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Abstract: The Central Region of Mozambique (Sofala Province) bordering on the active cyclone area
of the southwestern Indian Ocean has been particularly affected by climate hazards. The Cyclone
Idai, which hit the region in March 2019 with strong winds causing extensive flooding and a massive
loss of life, was the strongest recorded tropical cyclone in the Southern Hemisphere. The aim of this
study was to use pre- and post-cyclone Idai Landsat satellite images to analyze temporal changes in
Land Use and Land Cover (LULC) across the Sofala Province. Specifically, we aimed—(i) to quantify
and map the changes in LULC between 2012 and 2019; (ii) to investigate the correlation between
the distance to Idai’s trajectory and the degree of vegetation damage, and (iii) to determine the
damage caused by Idai on different LULC. We used Landsat 7 and 8 images (with 30 m resolution)
taken during the month of April for the 8-year period. The April Average Normalized Difference
Vegetation Index (NDVI) over the aforementioned period (2012-2018, pre-cyclone) was compared
with the values of April 2019 (post-cyclone). The results showed a decreasing trend of the productivity
(NDVI 0.5 to 0.8) and an abrupt decrease after the cyclone. The most devastated land use classes were
dense vegetation (decreased by 59%), followed by wetland vegetation (—57%) and shrub land (—56%).
The least damaged areas were barren land (—23%), barren vegetation (—27%), and grassland and
dambos (—27%). The Northeastern, Central and Southern regions of Sofala were the most devastated
areas. The Pearson Correlation Coefficient between the relative vegetation change activity after Idai
(NDVI%) and the distance to Idai’s trajectory was 0.95 (R-square 0.91), suggesting a strong positive
linear correlation. Our study also indicated that the LULC type (vegetation physiognomy) might
have influenced the degree of LULC damage. This study provides new insights for the management
and conservation of natural habitats threatened by climate hazards and human factors and might
accelerate ongoing recovery processes in the Sofala Province.

Keywords: Cyclone Idai; remote sensing; vegetation damage; land use and land cover; vegetation in-
dex

1. Introduction

Tropical cyclones are among the most devastating natural disasters owing to their great
potential for loss of human life, significant economic decline and severe environmental
damage [1-3]. The Southwestern Indian Ocean is one of the main tropical cyclone areas
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in the world [4], and also the most cyclone active area in the Southern Hemisphere [5].
Currently, the negative effects of climate change are an omnipresent reality in Mozambique,
as this southern African country frequently experiences extreme weather and climate
events such as drought, floods and cyclones [6]. The cyclone season in Mozambique
generally spans the period of November to April. Every year, three to twelve cyclones
form in the Mozambique Channel [7,8]. The Central region of Mozambique, including the
Sofala Province, is the area most prone to cyclones (six cyclones in 16 years) and climate
hazards. This region is characterized by a large tidal range (up to 7 m), and extensive low
flatland [9-11]. The most severe tropical cyclones striking Sofala and affecting the lives
of millions of inhabitants were—Nadia in 1994, Bonita in 1996, Lisete in 1997, Eline in
2000, Japhete in 2003, and Idai in March 2019 [12,13]. Idai (category four) was the most
devastating and deadliest cyclone recorded in the Southern Hemisphere, in terms of the
loss of human life, of facilities and of infrastructures [14,15]. Idai primarily affected Sofala
and impacted the surrounding provinces (Manica, Inhambane, Tete and Zambézia), while
also wreaking havoc in Zimbabwe as well. It brought torrential rain (more than 200 mm
in 24 h) and strong winds (up to 220 km/h), causing severe widespread flooding (flood
waters rose more than 10 m). Idai affected more than 1.5 million people in Mozambique,
resulting in more than 600 deaths while over 1600 persons were injured. However, severe
Land Use and Land Cover (LULC) damage has not yet been fully quantified. Cyclone Idai’s
socioeconomic impact in Mozambique was considered the highest to date, with damages
and losses estimated at US $3.2 billion (2019 estimate) [12].

