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Abstract: In recent years, the interpretation of SAR images has been significantly improved with
the development of deep learning technology, and using conditional generative adversarial nets
(CGANs) for SAR-to-optical transformation, also known as image translation, has become popular.
Most of the existing image translation methods based on conditional generative adversarial nets are
modified based on CycleGAN and pix2pix, focusing on style transformation in practice. In addition,
SAR images and optical images are characterized by heterogeneous features and large spectral
differences, leading to problems such as incomplete image details and spectral distortion in the
heterogeneous transformation of SAR images in urban or semiurban areas and with complex terrain.
Aiming to solve the problems of SAR-to-optical transformation, Serial GANs, a feature-preserving
heterogeneous remote sensing image transformation model, is proposed in this paper for the first
time. This model uses the Serial Despeckling GAN and Colorization GAN to complete the SAR-
to-optical transformation. Despeckling GAN transforms the SAR images into optical gray images,
retaining the texture details and semantic information. Colorization GAN transforms the optical gray
images obtained in the first step into optical color images and keeps the structural features unchanged.
The model proposed in this paper provides a new idea for heterogeneous image transformation.
Through decoupling network design, structural detail information and spectral information are
relatively independent in the process of heterogeneous transformation, thereby enhancing the detail
information of the generated optical images and reducing its spectral distortion. Using SEN-2 satellite
images as the reference, this paper compares the degree of similarity between the images generated
by different models and the reference, and the results revealed that the proposed model has obvious
advantages in feature reconstruction and the economical volume of the parameters. It also showed
that Serial GANs have great potential in decoupling image transformation.

Keywords: heterogeneous transformation; SAR image; optical image; conditional generative adver-
sarial nets (CGANs)

1. Introduction

In recent years, there have been more and more applications of remote sensing im-
ages in environmental monitoring, disaster prevention, intensive farming, and homeland
security. In practice, optical images are widely used due to their high spectral resolution
and easy interpretation. The disadvantage is that they are sensitive to meteorological
conditions, especially clouds and haze, which severely limits their use for observation and
monitoring of ground targets [1]. In contrast, synthetic aperture radar (SAR) sensors can
overcome adverse meteorological conditions by creating images using a longer wavelength
of radio waves to obtain all-day and all-weather continuous observations. Although SAR
images have significant advantages over optical images, their application is still limited
by the difficulty of SAR image interpretation. First, because synthetic aperture radar is a
side range-measuring instrument, the imaging effect is affected by the distance between
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the target and the antenna, which can lead to geometric distortion in SAR images [2].
Therefore, compared with optical images, it is more difficult for human eyes to understand
the details of SAR images. Secondly, synthetic aperture imaging is a coherent imaging
method in which the radio waves in the radar beam are aligned in space and time. While
this consistency provides many advantages (required by the synthetic aperture process
to work), it also leads to a phenomenon called speckle, which reduces the quality of SAR
images and makes image interpretation more challenging [3]. Therefore, it is difficult to
distinguish structural information directly from SAR images, which may not necessarily
become easier with the increase in spatial resolution [4]. Considering the above two points,
how to effectively use and interpret the target and scene information in SAR images has
become an important issue that users of SAR data need to pay attention to. Under the
condition of reasonable use of SAR image amplitude information, if the SAR image can be
converted into a near-optical representation that is easy to recognize by human eyes, this
will create new opportunities for SAR image interpretation.

Deep learning is a powerful tool for the interpretation of SAR images. Some scholars
have reconstructed clear images by learning hidden nonlinear relations [5–10]. This type
of method uses a residual learning strategy to overcome speckle noise by learning the
mapping between the speckle image and the corresponding speckle-free reconstruction so
that it can be further analyzed and explained. Although this mapping learning may be an
ill-posed problem, it also provides a useful reference for SAR image interpretation.

