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Abstract: Wildfire shapes vegetation assemblages in Mediterranean ecosystems, such as those in
the state of California, United States. Successful restorative management of forests in-line with
ecologically beneficial fire regimes relies on a thorough understanding of wildfire impacts on forest
structure and fuel loads. As these data are often difficult to comprehensively measure on the ground,
remote sensing approaches can be used to estimate forest structure and fuel load parameters over
large spatial extents. Here, we analyze the capabilities of one such methodology, unoccupied aerial
system structure from motion (UAS-SfM) from digital aerial photogrammetry, for mapping forest
structure and wildfire impacts in the Mediterranean forests of northern California. To determine
the ability of UAS-SfM to map the structure of mixed oak and conifer woodlands and to detect
persistent changes caused by fire, we compared UAS-SfM derived metrics of terrain height and
canopy structure to pre-fire airborne laser scanning (ALS) measurements. We found that UAS-SfM
was able to accurately capture the forest’s upper-canopy structure, but was unable to resolve mid- and
below-canopy structure. The addition of a normalized difference vegetation index (NDVI) ground
point filter to the DTM generation process improved DTM root-mean-square error (RMSE) by ~1 m
with an overall DTM RMSE of 2.12 m. Upper-canopy metrics (max height, 95th percentile height,
and 75th percentile height) were highly correlated between ALS and UAS-SfM (r > +0.9), while
lower-canopy metrics and metrics of density and vertical variation had little to no similarity. Two
years after the 2017 Sonoma County Tubbs fire, we found significant decreases in UAS-SfM metrics
of bulk canopy height and NDVI with increasing burn severity, indicating the lasting impact of the
fire on vegetation health and structure. These results point to the utility of UAS-SfM as a monitoring
tool in Mediterranean forests, especially for post-fire canopy changes and subsequent recovery.

Keywords: UAS; structure-from-motion; Mediterranean; California; fire; forest structure; fire man-
agement; airborne laser scanner; ALS; lidar

1. Introduction

While widespread, mixed-severity wildfire regimes play a crucial role in shaping
the ecosystems of Mediterranean climatic regions [1–4], current climate change [5] and
historic wildfire suppression have increased the frequency of high-intensity and stand-
replacing fires [6], as well as 90th percentile fire size [7], in California (United States).
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Consequently, there is a pressing need to quantify forest structure and fuel loading at
multiple spatial scales to understand and forecast relationships between wildfire hazards
and forest structure attributes [8–10]. While ground-based surveys may provide accurate
data, their limited spatial coverage hampers their usefulness at broader scales [11,12].
Remote sensing methods for mapping forest structure and fuels provide a useful alternative
since they have high temporal resolution and large spatial coverage. However, due to
its passive, top-down collection method, imagery from multispectral satellite sensors
generally fail to detect forest properties below the canopy, nor is it optimal for determining
vegetation height [13], particularly in forests with high canopy cover. Therefore, mapping
forest structure from multispectral satellite data is often done indirectly. For example, in
the case of estimating the spatial distribution of fire fuels, fuel density models are applied
to satellite-derived maps of vegetation characteristics [14]. However, this indirect method
cannot detect variations in vertical forest structure or fuel continuity masked below the
canopy within an area possessing similar overstory vegetation characteristics.

Airborne laser scanners (ALS), or lidar sensors, provide an alternative remote sensing
method not hindered by these shortcomings as they actively send energy pulses that
penetrate below the canopy [13]. Canopy structure metrics derived from ALS point clouds
have a strong relationship with field measurements [15] and can be used to determine
vertical fuel structures [16]. Notably, ALS can detect the presence of ladder fuels [17].
Ladder fuels are live and dead vegetation that exists between ground vegetation and
the base of the canopy above, allowing fire to climb from the forest floor and ignite the
canopy [18]. However, management of yearly or seasonal events such as wildfires require
frequent repeated monitoring [8]. While the advent of the NASA Surface Topography
and Vegetation program and future lidar satellite systems may address this shortcoming
e.g., [19], ALS is currently excessively cost prohibitive and effort intensive to be conducted
with sufficient regularity for this purpose [20].