Several studies using satellite images to assess the impact of cyclones on natural
habitats have been reported from different parts of the world, including the USA [16], the
Gulf of Mexico and Caribbean/Mesoamerican Region [17], Australia [18], and India and
Bangladesh [19]. In Africa and Mozambique in particular, cyclone impact studies on LULC
are comparatively rare.

The Sofala Province is an under-researched area. With the exception of two studies
carried out on the Save River Delta (forming the border between South and Central
Mozambique), which assessed the response of mangroves to cyclone Eline (2000) using
SPOT images [20], and the qualitative analysis of natural system management under
recurrent catastrophic events (cyclones and floods) [21], no published reports have been
detected. Our study is the first to document the impact of the category four Cyclone Idai
on LULC.

Studying the impact of cyclones on LULC in the context of climate change is crucial to
inform the design and implementation of natural vegetation management, identify threat-
ened habitats, prevent and/or counter environmental threats, and enhance conservation
efforts. Moreover, our study provides valuable information for evidence-based decision
making and disaster management for a more effective recovery of both natural habitats
and human infrastructures in the Sofala Province. It also gives relevant insights into the
sensitivity and recovery of natural vegetation following a devastating cyclone. Since Idai
damaged communication and transport networks, as well as other basic infrastructures, tra-
ditional field work to survey the large-scale destruction of vegetation is difficult, expensive
and time-consuming when compared to remote sensing [22-24].

Vegetation indicators, including the Normalized Difference Vegetation Index (NDVI)
and the Enhanced Vegetation Index, have been widely used to obtain useful information on
vegetation destruction and sensitivity, particularly after a damage event [24-26]. Landsat
data images are easy to access, and have long been used to monitor land use and changes
in vegetation cover [27-29]. Therefore, the main purpose of this study was to use pre- and
post-Idai Landsat imagery to analyze temporal changes in Sofala’s LULC from 2012 to
2019. Specifically, we aimed—(i) to quantify and map LULC dynamics from 2012 to 2019;
(ii) to investigate how the distance to Idai’s trajectory related to vegetation damage, and
(iii) to determine the degree of damage caused by the cyclone on different LULC classes.
The findings of this study are meant to assist managers of natural resources to design
and implement efficient strategies and practices in order to safeguard natural ecosystems
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Figure 1.

and their services such as provisioning (e.g., food, and timber), regulating (e.g., climate
regulation, and water purification), supporting (e.g., nutrient cycling, and soil formation),
and cultural (recreation, and spiritual) [30].

2. Materials and Methods
2.1. Study Area

Sofala is a coastal province in Central Mozambique, occupying a surface area of
approximately 68,018 km? (about 8.5% of the country). It borders on the Indian Ocean to
the east, on the Zambezi River to the north, and the Save River to the south (Figure 1a).
The Central part of Sofala is intersected by the Pungue and the Buzi River, and the province
is characterized by an inter-connected hydrological system of creeks, swamps, and lakes.
All the region’s main rivers discharge into the Indian Ocean, providing a suitable habitat
for the growth and establishment of a great variety animal and plant species. According
to the 2017 census, the total population of Sofala province was estimated at 2,259,248
inhabitants, most of them living in rural areas [31] and largely dependent on unstable
natural resources (threatened by climate hazards) for their subsistence. The main economic
activities of the local population are slash and burn agriculture, fishing, raising cattle and
commerce. The Province of Sofala is characterized by a tropical climate with rainy season
(summer) running from November to March, and a dry season (winter) from April to
October; southeasterly trade winds are predominant. The annual average temperature
is 25 °C and average rainfall amounts to approximately 1300 mm/year [32]. According
to Marzoli [33], LULC classes in Sofala are primarily composed of vast native forests
(48.81%), wetlands (19%), agricultural lands (5.57%), urban areas (0.16%), barren areas
(0.5%), with water and other vegetation formations (height < 5 m) accounting for 25.96%.
Sofala’s coastline is characterized by the so-called swamp coast [34] and it has one of the
largest mangrove areas (932 km?) in Mozambique, second only to the Zambezia province
(1219 km?) [33]. Sofala is the province most prone to floods and cyclones (occurring in
summer) which greatly affect LULC [9,11].
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Location of the study area (a) and trajectory of Cyclone Idai (b) (adapted from Meteo France).
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2.2. The Cyclone IDAI