In addition to convolutional neural networks, image translation methods in the field
of natural images and human images provide other ideas for SAR-to-optical image trans-
formation, such as through conditional generative adversarial networks (CGANs) [11–14].
This type of method separates the style and semantic information in image transformation,
so it can transform from the SAR image domain to the optical image domain, and also en-
sures the transformed images have the prior structural information of the SAR images and
the spectral information of optical images. In previous studies, CGANs were first applied to
the translation tasks of text to text [15], text to image [16], and image to image [17,18], and
are suitable for generating unknown sequences (text/image/video frames) from known
conditional sequences (text/image/video frames). In recent literature, the applications of
CGANs in image processing were mostly in image modification. This includes single image
super-resolution [17], interactive image generation [18], image editing [19], image-to-image
translation [11], etc. CGANs have been used in SAR-to-optical transformation in recent
years. In the literature [20–22], different improved SAR-to-optical transformation models
based on CycleGAN and pix2pix have been proposed. The general idea of these models is
to improve the model structure and loss function, but they are not designed specifically for
the differences of imaging principle between SAR images and optical images, so they do
not have universal applicability.

In order to solve the problem of heterogeneous image transformation in principle, as
shown in Figure 1a, we decomposed the SAR-to-optical transformation task into two steps:
the first step was to implement the transformation from the SAR image domain to optical
grayscale image domain through the Despeckling GAN. In this step, we aimed to suppress
the speckle effect of SAR images and reconstruct the semantic structural information and
texture details of SAR images. In the second step, we transformed the optical grayscale
images obtained in the first step into optical color images through the Colorization GAN.
The two subtasks are relatively independent and have low coupling, which can reduce
the semantic distortion and spectral distortion in the process of direct SAR-to-optical
transformation.

The main contributions of this paper are as follows.

1. Unlike the existing methods of direct image translation, this paper proposes a feature-
preserving SAR-to-optical transformation model, which decouples the SAR-to-optical
transformation task into SAR-to-gray transformation and gray-to-color transforma-
tion. This design effectively reduces the difficulty of the original task, enhancing the
feature details of the generated optical color images and reducing spectral distortion.
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2. In this paper, Despeckling GAN is proposed to transform SAR images into optical
grayscale images, and its generator is improved on the basis of the U-net [11]. In
the processing, Despeckling GAN guides SAR images to generate optical grayscale
images based on the texture details of SAR images by gradient maps, thus enhancing
the semantic and feature information of transformed images [23].

3. In this paper, Colorization GAN is proposed for despeckled grayscale image col-
orization. Its generator adopts a convolutional self-coding structure. We establish
short-skip connections in different levels and long-skip connections between the same
level of encoding and decoding. This structure design enables different levels of
image information to flow in the network structure, to generate more realistic images
with hue information.

The rest of this paper is structured as follows. Section 2 introduces the materials
involved in this paper. Section 3 introduces the method in detail, including the network
structure and the loss function. In Section 4, the experimental results are given, which are
discussed and evaluated based on indexes. Section 5 shows the discussion of this paper.
The last part of the paper (Section 6) gives the conclusions and prospects for future work.
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Figure 1. (a) Overview of our method: the SAR image affected by speckling is the input, and the
Despeckling GAN generates a corresponding optical grayscale image as output. The optical grayscale
image is then sent as input to the second generator network Colorization GAN, and the output is an
optical color image. (b) Examples of generating optical grayscale images and optical color images
through the Serial GANs.