As opposed to the expense and effort required for an ALS survey, forest structure
metrics can also be obtained relatively inexpensively from digital aerial photogrammetry
(DAP) using unoccupied aerial systems (UAS) carrying commercially available cameras
e.g., [21]. Three-dimensional point clouds can be generated from overlapping aerial images
using structure from motion (SfM) processing techniques, providing an alternative method
for mapping forest structure at a potentially lower cost than ALS depending on spatial
extent e.g., [11,22–24], as well as UAS lidar at stand scales [25]. The low cost and relative
ease of the UAS DAP SfM (hereafter UAS-SfM) method make it particularly useful for
repeated monitoring during rapidly changing events at plot to stand scales [26], such as
interannual wildfires. Of additional benefit over ALS, when used with a multispectral or
hyperspectral sensor and downwelling irradiance sensor, UAS-SfM can provide calibrated
spectral measurements as well as structural data. However, UAS-SfM technology is not
without its own limitations. Due to the passive nature of an imaging sensor and the need
for a point to appear in multiple overlapping photographs for its spatial location to be
determined, DAP has minimal ability to detect structure below canopy cover as compared
to ALS [27,28]. Therefore, DAP may be limited in the assessment of terrain height, which
is needed for accurate point cloud height normalization, and detection of below-canopy
forest structure.

To the best of our knowledge, the capabilities of multispectral UAS-SfM for mapping
forest structure and below-canopy fuels in the mixed-oak and conifer woodlands of Cali-
fornia have not been explored. Focused on a study site in a Mediterranean-climate mixed
forest of Northern California, USA, this study seeks to address this research gap with the
following objectives:

1. Evaluate the accuracy, as compared with ALS, of multispectral UAS-SfM in estimating
ground elevation, a fundamental component of estimating accurate forest heights.

2. Determine the ability, as compared with ALS, of UAS-SfM to measure different metrics
of canopy structure.
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3. Demonstrate the utility of multispectral UAS-SfM in assessing the impact of wildfire
on changes in photosynthetic productivity (greenness) and canopy height relative to
ALS baseline conditions.

Findings from these objectives seek to answer the broad question: Can accurate
measurements of forest attributes be obtained from UAS-SfM so it can be used as a stand-
scale (e.g., 1 to 500 ha) remote-sensing monitoring tool to assess fire fuels and post-fire
changes?

2. Materials and Methods
2.1. Study Site

This study took place at Pepperwood Preserve (38.57◦ N, 122.68◦ W), a 1261 ha nature
preserve in Sonoma County, California, USA (Figure 1A). Located in the northern Coast
Range, the property has predominantly rolling hills (61–475 m elevation) vegetated with a
mosaic of Douglas-fir forest, oak woodland, chaparral, and grassland (Figure 1B) [29,30].
The area is characterized by a Mediterranean climate with dry, hot summers (April to
October) reaching over 37 ◦C and mild, wet winters (November to March) infrequently
dropping below 0 ◦C. The preserve experiences high interannual precipitation variability
but receives, on average, around 86 cm of precipitation per year.

Figure 1. (A) Study site location at Pepperwood Preserve (red point) in California, USA. Maps of (B) vegetation assemblages
and (C) the 2017 Tubbs Fire burn severity (MTBS) across the study site. Unoccupied aerial systems structure from motion
(UAS-SfM) data collection extent is represented by black boxes.