Cyclone Idai originated from a tropical depression that formed in the Mozambique
Channel on 4 March 2019. On 9 March, the depression intensified, transforming it into the,
as yet, moderate tropical storm Idai. The reigning conditions in the Mozambique Channel
greatly favored the intensification of the winds to speeds of 175 km/h on 11 March. Idai
then weakened and died down for a day, only to re-activate on 13 March. On the night
of 14 to 15 March, Idai turned into a category four tropical cyclone making landfall near
Beira, the main city in Central Sofala, Mozambique’s second largest city, and a strategic
maritime port which serves Mozambique’s interior as well as a vast southern African
hinterland region (e.g., Zimbabwe, Botswana, Malawi, Zambia, and Democratic Republic
of Congo) (Figure 1b). It brought strong winds (180-220 km/h) and torrential rain (more
than 200 mm in 24 h), flooding more than 3000 km? of agricultural land. It displaced around
400,000 inhabitants, provoking over 600 deaths, while severely damaging LULC classes [12].
The winds receded as the cyclone moved inland, affecting provinces bordering on Sofala
(Manica, Zambézia, Tete, and Inhambane) before moving to neighboring Zimbabwe.

2.3. Data

We used Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Oper-
ational Land Imager (OLI) images from April of each year, from 2012 to 2015, and 2016
to 2019, respectively. Landsat 7 ETM+ and Landsat 8 OLI data both had a 30 m resolu-
tion and were downloaded from the United States Geological Survey (USGS) gateway
(https:/ /earthexplorer.usgs.gov/). Table 1 shows the list of satellite images used, acquisi-
tion date, and path row for the study area. The LULC and NDVI analyses can be influenced
by seasonal differences (because of changes in atmospheric conditions and photosynthetic
activities) [35].

Table 1. Satellite imagery used in this study.

Date Sensor Path Row

12 April 2012 Landsat 7 ETM+ 166/73

19 April 2012 Landsat 7 ETM+ 167/72,73,74,75
28 April 2012 Landsat 7 ETM+ 168/72,73,74
13 April 2013 Landsat 7 ETM+ 166/73

15 April 2013 Landsat 7 ETM+ 167/72,73,74,75
22 April 2013 Landsat 7 ETM+ 168/72,73,74
2 April 2014 Landsat 7 ETM+ 166/73

16 April 2014 Landsat 7 ETM+ 167/72,73,74,75
18 April 2014 Landsat 7 ETM+ 168/72,73, 74
12 April 2015 Landsat 7 ETM+ 166/73

12 April 2015 Landsat 7 ETM+ 167/72,73,74,75
19 April 2015 Landsat 7 ETM+ 168/72,73,74
6 April 2016 Landsat 8 OLI 166/73

13 April 2016 Landsat 8 OLI 167/72,73,74,75
29 April 2016 Landsat 8 OLI 168/72,73,74

9 April 2017 Landsat 8 OLI 166/73

16 April 2017 Landsat 8 OLI 167/72,73,74,75
25 April 2017 Landsat 8 OLI 168/72,73,74
12 April 2018 Landsat 8 OLI 166/73

19 April 2018 Landsat 8 OLI 167/72,73,74,75
28 April 2018 Landsat 8 OLI 168/72,73,74
6 April 2019 Landsat 8 OLI 166/73

15 April 2019 Landsat 8 OLI 167/72,73,74,75
22 April 2019 Landsat 8 OLI 168/72,73,74

2.4. Methods

This study was carried out in four main steps—(1) satellite data pre-processing, which
included cloud detection, atmospheric correction, and geometric correction; (2) calculation
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of the vegetation indicators, including the Normalized Difference Vegetation Index (NDVI),
the difference in NDVI (ANDVI), and the relative change in vegetation productivity after
Idai (NDVI%); (3) producing the LULC map for April 2019; and (4) producing a distance
bands map obtained using buffer analysis. These steps are detailed in Figure 2. The distance
to the cyclone’s trajectory was subjected to statistical analyses to evaluate its relationship
with vegetation damage using a linear regression model with a single explanatory variable.