2. Materials

Due to the lack of a large number of paired SAR and optical image datasets, deep
learning-based SAR-to-optical translation research has mainly followed the idea of the
CycleGAN [12] model; that is, unpaired image transformation. With the decrease in
the cost of remote sensing images, a new idea has been presented to solve the cross-
modal transformation, by using an image transformation method based on the Generative
Adversarial Network. In the literature [24], Schmitt et al. published the SEN1-2 dataset
to promote SAR and optical image fusion in deep learning research. The SEN1-2 dataset
is a traditional remote sensing image dataset obtained by the SAR and optical sensors of
the Sentinel-1 and Sentinel-2 satellites. As part of the Copernicus Project of the European
Space Agency (ESA), Sentinel satellites are used for remote sensing tasks in the fields of
climate, ocean, and land detection. The mission is being carried out jointly by six satellites
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with different observation applications. Sentinel-1 and Sentinel-2 provide the two most
conventional SAR and optical images respectively, so they have been widely studied in the
field of remote sensing image processing. Sentinel-1 is equipped with a C-band SAR sensor,
which enables it to obtain high-positioning-accuracy SAR images regardless of weather
conditions [25]. In its unique SAR imaging mode, the nominal resolution of Sentinel-1 is
not less than 5 m, while providing dual-polarization capability and a very short equatorial
access time (about 1 week) [26]. In the SEN1-2 dataset, Sentinel-1 images were collected
in the interference wide (IW) swath mode, and the result obtained is the ground-range-
detected (GRD) products. These images contain the backscatter coefficient in dB scale for
every pixel spacing of 5 m in azimuth and 20 m in range. In order to simplify the operation,
the dataset pays more attention to the VV polarization data and ignores the data of VH
polarization. Sentinel-2 consists of two polar-orbiting satellites in the same orbit, with a
phase difference of 180 degrees [27]. For the Sentinel-2 part of the dataset SEN1-2, the
researchers used red, green, and blue channels (i.e., Bands 4, 3, and 2) to generate realistic
RGB grid images. Because cloud occlusion will affect the final effect, the cloud coverage
of the Sentinel-2 image in the dataset is less than or equal to 1%. SEN1-2 is composed
of 282,384 pairs of related image patches, which come from all over the world and all
weathers and seasons. It is the first large, open dataset of this kind and has significant
advantages for learning a cross-modal mapping from SAR images to optical images. With
the aid of the SEN1-2 dataset, we were able to build a new model that is different from the
previous methods, the Serial GANs model proposed in this paper. Figure 2 shows some
examples of image pairs in SEN1-2.
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Figure 2. Some example patch pairs from the SEN1-2 dataset. Top row: Sentinel-1 SAR image patches; bottom row:
Sentinel-2 RGB image patches.

3. Method

The heterogeneous transformation from SAR images to optical images is an ill-posed
problem. The transformation results are often not ideal due to speckle noise, SAR image
resolution, and other factors. Inspired by the ideas of pix2pix, CycleGAN and pix2pixHD,
as shown in Figure 3a–d, this paper attempted to introduce optical grayscale images
as the intermediate transformation domain Y. The transformation task from the SAR
image domain X to the optical color image domain Z was completed in two steps by two
generators (P and Q) and two discriminators (DY and DZ) as shown in Figure 3e. First, the
generator P completes the mapping: X → Y , in which the SAR image is transformed into
the optical grayscale image, and the corresponding discriminator DY is used to promote the
transformation of the SAR image in the source domain X to the optical grayscale image in
the domain Y, which is difficult to distinguish from the real optical grayscale image. Then,
the generator Q completes the mapping: Y → Z , in which the optical grayscale image is
transformed to the optical color image, and the corresponding discriminator DZ is used to
promote the transformation of the optical grayscale image in the intermediate domain Y to
the optical color image in the domain Z, which is difficult to distinguish from the optical
color image. In this way, the original transformation process from the SAR image to the
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optical color image is divided into two steps, reducing the semantic distortion and feature
loss in the process of direct transformation from the SAR image to the optical color image.
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Figure 3. Overview of different methods. (a,b) CycleGAN. It is essentially two mirror-symmetric GANs, which share two
generators G and F with discriminators DY and DX respectively, and it uses GAN loss and cycle-consistency loss; (c) pix2pix,
which directly transforms the image from the X domain to the Z domain, using GAN loss and L1 loss; (d) pix2pixHD.
Different from pix2pix, it has two generators, G1 and G2, and its loss functions are GAN loss, Feature-matching loss, and
Content loss; (e) the method proposed in this paper. It uses the intermediate state y as the transition, and its loss functions
are GAN loss, Feature-preserving loss, and L1 loss.

As shown in Figure 4, the transformation from SAR images to optical images can
be defined as the mapping transformation T = PQ (P : X → Y, Q : Y → Z) , from the
source domain X to the target domain Y. Suppose that x(i) is a random sample taken
from the SAR image domain X, and its distribution function is P(i)(x), and the random
sample x(i) mapped to the optical grayscale image domain is y(i). The final task of the
network proposed in this paper is T : X → Z , in which the final distribution function is
P
{

Tx(i) = z(i)
∣∣∣x(i)} generated from our network.
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Figure 4. A feature-preserving heterogeneous remote sensing image transformation model is proposed in this paper.
Let X, Y, and Z denote the SAR image domain, intermediate optical grayscale image domain, and optical color image
domain, respectively, and x(i) ∈ X, y(i) ∈ Y and z(i) ∈ Z denote the dataset samples of the corresponding image domain
(i = 1, 2, · · · , N, N denotes the total sample number of the data set).
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3.1. Despeckling GAN