As is common throughout California, this climatic regime generates conditions for
wildfires by late summer, due to sustained drying of fuels and vegetation, that are fur-
ther exacerbated by strong autumnal winds [31]. In 2017, the Tubbs Fire swept through
Pepperwood (Figure 1C), burning over 95% of the preserve [32]. This fire was the fourth
deadliest and second most destructive in California history prior to 2020 [33,34]. The fire
ignited on 9 October 2017 4:45 UTC as part of a complex of fires in the region north of
San Francisco, CA. Strong easterly Diablo winds rapidly spread the fire during the first
12 h after ignition [31]. During its 23-day span, the Tubbs fire burned 14,895 ha across all
vegetation types in the region.
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2.2. Data Sources
2.2.1. Unoccupied Aerial System (UAS) Structure from Motion (SfM) Multispectral Data
Collection and Processing

This study employed a SenseFly eBee X fixed-wing UAS platform with a MicaSense
RedEdge-MX sensor onboard. This multispectral sensor collects five spectral bands: blue
(475 nm center, 20 nm bandwidth), green (560 nm center, 20 nm bandwidth), red (668 nm
center, 10 nm bandwidth), red edge (717 nm center, 10 nm bandwidth), and near-IR
(840 nm center, 40 nm bandwidth). Additionally, an onboard MicaSense Downwelling
Light Sensor (DLS) 2 collected ambient sunlight and sun angle. Due to variations in solar
light intensity, sensor radiance values must be standardized to reflectance and calibrated
based on a sample of known reflectance values in order for multispectral measurements
to be comparable across flight missions performed on different days or under varying
light conditions, as well as to be compared against reflectance data from other sensors,
such as multispectral satellite images. Radiance data were converted to reflectance using
downwelling radiance measured from the DLS2 and calibrated with images of a MicaSense
calibration panel (RP04-1926247-OB) captured on the ground immediately before or after
each flight.

We flew the UAS for 13 days between 27 September 2019 and 8 October 2019 under
leaf-on conditions (i.e., leaves present on deciduous trees) and clear-sky conditions, almost
exactly two years after the Tubbs fire. All flights were conducted within two hours of solar
noon to minimize shadowing. We divided the study coverage area (Figure 1B,C, black
boxes) into 11 flight mission zones based on battery flight-time limitations. These 11 boxes
had an average size of 33 ha and total area of 332 ha. SenseFly’s eMotion 3 software
(version 3.7) and a ground station controlled the UAS. The UAS flew autonomously using
pre-planned missions to ensure consistent coverage and flight characteristics. Flight plans
utilized eMotion’s built-in flight control function and a raster digital surface model (DSM)
from the 2013 ALS mission (Section 2.2.2). This function adjusts flight altitude in order to
maintain a 122-m (400-ft) flying height above the DSM. Flights were conducted with a 75%
latitudinal and longitudinal image overlap. We flew each mission zone twice, employing a
perpendicular “lawn mower” pattern to form a cross hatch grid. To improve georeferencing,
at least three ground control points (GCPs, i.e., visible targets) were distributed throughout
the mission zone prior to each flight. We obtained GPS coordinates of each GCP from
>100 readings using a Trimble Juno SB and differential correction with Pathfinder Office.
GCPs had a mean horizontal accuracy of 2.35 m and vertical accuracy of 2.65 m.

We processed the resulting images using Pix4Dmapper (Pix4D, Lausanne, Switzerland,
version 4.4.12), which performed the reflectance calibration and generated reflectance
orthomosaics for each spectral band with an 8 cm pixel size and a three-dimensional point
cloud from the green spectral band. The point cloud had an average point density of
180 points/m2. The resulting point clouds had a mean RMS error from the GCPs of 1.5 m,
with the exception of one highly erroneous GCP. This point was not found to affect the
overall georeferencing of the resulting point cloud. We calculated pixel-level Normalized
Difference Vegetation Index (NDVI) values using the red and near-IR orthomosaic images
and merged the spectral data, including NDVI, with the point cloud in R (version 3.6.3)
using the lidR and raster packages [35–37].