Input Data
Landsat ETM+ Pre-cyclone Cyclone Damage
Landsat 8 OLI vegetation Assessment on
soverand Vegetation
Pre-cyclone Image Processing Health
From 2012 - 2018 * Ortho rectification
(April) > » Geo correction NDVI R
|| * Radiometric calibration Calculation
S » Atmospheric correction Post-cyclone
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2019 NO 2 Distance Buffer
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Assessment e
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Figure 2. Workflow of Land Use and Land Cover (LULC) classification.

Initially, the Landsat 7 and 8 satellite data were geometrically corrected and ortho-
rectified (Figure 2) using the Landsat packages (“georef” and “geoshift”) in RStudio Soft-
ware [36-38]. All satellite images were georeferenced through the Universal Transverse
Mercator (UTM) coordinate system. We were aware of the limitation of Landsat 7 ETM+
because of the Scan Line Corrector (SLC) failure [39,40]. To fill the gaps (Not available “NA”
values) caused by that error, we applied the Landsat 7 Scan Line Corrector (SLC)-off Gap
function, using the traditional Local Linear Histogram Matching method—LLHM [37,41].
The ERDAS image processing software (version 8.7) was applied to perform Scan line error
correction with the help of band-specific gap mask files, made with the Landsat 7 Level-1
data product. These mask files help to classify the location of every pixel affected by the
original data gaps in the primary SLC-off scene [36]. For this purpose, the DV values (0-255)
were converted into top-of-atmosphere (TOA) radiance (at-satellite radiance values) using
the parameters provided in metadata files [38,42,43]. We also applied absolute atmospheric
compensation techniques (Dark Object and Modified Dark Object Subtraction Method) to
identify and remove clouds, aerosols, and cirri [36,44].

The pseudo-invariant features (PIF) function was used to examine the homogeneity of
reflectance values of LULC in the images, and then corrected by using major axis regression.
The Landsat 7 and 8 data were radiometrically and atmospherically corrected by using an
atmospheric simulation model available in the Landsat and R package (RStoolBox) [38,45].
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2.5. Land Use and Land Cover Classification

The satellite images for 2019 were classified into nine LULC classes—dense vegetation,
shrub land, grassland and dambos, agricultural land, wetland vegetation, barren vegetation,
barren land, built-up areas, and water bodies (Table 2). This was performed by applying
the Random Forest (RF) classifier. This technique has been recently used for mapping
plant species and landscape due to its processing speed, improved accuracy, and reliable
classification outputs [46,47]. The processing chain for the RF classification algorithm
optimized the proximities between data points [48]:

Produces n-tree bootstrap model from the raster data;

Runs an unpruned classification grown for all bootstrap models according to the
DN values;

Produces N number of polygons in line with the DN raster values;

Chooses the number of classifications of the LULC classes; and

Mlustrates LULC classification.

For the LULC classification, we used “randomForest” packages [49] in the open-source
RStudio software version 1.3.1073 [50]. Furthermore, the packages Classes and Methods
for Spatial Data (Sp) [51], raster [52], and Raster Geospatial Data Abstraction Library
(Rgdal) [53] were used to process and visualize the spatial data.

Table 2. Land use and land cover types identified for the Sofala Province.