Generator P: As shown in Figure 5a, this paper used an improved U-net as the
generator of Despeckling GAN. The input SAR image was encoded and decoded to output
the optical grayscale image. A structure similar to the convolutional self-encoding network
enables the generation network to better predict the optical grayscale image corresponding
to the SAR image. The encoding and decoding process of the generator works on multiple
levels to ensure that the overall contour and local details of the original SAR image are
extracted on multi-scales. In the decoding process, the network upsamples the feature
map of the previous level to the next level through deconvolution and adds the feature
map of the same level in the encoding process through a long-skip connection to get an
average merge (Merge). In U-net, this process is completed by concatenation. At the same
time, skip connections are also used in each residual block, which has the advantage of
overcoming the gradient disappearance problem of the network during training.

Discriminator DY: As shown in Figure 5b, PatchGAN, which is commonly used in
GAN, was used as the discriminator. The process of heterogeneous image transformation
includes the transformation of the content part and feature detail part. The content part
refers to the similarity in content between the generated image and the original image, and
the feature detail part refers to the similarity in features between the generated image and
the target image. With PatchGAN, feature details can be maintained [11].
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Figure 5. Architecture of the Despeckling GAN. (a) Generator (top). (b) Discriminator (bottom).
(c) The detail of the Res. (The purple, green, and orange blocks in the dotted box correspond to the
convolutional layer, the batch normalization layer, and the ReLU or Leaky ReLU layer, respectively).
The numbers in brackets refer to the number of filters, filter size, and stride, respectively. The numbers
above or below the encoder blocks and images indicate the input and output size of each module.
Acronyms in the encoding and decoding modules are as follows: Res: Residual block with three
convolutional layers and one skip connection, P: Maxpooling, DC: Deconvolution, C: Convolution,
N: Batch Normalization, LR: Leaky ReLU, S: Sigmoid, Merge: Sum to average.

The loss function of the Despeckling GAN generator includes CGAN loss, L1 loss,
and feature-preserving loss. Based on the premise of the existing paired training data, this
paper used the CGAN loss function to improve the performance of the generator. Through
supervised training, the generator P learns the mapping from X to Y, and this makes the
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discriminator DY judge true. The network structure of the discriminator has the function
of distinguishing fake images from real images. Therefore, the CGAN loss from X to Y is:

LGAN(P, DY) = Ex(i),y(i)

[
log DY

(
x(i), y(i)

)]
+Ex(i)

[
log
(

1− DY

(
P
(

x(i)
)

, x(i)
))]

. (1)

In the reconstruction loss design, the L1 loss is used to minimize the difference between
the optical gray image and the generated image.

LRecon

(
P, x(i)

)
= E

[
‖P
(

x(i)
)
− x(i)‖

1

]
. (2)

In the best state T∗, the output of the network T∗
(

x(i)
)

should be similar to the optical

gray image y(i). In order to preserve the feature details of SAR images, this paper proposed
a gradient-guided feature-preserving loss [28]. If M(·) denotes the operation to calculate
the image gradient map, the loss of feature-preserving is:

LFP

(
P, x(i)

)
= E

[
M
(

P
(

xi
))

, M
(

y(i)
)]

. (3)

For images I, M(·) is as follows:

Ix(x, y) = I(x + 1, y)− I(x− 1, y),
Iy(x, y) = I(x, y + 1)− I(x, y− 1),
∇I(x, y) =

(
Ix(x, y), Iy(x, y)

)
,

M(I) = ‖∇I‖2.

(4)

Specifically, the operation M(·) can be easily implemented by convolution with a fixed
convolution kernel.

Therefore, the total training loss of the Despeckling GAN is:

LGAN1 = argmin
G

max
D
LGAN(P, DY) + β1LRecon

(
P, x(i)

)
+ γ1LFP

(
P, y(i)

)
. (5)

where β1 and γ1 are weighted values.

