 0.9740 0.9191 0.9211 5547 1633

8 0.9603 0.8952 0.8983 1565 1347

9 0.9167 0.8076 0.8203 1625 1521

10 0.9669 0.8219 0.8331 1103 912

11 0.9579 0.9130 0.9162 2456 1863

12 0.9267 0.7923 0.8080 917 1236

13 0.9776 0.7837 0.8021 506 2489

14 0.9633 0.8995 0.9024 2981 1572

15 0.9792 0.8762 0.8808 990 917

16 0.9872 0.9080 0.9116 880 898

17 0.9624 0.8080 0.8115 791 940

18 0.9316 0.8164 0.8281 1789 1319

19 0.9575 0.8872 0.8919 12753 2590

20 0.9475 0.8910 0.8949 3517 2049

21 0.9683 0.8805 0.8843 1334 1046

22 0.9295 0.7276 0.7544 1392 1070

23 0.9329 0.8200 0.8315 1778 1352

24 0.9365 0.7913 0.8065 938 1216

Mean 0.9550 0.8547 0.8627 / 1423

In terms of processing speed analysis, the time cost of each tree is reported in Table 5.
Due to the different numbers of tree points, the time costs per million points were also
calculated and are detailed in Table 5. Generally, the more points that exist, the more time
the processing takes. As shown, most tree point clouds with fewer than two million points
can be classified in 2 s. Some trees take slightly longer to calculate, considering the number
of points. The time costs of each tree are shown in Figure 13; a curve has been fitted based
on the number of tree points.
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4. Discussion

In terms of classification accuracy, as mentioned above, our method exhibited a good
accuracy performance on the experimental dataset. Some reported classification results also
performed well on their experimental dataset. Tao et al. processed three trees, including
two real trees and one simulation tree, and the corresponding Kappa coefficients were 0.79,
0.80, and 0.89, respectively [37]. Yun et al. treated five trees, and the OA values ranged
from 0.8913 to 0.9349 [42]. Zhu et al. processed ten trees and achieved an average OA value
of 0.844 and an average Kappa value of 0.75 [43]. Ferrara et al. processed seven cork oak
trees; the OA values varied from 0.95 to 0.98, the MCC values ranged from 0.76 to 0.88, and
the Kappa coefficients ranged from 0.75 to 0.88 [39]. Vicari et al. processed a total of ten
filed tree point clouds, with OA values ranging from 0.85 to 0.93 and Kappa coefficients
ranging from 0.48 to 0.81 [44]. Krishna Moorthy et al. processed nine filed tree data, with
classification accuracy ranging from 0.79 to 0.92 and an average accuracy of 0.876 [47].
Liu et al. processed ten trees, and the OA values ranged from 0.8961 to 0.9590, the Kappa
coefficients varied from 0.7381 to 0.8755, and the average OA value and Kappa coefficient
were 0.9305 and 0.7904, respectively [46]. Wang et al. processed 61 tropical trees, and the
overall classification accuracy was 0.91±0.03 on average [41]. Using the same dataset as
the reference article [41], Morel et al. processed 35 trees and used another indicator, IoU
(Intersection over Union), to evaluate the classification accuracy, which ranged from 0.85
to 0.97 [48]. Morel et al. believed that manual classification results should not be used as
standard results due to the lack of precise ground truth. Most of the methods reported
above cannot be compared directly because of the use of different experimental datasets.
Therefore, the reported classification accuracies can only be used as references.

In terms of efficiency, our method reduced the time cost due to automated processing;
the classification efficiency was reported in references [41,44]. As reported, an average of
90 s was needed to process each million points by using Di Wang’s method. Additionally,
Vicari established that the average processing time of each tree was 10 min, without
mentioning the number of points. As shown in Table 5, we calculated the time cost of each
tree in the experiment. The time cost of 24 trees ranged from 0.506 s to 12.753 s, and the
average processing time was 1.4 s per million points. The efficiency of our method was
better than the two other reported methods.
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As shown in Figure 11 and Table 5, some trees exhibited good OA, Kappa, and MCC
values, such as tree 3, tree 5, tree 11, and tree 16. However, some small twigs were classified
as leaves. Even if there are misclassified twigs, the reduction in classification accuracy
is small because of the small number of points. According to the proposed rules of our
method, these twigs are closer to the leaf points in terms of intensity value and spatial
distribution. This would be the goal of future work for improving our method, although it
may only make a small contribution to enhance the classification accuracy.