ID Land Use and Land Cover Types Description
1 Dense Vegetation Woodland and forest
2 Shrub land Brush, scrubland, shrubs and bush
3 Grassland and dambos Grasses, rush and sedge
4 Agricultural land Pasfure, crop cultivation area, hay and other
fruit plants

Coastal and marine ecosystems including swamps,

5 Wetland tati
etland vegetation saltmarshes, and mangroves

6 Barren vegetation Stunted, sparse and limited vegetation
form/structure

- Barren land Sand, ros:ks, dry salt ﬂats (including salt pans), mines,
gravel pits and quarries

. Settlements, roads, bridges, urban and other

8 Built-up areas -
infrastructures

9 Waterbodies River, open water, lakes, streams, estuaries and ponds

2.6. Accuracy Assessment

The accuracy assessment is a widely applied technique to quantify how close the
result of land cover classification is to the reference image. In this study, the accuracy
was assessed by comparing the results of the obtained LULC map (classified image) with
reference Google Earth images retrieved from the Google Earth Engine (GEE) [54] for the
year 2019. From the classified LULC, seventy-five random point samples were produced
for the study period. They were visually distinguished from GEE by comparison with
the classified map. A confusion matrix was constructed to assess accuracy [48]. The
quantitative accuracy assessment of the classified map was obtained by calculating the
kappa coefficient (k) using ERDAS Imagine (version 8.7) [55]. The model’s accuracy is
classified according to k values as follows—poor (k < 0.2), moderate (0.4 < k < 0.6) and
near perfect (k > 0.8) (see Jensen [35] and Louarn et al. [47], for further detail).
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2.7. Vegetation Indices

The Normalized Difference Vegetation Index (NDVI) is generally used to measure
vegetation density and its health status (level of photosynthetic activity) and is less affected
by topographic factors and illumination [24]. The NDVTI is calculated as follows:

NDvi — (NIR — RED)

(NIR + RED)” @

where NIR and RED are the spectral reflectances corresponding to the fourth (0.77-0.90 um)
and third (0.63-0.69 um) Landsat ETM+ bands, respectively [24]. For Landsat 8 OLI, NIR is
the fifth band (0.85-0.88 um) and RED is the fourth band (0.64-0.67 um) [23]. Normally,
NDVI ranges between —1.0 and 1.0 with vegetation land covers ranging from 0.0 to 1.0.
The difference in NDVI (hereafter referred to as ANDVI) can show the change in LULC,
while a negative ANDVI represents the vegetation damage caused by Cyclone Idai. It is
calculated by subtracting the NDVI image of one date (after) from that of another (before)
using map algebra, which is a cell-by-cell process [24,56]. In this study, the Average NDVI
in April over the 7-year period (2012-2018) represents the situation before Cyclone Idai
(hereafter referred as pre-cyclone) whereas the NDVI of April 2019 represents the post-
cyclone situation (hereafter referred as post-cyclone). The ANDVI is calculated using the
following equation:

ANDVI = NDVIpost — NDVIpre, )

where NDVIpre and NDVIpost are NDVI before and after cyclone, respectively. We also
calculated the relative vegetation change activity after Idai (NDVI%) by using the equation

below:
ANDVI

NDVI /0 = W X 100 (3)
Please note that a higher NDVI% indicates lower damage. We used Sp [51], raster [52],
rts [57], and Rgdal [53] packages in R studio for calculation of NDVI and the changes in

vegetation productivity.

2.8. Distance to the Cyclone Trajectory

A distance map based on the Cyclone Idai’s track was produced with distance bands
calculated using ArcGIS (ESRI, 2020); 10 multiple buffers at the specified distance of 25 km
from the best track line were obtained [23].

2.9. Correlation Analysis

We used the Pearson Correlation Coefficient to assess the relationship between vegeta-
tion damage and the distance to the cyclone’s trajectory. This relationship was measured
by means of a least squares estimator from the linear regression model with a single
influencing /explanatory variable [23,24].

3. Results
3.1. Land Use and Land Cover

Figure 3 displays the nine LULC classes obtained for the Sofala Province. The kappa
coefficient (>0.80) (Table 3) shows a high accuracy level, indicating a good agreement
between the LULC map for April 2019 and ground-truth based on GEE images [35,47].
Table 3 shows that the Producer’s accuracy (i.e., how often are real features on the ground
correctly shown on the LULC map) and user’s accuracy (i.e., how often the class on the
LULC map will actually be present on the ground) presented different values for each class,
with a much higher accuracy for barren vegetation (PA: 92.5; UA: 94.1) [58].
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Figure 3. Land cover map of the Sofala Province in April 2019.
Table 3. The confusion matrix of the LULC map.
LULC Types Producer Accuracy User Accuracy
Dense vegetation 83.6 91.6
Shrub land 81.2 83.6
Grassland and dambos 89.9 92.7
Agriculture land 87.1 89.3
Wetland vegetation 88.3 924
Barren vegetation 92.5 941
Barren land 87.7 89.3
Built-up areas 80.6 84.2