2.2.2. Airborne Laser Scanner (ALS) Data

We obtained ALS data from the 2013 Sonoma County Vegetation Mapping and Lidar
Program website (www.sonomavegmap.org, accessed on 30 September 2019). Watershed
Sciences, Inc. (Portland, OR, USA) collected these data between 28 September 2013 and
26 November 2013 using aircraft-mounted ALS50 and ALS70 sensors at a pulse density
of >8 pulses/m2 [38]. The point cloud had an average point density of 15 points/m2

and an average point density in vegetation of 9.2 points/m2. The survey employed
9685 GCPs with a maximum x, y, z RMSE of 0.2 cm. Watershed Sciences conducted ground

www.sonomavegmap.org
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point classification using TerraSolid software and refined the point classification using a
subsequent statistical surface algorithm.

2.2.3. Vegetation Distribution Data

We obtained vegetation distribution data for Pepperwood Preserve from Ackerly
et al. [29]. They generated their vegetation distribution map from imagery obtained by the
National Aeronautics and Space Administration’s Jet Propulsion Lab using the Airborne
Visible Infrared Spectrometer-Next Generation (AVIRIS-NG) on 5 June 2014. Ackerly
et al. classified this hyperspectral imagery with a support vector machine algorithm,
first with broad land-cover classes, then at the tree species level in forest pixels. For
the purposes of this study, we grouped tree species pixels into three generalized forest
types: conifer (Pseudotsuga menziesii and Sequoia sempervirens), evergreen broadleaf (Arbutus
menziesii, Notholithocarpus densiflorus, Quercus agrifolia, and Umbellularia californica), and
deciduous broadleaf (Acer macrophyllum, Aesculus california, Quercus douglasii, Quercus
garryana, Quercus kelloggii, and Quercus lobata).

2.2.4. 2017 Tubbs Fire Burn Severity Data

We obtained burn severity data for the 2017 Tubbs Fire from the Monitoring Trends in
Burn Severity (MTBS) 2017 burn severity mosaic [39,40] (Figure 1C). This dataset utilizes
the relative delta normalized burn ratio (RdNBR) [41] which analysts classify by fire into
burn severity categories [39,40].

2.3. Data Analysis
2.3.1. Digital Terrain Model (DTM) Generation Capability Analysis

DTMs are commonly generated from point cloud data by filtering for ground points
and then interpolating a raster surface from these points [42]. A number of ground-
filtering methods and algorithms exist and perform comparably well [43], including the
cloth simulation filter (CSF) from Zhang et al. [44]. The CSF classifies ground points
based on the behavior of a simulated cloth draped over an inverted version of the point
cloud. Four parameters determine the performance of the cloth: rigidness, the ability of
the cloth to bend; grid resolution, the spacing of cloth particles; distance threshold, the
maximum distance from the cloth for a point to be classified as ground; and, time step,
the movement between iterations. Rigidness only has three possible states, corresponding
to the number of times a simulated cloth particle can be moved per step, while the other
parameters can take any positive value. Compared to other ground-finding algorithms,
the accessible parameters of the CSF algorithm render it well suited to applications in
challenging forest environments where algorithm optimization must be conducted to
reduce DTM generation error.

In our study site, the ground in September to October is generally covered with dirt
or senesced grass, both of which have low NDVI values relative to understory vegetation.
We employed the CSF in conjunction with a novel post-processing NDVI filter that takes
advantage of the NDVI contrast between ground and understory components. After CSF
classification of ground points, we applied a filter to reclassify all ground points with an
NDVI above a threshold value. This filter removes misclassified photosynthetic understory
vegetation points from the preexisting set of ground points. We generated DTMs from
the identified and filtered ground points using a triangulated irregular network (TIN) to
grid interpolation at one-meter resolution. Ground finding and DTM generation were
conducted using the lidR package in R [38].