3.2. Colorization GAN

Colorization GAN completed the transformation from optical gray images to optical
color images. Its principle comes from [29], which proved that, compared with Figure 6a,
the colorization result of Figure 6b was better, so the latter was adopted in this paper.
When a single channel gray image ŷ(i) ∈ RH×W×1 is input, the model learns the mapping
ẑ
(i)

ab = Q
(

ŷ(i)
)

from the input gray channel to the corresponding Lab space color channels

ẑ
(i)

ab ∈ RH×W×2, where, H and W represent the height and width respectively. Then, the

RGB image ẑ(i) is obtained by synthesizing ẑ
(i)

ab and ŷ(i). The advantage of this method is
that it can reduce the ill-posed problem, such that the colorization result is closer to the
real image.

As shown in Figure 7, the generator of the Colorization GAN uses a convolutional
self-coding structure, which establishes short-skip connections within different levels and
long connections between the same levels of encoding and decoding. This kind of structure
design enables different levels of image information to flow in the network so that the
hue information of the generated image is more real and full. The discriminator of the
Colorization GAN is PatchGAN [11]. Recent studies have shown that adversarial loss helps
to make colorization more vivid [29–31], and this paper also followed this idea. During
training, we input the reference optical color image and the generated image one by one
into the discriminator; the discriminator output was 0 (fake) or 1 (real). According to the
previous methods, the loss of the discriminator is the sigmoid cross-entropy.
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Therefore, the total loss function of the Colorization GAN model is as follows: 
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Figure 6. The principle of image colorization. (a) The direct mapping from the gray space to the RGB
color space; (b) the hue Lab mapped from the gray space to the Lab color space.

Among them, the adversarial loss is expressed as follows:

LGAN(Q, DZ) = Ey(i),z(i)

[
log DZ

(
y(i), z(i)

)]
+Ey(i)

[
log
(

1− DZ

(
y(i), Q

(
y(i)
)))]

. (6)

In order to make the generated color distribution closer to the color distribution of the
reference image, we defined the L1 loss in the Lab space, which is expressed as follows:

L1(Q) = Ey(i),z(i)

[
‖Q
(

y(i)
)
− z(i)‖

1

]
. (7)

Therefore, the total loss function of the Colorization GAN model is as follows:

LGAN2 = argmin
G

max
D
LGAN

(
Q
(

y(i)
)

, z(i)
)
+ β2L1

(
Q, y(i)

)
. (8)

where β2 is a weighted value.
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Figure 7. The network structure of the Colorization GAN generator. The gray image of the input
model is first transformed into the L channel in the Lab color space and then trained to map to the
AB channels through the network. The obtained hue is spliced with the gray image to get the Lab
color image. Finally, the Lab image is transformed into an RGB image. The green block represents
the convolutional layer, the yellow block represents the residual block, and the green and light-green
blocks represent the average by merge.

4. Experiments and Results

As the SEN1-2 dataset covers the whole world and contains 282,384 pairs of SAR
and optical color images across four seasons, some of which are overlapped, in order to
facilitate the training, the original dataset was randomly sampled according to the stratified
sampling method. The dataset was divided into the training dataset, validation dataset,
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and test dataset, and their respective proportions were about 6:2:2. The experiment of the
proposed method was carried out on the computing platform of two 11G GPU GeForce
RTX 2080Ti and i9900k CPUs using PyTorch. The input size of the images was 256 × 256,
and the batch size was set to 10. In the experimental simulation, 200 epochs were set in
the GAN training and optimized by the Adam optimizer. The sum of parameters was set
to 0.5 and 0.999, respectively. The initial learning rate of the experiment was set to 0.0002.
The first 100 epochs remained unchanged and then decreased to 0 according to the linear
decreasing strategy.

Considering that season and landscape will affect the training results of the model,
we selected image pairs of different seasons and landscapes and followed the principle of
equilibrium [32]. As shown in Table 1, the number of SAR and optical image pairs in four
seasons is approximately the same, and the number of image pairs of different landscapes
in each season is also approximately the same.

Table 1. Number of different types of images selected in our dataset.