Waterbodies 86.4 86.4
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30°0.000 33°0.000

3.2. NDVI

Figure 4 illustrates the spatial distribution of pre-cyclone (left) and post-cyclone (right)
NDVI. The comparison by optical remote sensing shows the loss of green leaves on the post-
cyclone imagery, as indicated by the increase of no productivity and/or low productivity
pixels [23,24]. Significant NDVI alterations were observed across the entire Province,
with the largest LULC changes detected in the Northeast (NE), Central (C), and Southern
(S) regions.
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Figure 4. Spatial distribution of April Normalized Difference Vegetation Index (NDVI) averages in the Sofala Province.
Pre-cyclone (left: Average NDVI over 7 years (2012-2018), and post-cyclone (right: 2019). NE—Northeastern, C—Central,
and Southern (S) regions of the Province.

Table 4 shows the land cover classes affected by the Cyclone Idai. All post-cyclone
images were acquired within three or four weeks of Idai’s passage through the Sofala
Province, i.e., before the damaged vegetation had recovered. The ANDVI ranged from
—0.07 to —0.46; the highest damage was found for dense vegetation (—58.9%), wetland
vegetation (—57.4%), and shrub land (—55.5%); the least damage was observed in barren
land (—22.5%), barren vegetation (—26.9%), and grassland and dambos (—27.1%).

Table 4. Land cover classes affected by the cyclone (pre-cyclone—average April NDVI over 2012-2018; after-cyclone—April

2019).
Counts Total Area Mean NDVI Mean NDVI

Land Cover Types (Pixels) (SqKm) Pre-Cyclone Post-Cyclone ANDVI NDVI%
Dense vegetation 45,393,777 40,854.4 0.78 0.32 —0.46 —58.9
Shrub land 1,1070,577 9963.52 0.63 0.28 —0.35 —55.5
Grassland and dambos 3,980,911 3582.82 0.59 0.43 —-0.16 —-27.1
Agriculture land 5,705,377 5134.84 0.66 0.45 —-0.21 —31.8
Wetland vegetation 8,104,666 7294.20 0.54 0.23 —0.31 —57.4
Barren vegetation 23,711 21.34 0.52 0.38 —-0.14 —26.9
Barren land 399,033 359.13 0.31 0.24 —0.07 —22.5
Built-up areas 42,977 38.68 0.28 0.19 —0.09 —-32.1
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Figure 5 clearly shows an abrupt decrease of the area of highly productive vegetation
classes (0.5-0.8) in April 2019, associated with a substantial growth of the low productivity
vegetation area. Overall, almost all the highly productive vegetation experienced a severe
decrease (over 99%) while the areas with low productivity vegetation increased by 22-80%
as shown in the inset table of Figure 5.
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5000 /
o E
NDVI 2012 2013 2014 2015 2016 2017 2018 2019
NDVI Changes in Area
Ve Mean Pre- Post- Coverage
Vegetation Productivity Classes Cyclone Cyclone SqKm %
0.1-0.2 9059.24 11375.1 2315.86 25.56
Low Productivity 02-0.3 24379.22 29882.1 5502.88 22.57
Moderate 03-04 10811.26 195102 8698.94 80.46
Productivity 04-0.5 936.78 672.08 -264.7 -28.26
High Productivity 0.5-0.8 15016.54 72.20 - 14944.34 -99.52

Figure 5. The time series of average of April NDVI from 2012 to 2019. Low Productivity—0.1-0.2
and 0.2-0.3, Moderate Productivity—0.3-0.4 and 0.4-0.5, and High Productivity—0.5-0.8. The inset
table shows vegetation productivity changes (pre-cyclone vs. post-cyclone).