To optimize DTM generation for the varied forests of Pepperwood, we iterated each
CSF parameter and the post-processing NDVI filter threshold over an extreme range of
values while holding all other parameters constant (Table 1). Due to the relatively high
accuracy of ALS DTMs, we considered any deviation of the UAS-SfM DTM from the ALS
DTM to be erroneous. We produced error rasters comparing the resulting sequence of
DTMs to the ALS-derived benchmark. We registered the UAS-SfM point cloud to the ALS
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data using the iterative closest point (ICP) algorithm in the software Lidar360 (GreenValley
International, Berkeley, CA, USA, version 4.0; RMSE range: 1.57–2.34 m), and applied
the resulting transformation matrices to the UAS-SfM point cloud in R. This ICP step
was conducted prior to DTM error analysis using the complete UAS-SfM and ALS point
clouds in order to align the ground and ensure any detected deviance in the UAS-SfM
DTM produced was due to ground finding error and the DTM generation process, rather
than due to a systematic offset between the point clouds. We limited this analysis to flight
mission interiors at least 50 m from the mission edge to reduce the effect of edge artifacts.
We calculated root mean squared error (RMSE) for the entirety of the study site as well as
by vegetation type.

Table 1. Cloth simulation filter (CSF) parameter and Normalized Difference Vegetation Index (NDVI)
threshold testing ranges. Range and step define the limits and spacing of the values over which each
parameter was iterated.

Parameter
Round One Round Two Final

Constant Range Step Constant Range Step Constant

Rigidness 1 1–3 1 3 3
Grid resolution 0.5 0.1–2.5 0.1 1 0.5–1.1 0.01 0.45

Distance threshold 0.5 0.1–2.5 0.1 0.1 0–0.2 0.01 0.01
Time step 0.65 0.1–2.5 0.1 0.6 0.5–1 0.01 0.58

NDVI threshold off 0.1–1 0.1 0.5 0.4–0.6 0.01 0.55

We conducted a second round of CSF parameter testing across the range of minimum
RMSE values from the first round using a smaller step between iterations to further refine
parameter values. As in round one, each parameter was run through its range while the
other parameters were held constant. As mentioned previously, rigidness only has three
distinct levels. Therefore, we did not repeat the iteration process for rigidness in round two.
Unlike the first round, we conducted this second round in a stepwise manner, whereby
the constant value for a parameter was updated to its newly identified optimum before
proceeding with the next parameter assessment. A parameter’s relative effect on RMSE
in round one determined the order of optimization for this second round. We optimized
grid resolution first, holding the other parameters at the constant corresponding to the
minimum RMSE obtained in round one. Time step was optimized second, using the
updated round two optimized grid resolution value, along with the other constants from
round one. Distance threshold was parameterized third and NDVI threshold last, again
updating parameters to their new values before proceeding. Final optimized CSF parameter
values corresponded to the minimum RMSE obtained in round two. We produced a final
UAS-SfM DTM from this set of optimized parameters using TIN-to-grid interpolation. We
then calculated absolute error (relative to the ALS DTM) for each raster cell and separated
this error by vegetation type.

2.3.2. Comparison of Forest Structure from UAS-SfM and ALS Point Clouds

We first compared the actual vertical height point cloud structures of UAS-SfM and
ALS height-normalized point cloud data for each forest type. We then compared vertical
height structure metrics between these data types. The general workflow for extracting
vegetation structure metrics from point cloud data involves: (1) height normalizing the
data against a digital terrain model (DTM) to isolate canopy height from terrain features,
and (2) extracting metrics from these normalized data (Figure 2). We conducted this
height normalization process on the original, unregistered UAS-SfM point cloud in two
ways. First, to determine the capability of UAS-SfM as a standalone method for measuring
forest structure, we height normalized the UAS-SfM point cloud using the UAS-SfM DTM
produced through the previously described CSF optimization (Section 2.3.1). Second, to
determine the enhanced capability of UAS-SfM in areas with preexisting high-resolution
DTMs, we height normalized the UAS-SfM point cloud using the ALS DTM. To correct
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for any systematic vertical and horizontal location bias separating the UAS-SfM point
cloud and the ALS DTM, we registered the UAS-SfM ground points to the ALS DTM prior
to height normalization. We generated transformation matrices for the alignment of the
UAS-SfM ground points to the ALS DTM using the ICP algorithm in Lidar360, and applied
the matrices to the entire UAS-SfM point cloud in R. This method allowed for registration
based solely on the ground points to avoid overfitting of canopy metric comparisons as
would occur if the entire point clouds had been used for registration purposes.