Season Landscape Training Validation Test Total

Spring

River valley 279 90 74 443

2218
Mountains and hills 280 91 73 444

Urban residential area 275 97 70 442
Coastal city 278 87 77 442

Desert 277 96 74 447

Summer

River valley 278 92 77 447

2219
Mountains and hills 276 96 74 446

Urban residential area 279 93 70 442
Coastal city 276 93 72 441

Desert 275 95 73 443

Fall

River valley 278 96 70 443

2215
Mountains and hills 275 89 74 441

Urban residential area 278 95 72 445
Coastal city 279 91 75 445

Desert 277 89 77 442

Winter

River valley 277 91 78 446

2218
Mountains and hills 275 94 73 442

Urban residential area 278 95 71 444
Coastal city 278 92 75 445

Desert 277 93 71 441

Total - 5545 1855 1470 8870

4.1. Experiment 1

In order to verify the effectiveness of the proposed method, four groups of experi-
ments were designed using the same dataset and different conditions. The four groups of
experiments were carried out according to the single variable principle. In Group 1, the
unimproved generators P and Q were used, and the loss function included GAN loss and
reconstruction loss. In Group 2, the improved generators P and Q were used, and the loss
function included GAN loss and reconstruction loss. In Group 3, the unimproved genera-
tors P and Q were used, and the loss function included GAN loss, reconstruction loss, and
feature-preserving loss. In Group 4, the improved generators P and Q were used, and the
loss function included reconstruction loss, reconstruction loss, and feature-preserving loss.
The relationship between the four groups of experiments is shown in Table 2.



Remote Sens. 2021, 13, 3968 10 of 17

Table 2. Grouping experiments under different conditions.

Original Loss Improved Loss Original Networks Improved Networks

Group 1
√ √

Group 2
√ √

Group 3
√ √

Group 4
√ √

As shown in Figure 8, the first column shows the SAR images collected by the SEN-1
satellite. The second column shows the SAR images collected by the SEN-2 satellite. The
third, fourth, fifth, and sixth columns show the experimental results of Group 1, Group 2,
Group 3, and Group 4, respectively. Through visual comparative analysis, it can be seen
that improving the network structure and loss function can improve the quality of SAR-
to-optical transformation, especially by enhancing the feature detail information of the
generated image. It can map the SAR image to the optical color image to the maximum
extent and help the interpretation of the SAR image.
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Figure 8. Results produced under different conditions. From top to bottom, the images are remote sensing images of five
kinds of landscape: river valley, mountains and hills, urban residential area, seashore, and desert. From left to right: SEN-1
images, SEN-2 images, images generated by Group 1, images generated by Group 2, images generated by Group 3, images
generated by Group 4.

In order to compare the detailed information of the generated images, Figure 9 shows
the detailed comparison between the SEN-2 images and the four groups of experimental
results. According to the subjective evaluation criteria, the results of improving the model
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and loss function at the same time are closer to the SEN-2 images. Only improving the loss
function can improve the details of the generated images, but its effect is inferior to that of
improving the model. The detailed comparison of the four groups of experimental results
once again proves that the improvement measures proposed in this paper are effective. By
comparing the two situations of improving model and improving loss function, it can be
found that improving model contributes more to the results.
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the corresponding SEN-2 image z . Assuming that the generated image is ẑ , and the 
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Figure 9. Detailed comparison of Experiment 1. We selected the generated results in three scenarios
for detailed comparison with the SEN-2 reference image. The improvement measures proposed in
this paper had an obvious effect on improving the quality of the generated images. From left to right:
SEN-2 images, images generated by Group 1, images generated by Group 2, images generated by
Group 3, and images generated by Group 4.

In order to quantify the effectiveness of the method, the final transformation effect
(IQA) was measured by calculating the structural similarity (SSIM) [33,34], and the feature
similarity (FSIM) [35]. Both indexes were calculated between the generated image ẑ and
the corresponding SEN-2 image z. Assuming that the generated image is ẑ, and the
corresponding SEN-2 image is z, the SSIM calculation formula is as follows:

SSIM(ẑ, z) = [l(ẑ, z)]α[c(ẑ, z)]β[s(ẑ, z)]γ, α, β, γ > 0 (9)

Among them:

l(ẑ, z) =
2µẑµz + c1

µ2
ẑ + µ2

z + c1
(10)

c(ẑ, z) =
2σẑz + c2

σ2
ẑ + σ2

z + c2
(11)

s(ẑ, z) =
σẑz + c3

σẑσz + c3
(12)

l(ẑ, z), c(ẑ, z), and s(ẑ, z) in the equation represent the brightness comparison, contrast
comparison, and structural comparison, respectively. µẑ and µz represent the mean of ẑ
and z, σẑ and σz represent the standard deviation of ẑ and z, σẑz represents the covariance
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of ẑ and z, and c1, c2 and c3 are constant constants (so that the parent of the equation is not
zero). In actually, α = β = γ = 1, c3 = c2/2, SSIM is represented as:

SSIM(ẑ, z) =
(2µẑµz + c1)(σẑz + c2)(

µ2
ẑ + µ2

z + c1
)(

σ2
ẑ + σ2

z + c2
) (13)

Another index, the FSIM, is a feature similarity evaluation index, which uses phase
consistency (phase consistency (PC)) and gradient features (gradient magnitude (GM)), as
follows:

FSIM =
∑x∈Ω SL(x) · PCm(x)

∑x∈Ω PCm(x)
. (14)

Which:

SPC(x) =
2PC1(x) · PC2(x) + T1

PC2
1(x) + PC2

2(x) + T1
(15)

SG(x) =
2G1(x) · G2(x) + T2

G2
1(x) + G2

2(x) + T2
(16)

SL(x) = [SPC(x)]
α · [SG(x)]

β (17)

SPC(x), SG(x), and SL(x) represent the phase consistent (PC) similarity, gradient
feature (GM) similarity, and PC-GM fusion similarity, respectively.

The similarity indicators of the four experimental schemes were calculated as Table 3.
By comparing the results of the second, third, and first rows of the table, it can be seen that
after improving the generator structure and loss function, both SSIM- and FSIM-generating
images had been significantly improved, and the combined use of improved generators
and loss functions obtained better results than improving the generator structure or loss
functions alone.

Table 3. The model generated result indicators under different improvement measures. The number
in bold indicates the optimal value under the corresponding index.

Scheme SSIM FSIM

No Improvement 0.2428 0.9000
Improved Network 0.2432 0.9023

Improved Loss 0.2435 0.9015
Both Improvements 0.2442 0.9042

4.2. Experiment 2

In order to verify the performance of the proposed method in preserving the SAR
image features, the proposed algorithm was compared with pix2pix, CycleGAN, and
pix2pixHD, respectively. During training, the Serial GANs train the generator P and
the discriminator DY first, and then the training generator Q and the discriminator DZ,
respectively, with 200 epochs. In Figure 10, the first column shows the SAR images collected
by the SEN-1 satellite, the second column shows the optical color images collected by the
SEN-2 satellite, and the third, fourth, and fifth columns show the experimental results of
pix2pix, CycleGAN, and pix2pixHD, respectively. According to the results, the proposed
method can significantly preserve the details of SAR images in the process of heterogeneous
transformation, with results as good as pix2pixHD. What is more, the volume of parameters
of the model proposed in this paper was significantly lower than in the pix2pixHD model.

In order to compare the details of the images generated by different models, Figure 11
shows the details of the results generated by the proposed method compared with the four
methods of pix2pix, CycleGAN and pix2pixHD. According to the subjective evaluation
criteria, the results of the proposed method and pix2pixHD are closer to the Sentinel
satellite image. The generation results of pix2pix and CycleGAN are inferior to the first two
methods. Although the results of the proposed method and pix2pixHD are not significantly
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different, the subsequent comparison will show that the proposed method is superior to
pix2pixHD.
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generated by pix2pixHD, and the images generated by our model.

In order to quantitatively measure the advantages of the method, four image quality
evaluation indexes (IQA), including PSNR, SSIM, FSIM, and MSE, were selected to quanti-
tatively evaluate the method. As shown in Table 4, it can be seen from the data that the
proposed model achieved the best in PSNR, SSIM, and MSE, and the second-best in FSIM.

Table 4. Comparison of the indexes between the images generated by four methods and the SEN-2
images. The number in bold indicates the optimal value under the corresponding index.