3.3. Influence of the Distance to the Cyclone Trajectory

The distance to the Cyclone Idai trajectory map is shown in Figure 6 for Sofala Province.
The NDVI1% was calculated for each distance class (Table 5). NDVI% increased with the
distance from the cyclone trajectory (Figure 7 and Table 5).

Table 5. Values of the vegetation indices changes at different distances from the cyclone trajectory.

Distance (km) Counts (Pixels) ANDVI NDVI%
0-25 7,516,910 —0.38 —55.07
25-50 8,079,493 —0.32 —-53.3
50-75 8,605,728 —0.36 —-52.9
75-100 8,768,752 —0.25 —454
100-125 10,234,104 —0.19 —-30.1
125-150 10,724,540 —0.13 —26.5
150-175 8,988,106 —0.15 —26.3
175-200 5,451,298 —-0.13 —-25.01
200-225 3,909,496 —0.11 -21.5

225-250 3,003,413 —0.12 —184
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Figure 6. The Distance bands map (km) of Sofala Province.

At distances shorter than 75 km from the cyclone trajectory, land degradation was
higher than 50% in NDVI. Even at distances over 200 km, NDVI was still above 20%
(Figure 7 and Table 5).
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Figure 7. Pearson’s correlation between mean NDVI% and distance to the Idai’s trajectory.

4. Discussion
4.1. The Changes in NDVI

The vegetation productivity changes from 2012 to 2019 were quantified (Figure 5).
In general, the areas with no productivity and/or low productivity tended to increase with
time and an abrupt increase was observed in April 2019 (post-cyclone), whereas the high
productivity pixels showed an opposite trend. The loss of vegetation productivity with time
is a great concern globally and, most particularly, in low-income countries like Mozambique
prone to climatic hazards. Mozambican forests and other natural ecosystems are under
greater anthropogenic pressure (e.g., slash and burn agriculture, timber for building local
infrastructures, firewood, and charcoal production, and urban expansion) while being
adversely affected by natural factors (e.g., climate hazards, rising sea levels and frequent
flooding) [11,59,60]. The category four tropical Cyclone Idai was the most devastating and
deadliest ever recorded in the Southern Hemisphere. It brought strong winds and torrential
rains, causing extensive flooding and leaving many communities in the Sofala Province
submerged under 10 m of water [61]. It also caused a loss of 99.5% of high-productivity
vegetation and an increment of up to 80.5% of the low- and moderate-productivity areas
(Figure 5).

NDVI clearly changed over the whole Sofala Province after Idai’s passage. The North-
eastern, Central, and Southern regions (Figure 4) appear to be the most devastated areas.
At “NE” a high concentration of the pixels of no productivity and/or low productivity
region is clearly visible, where our results show the predominance of dense vegetation, agri-
cultural area and water courses with regularly flooded wood and/or herbaceous species
(Figures 3 and 4) [62]. Our findings are in line with Couto et al. [63] and Ramsar [64] who
described this Northeastern region as part of the Ramsar site of the Zambezi Delta and
of the Marromeu Complex, which are designated Wetlands of International Importance
(conservation hotspot). This region is characterized by a broad flat alluvial area with a rich
mosaic of grassland and dambos, woodland, thicket, large water swamps, and an extensive
area covered in mangrove. The devastation in Central Sofala Province is closely related to
Idai’s trajectory and the influence of the Punguée and Buzi rivers and Urema Lake whose
basins are locally considered as wetlands [65,66]. In this region we found a mixed spatial
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distribution of the land cover, which mainly includes dense vegetation, agricultural land,
and wetland along the coastline. The Southern region is characterized by abundant shrub
land and a mixed vegetation distribution pattern including wetland vegetation, dense
vegetation, and agriculture land which were all strongly affected by Cyclone Idai. To the
south, the Save River, constituting the southern border of the Sofala Province, forms an
estuary that is also considered wetland [63]. Li et al. [62] reported particularly significant
levels of land degradation in the south-eastern region of the province, which could explain
the more reduced agricultural land coverage we observed in this region.