Some trees, such as tree 4, tree 12, tree 13, tree 22, and tree 24, had OA values larger
than 0.9, but the Kappa values were smaller than 0.8. To analyze the reasons, the intensity
distributions of manual classified wood points and leaf points of each tree were plotted, as
shown in Figure 14, in which the red line represents the adaptive threshold. Clearly, the
number of leaf points is much greater than the number of wood points. Additionally, some
threshold values are accurate and some are not, which means that a random sampling
strategy cannot accurately reflect the intensity distribution when the numbers of leaf
points and wood points differ greatly. Meanwhile, overlapping areas account for a large
proportion of wood points, and the threshold is close to the peak intensity distribution
of wood points. We believe that disparities in the numbers of wood and leaf points, as
well as the threshold of deviation, lead to worse intensity classifications, which are initially
used to separate most points. Thus, our method did not exhibit a good performance in
categorizing these tree point clouds.

In terms of the robustness of different tree species, to better evaluate the performance
of the proposed method, we also carried out an additional experiment using two Fraxinus
pennsylvanica trees located on the campus of Beijing Forestry University. The distances
between the scanner and the two trees were 18.65 m and 22.24 m. The classification results
of the two Fraxinus pennsylvanica trees are shown in Figure 15, Tables 6 and 7. The Kappa
values of the two Fraxinus pennsylvanica trees were 0.7529 and 0.8725. The time costs of
the two trees were about 3.4 s and 2.2 s. The results for these two trees were generally
consistent with the performance of the previous 24 trees.

Table 6. The point statistics information of two Fraxinus pennsylvanica trees classification results.

Tree/Number
Total

Points

Standard Results Classification Results

Wood
Points

Leaf
Points

Wood Points Leaf Points

True False True False

Fraxinus
pennsylvanica 1 3523822 350208 3173614 225688 8344 3165270 124520

Fraxinus
pennsylvanica 1 2164520 182081 1982439 146612 3661 1978778 35469

Table 7. The accuracy and efficiency analysis of two Fraxinus pennsylvanica trees classification results.

Tree/Number
Accuracy Analysis Time Analysis

OA Kappa MCC Time Cost
(ms) TPMP (ms)

Fraxinus
pennsylvanica 1 0.9622 0.7529 0.7711 3369 957

Fraxinus
pennsylvanica 2 0.9819 0.8725 0.8772 2200 1017
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Whether willow trees (Salix babylonica Linn and Salix matsudana Koidz) or Fraxinus
pennsylvanica trees, they are all deciduous trees. Considering coniferous trees, wood–leaf
classification based on tree point clouds is very challenging [41,52]. The needle leaves
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and branches of coniferous trees are often smaller and denser than those of deciduous
trees, which results in closer spatial distances and similar point densities for coniferous
tree leaves and branches. This situation absolutely increases the difficulty of wood–leaf
classification. Therefore, more observations, analyses, and discussions need to be carried
out to improve our understanding of coniferous tree wood–leaf classification, especially
concerning some key related issues, such as the impacts of leaf style, beam width, and
point density.

In terms of intensity, thresholds may differ due to different types of scanners that
perform differently in the adaptive process on threshold selection. The points of first return
are the most numerous, and the points of other returns are only a small proportion that are
mostly distributed at the edges of leaves and trunk; therefore, our method is not sensitive
to the multi-return characteristic of RIEGL VZ-400. Meanwhile, the near-infrared laser used
by RIEGL VZ-400 performs differently due to the different water contents of leaves and
woody parts, which help to make the intensities of leaf points and wood points different
and separable.

Overall, although automation, high accuracy, and high speed have been shown in our
study, more tree species and more types of scanners should be studied and validated to
improve our method in the future.

5. Conclusions

This paper has proposed an automated wood–leaf classification method for tree point
clouds using intensity information and geometric spatial information. The experiment
showed that our method is automated, accurate, and high-speed. Even though the accu-
racy will decrease when classifying some tree point clouds with special characteristics as
analyzed in the discussion, the classification accuracy is still acceptable. The proposed
method has good practical value and prospects in many forest inventory applications. In
future work, more tree species should be tested to improve the procedure and robustness
of the method.
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