PSNR SSIM MSE FSIM

pix2pix [11] 13.8041 0.2431 0.0673 0.8987
Cycle GAN [21] 13.5052 0.2314 0.0749 0.9039
pix2pix HD [13] 13.4112 0.2347 0.0780 0.9046

Ours 13.9267 0.2442 0.0669 0.9042

The above experimental results show the effectiveness of the proposed method and
the superiority to pix2pix and CycleGAN from both qualitative and quantitative aspects. In
order to further illustrate that our method is better than pix2pixHD, we draw a performance
comparison diagram reflecting the model size and FSIM value. As shown in Figure 12,
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although the FSIM value of our method is 0.0004 lower than that of pix2pixHD, the model
size of our method is about half of that of pix2pixHD, so the advantage of our method is
more obvious.
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models in three scenarios to compare the details with the SEN-2 reference images. Compared with
other image translation models, the proposed model has obvious advantages in improving the
generation performance. From left to right: SEN-2 images, images generated by pix2pix, images
generated by CycleGAN, images generated by pix2pixHD, and the images generated by our model.
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closer the scatter points are to the y-axis +∞, the better the overall cost performance of the model.
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5. Discussion

The existing SAR-to-optical method is a one-step transformation method; that is, it
directly transforms SAR images into optical RGB images. However, spectral and texture
distortions inevitably occur, reducing the accuracy and reliability of the final transformation
result. Moreover, the direct use of CycleGAN and pix2pix in SAR-to-optical transformation
only reconstructs the original image at the pixel level, without restoring the spectrum
and texture. Such results may not be suitable for further image interpretation. Inspired
by image restoration and enhancement technology, a Serial GAN image transformation
method is proposed here and used for SAR-to-optical tasks.

Based on SEN 1-2 SAR and optical image datasets, the effectiveness of the proposed
method was verified through ablation experiments. Through qualitative and quantitative
analysis with several SOTA image transformation methods, the superiority of the proposed
method was verified. The image transformation method we proposed uses SAR images as
prior information to restore and reconstruct SAR images based on the gradient contour
and spectrum. The advantage of this is avoiding the mixing distortion caused by directly
transforming the SAR image into an optical image, and the final transformation result has
better texture detail and an improved spectral appearance. At the same time, our method
does not simply involve learning the SAR-optical mapping but restores and reconstructs
the SAR image from both the texture information and the spectral information so that it has
an interpretation advantage similar to that of the optical image. Note that our proposed
method was better than CycleGAN and pix2pix in the index of the transformation results,
and some indexes were better than pix2pixHD. From an indicator point of view, this
difference was small. However, from intuitive observation, the method proposed in this
paper was significantly better than CycleGAN and pix2pix. The reason for this is that
our method is not a simple transformation but the reconstruction of SAR images, which
restores SAR images from the perspective of image theory. In comparison with the SOTA
model pix2pixHD, the proposed method has no obvious advantage in the test value, but
the parameter size of the model is about half that of pix2pixHD, which means that our
method has more advantages in application. However, the proposed method also has some
potential limitations. First, although we considered different seasons and different land
types (urban, rural, semi-urban, and coastal areas) in the training data, supervised learning
inevitably depends on the data. For different SAR image resolutions and speckle conditions,
the results of the transformations will be different. In addition, because supervised learning
requires a large number of training samples, the training effect of the model may not be
ideal for a dataset with a small sample size. Therefore, problems arising from transfer
learning, weakly supervised learning, and cross-modal technology will need to be solved
in the future.

6. Conclusions and Prospects

To address the problem of feature loss and distortion in SAR-to-optical tasks, this paper
proposed a feature-preserving heterogeneous image transformation model using Serial
GANs to maintain the consistency of heterogeneous features, and reduce the distortion
caused by heterogeneous transformation. An improved U-net structure was adopted in the
model, which was used for SAR image Despeckling GAN, and then the image was colored
by Colorization GAN to complete the transformation from a SAR image to an optical color
image, which effectively alleviated the uncertainty of transformation results caused by
information asymmetry between heterogeneous images. In addition, the end-to-end model
architecture also enabled the trained model to be directly used for SAR-to-optical image
transformation. At the same time, this paper introduced the feature-preserving loss, which
enhanced the feature details of the generated image by constraining the gradient map.
Through intuitive and objective comparison, the improved model effectively enhanced
the detail of the generated image. In our view, Serial GANs have great potential in other
heterogeneous image transformations.
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Furthermore, they can provide a common framework for SAR image and photoelectric
image transformation. In the future, we will consider incorporating multisource heteroge-
neous images into a Multiple GANs hybrid model to provide support for the cross-modal
interpretation of multisource heterogeneous remote sensing images.
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