4.2. Effects of Idai on Different LULC

The changes in the different land-cover classes were calculated and compared with
published literature. Dense vegetation (decreased by 58.9%), wetland vegetation (—57.4%)
and shrub land (—55.5%) were among the most devastated vegetation classes, while barren
land (—22.5%), barren vegetation (—26.9%) and grassland and dambos (—27.1%) were the
least affected. From a biological perspective, our results show that the intensity of damage
to different vegetation classes is closely related to their physiognomy. Dense vegetation,
wetland vegetation, and shrub land are more vulnerable to physical damage by a tropical
cyclone than the barren areas and herbaceous or sparse vegetation because of the higher
tree layer and greater tree canopy cover. Numerous studies reported that forest stands with
older and bigger trees (height, diameter and canopy) are more prone to wind damage than
open, short and sparse forest stands [67-69]. An intense tropical cyclone like Idai typically
causes great defoliation, branch stripping, bole snapping and uprooting [70-72]. Other
individual tree characteristics, such as less dense wood, poor health status, and growth
in more exposed sites (e.g., coastal Sofala, as shown by Cabral et al. [11] and Charrua
et al. [10]), contribute to increasing its vulnerability to cyclone-related damage [70,73].
Other factors, such as the size of each LULC area, need to be deeply investigated. Rossi
et al. [74] reported greater damage in larger forests in Northern Nicaragua as a result
of hurricane Felix (2007). Generally, the spatial distribution of severe post-Cyclone Idai
damage in Sofala closely matched the spatial distribution of the most devastated LULC.
The damage behavior shown in different LULC in our study is consistent with other
findings [23,24,70,73].

4.3. The Influence of Distance on Damage

Our results demonstrate a strong positive correlation between distance and damage.
The greatest damage in NDVI was found at distances shorter than 75 km (NDVI% from
—52.29 to —55.07, Table 5), in accordance with previous studies [16,23,75]. The Pearson
Correlation Coefficient between NDVI% and distance was 0.95 and R-square was 0.91,
indicating a strong positive linear correlation (Figure 7). The spatial distribution of highly
damaged regions across the Sofala Province (Figure 4) and the distance to Idai’s trajectory
suggest that the degree of damage does not entirely depend on the latter and that other
factors may interfere, like the LULC type (vegetation physiognomy) [74,76].

Although this was not a ground data-based study because of the well-known diffi-
culties of field research (e.g., time-consuming, limited availability of human and logistic
resources), our results are realistic and they were satisfactorily verified with the local
damage reports [12]. In fact, Landsat image analyses provided reliable results, and have
been widely and successfully used to map LULC damages from cyclones [16,24,27,77].
This study can be employed as a future reference in related studies. Our approach clearly
identified changes between pre- and post-cyclone LULC in Sofala; moreover, we found a
strong correlation between the degree of damage and the distance from Idai’s trajectory.
Nevertheless, further studies are needed to quantify the local /regional changes that did
not fit the linear model.
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5. Conclusions

This study focuses on an analysis of the damage caused to the LULC by Cyclone
Idai, which hit Sofala Province in Mozambique in March 2019. For that purpose, we used
Landsat 7 and Landsat 8 images taken during the month of April over an 8-year period
(2012-2019). All of the LULC classified areas showed a decrease of NDVI after the cyclone.
The greatest damage was found in dense vegetation, wetland vegetation, and shrub land;
barren land, barren vegetation, and grassland and dambos showed the lowest relative
damage. The most heavily affected regions were the Northeast, Central and Southern
Sofala. The distance to Idai’s trajectory greatly influenced LULC damage levels—the greater
the distance, the lower the damage. Besides the distance to Idai’s trajectory, other factors
such as LULC type (vegetation physiognomy) may have played an important role in terms
of vegetation damage. The information here provided is relevant for LULC managers and
all stakeholders to take appropriate measures for better planning and future management
of the territory. In addition, our findings may help to speed up ongoing recovery processes
that were activated in the wake of tropical Cyclone Idai.
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