Figure 2. Point cloud processing workflow.

Using these height normalized data, we compared area-based height metrics between
both UAS-SfM datasets and ALS. A subset of metrics from Filippelli et al. [8] were computed
at a 20 × 20-m grid scale. While the high resolution of UAS-SfM data permits analysis
at finer spatial scales, this larger grid scale was selected to align with a preexisting plot
network at Pepperwood. Additionally, the MTBS burn severity dataset is assessed at 30 m
resolution, limiting finer scale analysis of differences between burn severities. Density
metrics represented the percentage of 3D points within a grid cell that fell within a particular
vertical height band. Other metrics from each cell included height percentiles (P5, P25, P50,
P75, and P95), mean, maximum, standard deviation, skewness, and kurtosis of point cloud
heights. To reduce confounding factors of mixed species and structural change due to
fire, respectively, we filtered grid cells for only those cells covered by at least 75% of one
forest type and with a burn severity of unchanged or low. From this filtered dataset, we
computed the slope linear regression coefficient and Pearson’s correlation coefficient for
the relationship between UAS-SfM and ALS values for each of these metrics. This was
done using 10,000 bootstrap replicates of 100 grid cells per forest type to correct for spatial
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autocorrelation and maintain balanced sample sizes. In addition to these standard metrics
of point cloud height, we compared the ladder fuel metric from Green et al. [45] between
the two datasets in the same way as the other metrics. This metric is calculated as the
number of points between 1 and 4 m divided by the total number of points below 4 m and
was shown to significantly contribute to canopy damage in local non-wind-driven fires,
including the Tubbs Fire.

2.3.3. Utility of UAS-SfM for Detecting Post-Fire Forest Change

We took a random sample of 20 grid cells per forest type (conifer, broadleaf evergreen,
broadleaf deciduous) from each of the four burn severity classes (none, low, medium, and
high). High burn severity data in deciduous broadleaf forest was excluded from all Tubbs
Fire analysis due to insufficient sample size (n = 8 grid cells). These data were found
to violate normality, so non-parametric statistical tests were implemented in subsequent
analyses.

We determined the influence of ladder fuels on Tubbs Fire burn severity by forest type.
Ladder fuels from the ALS data were used in this analysis since these data represented
pre-fire conditions (four-year difference). We conducted a Kruskal–Wallis one-way analysis
of variance to test differences in mean rank ladder fuel density among burn severity classes
for the three forest types. Significant results were followed by Dunn’s post-hoc test to
examine the nature of between-group differences. We adjusted p-values via the Bonferroni
method to account for multiple comparisons.

We determined the impact of fire severity in the Tubbs Fire on forest canopy structure
using the 95th percentile height (P95) metric and 75th percentile height (P75) metrics.
Since these metrics are highly positively correlated between UAS-SfM and ALS data with
regression coefficients close to one (Table 2), the two can be directly compared for assessing
change in canopy structure [8]. In this case, ALS represents pre-fire canopy conditions
and UAS-SfM represents post-fire conditions. We also tested differences in mean rank of
P95 and P75 canopy metrics, respectively, among burn severity classes by forest type using
a Kruskal–Wallis one-way analysis of variance test. Significant results were followed by
Dunn’s post-hoc tests to examine the nature of between-group differences. We adjusted
p-values via the Bonferroni method to account for multiple comparisons. For this analysis,
we used the UAS-SfM dataset height normalized using the ALS DTM.

Lastly, we used mean NDVI at the P75 canopy height to determine the impact of fire
severity on canopy health. In the absence of pre-fire NDVI values, we used the unburned
forest stands as the control reference for the purpose of detecting the fire’s impact. As before,
we tested the differences in mean rank P75 canopy metrics among burn severity classes
by forest type using a Kruskal–Wallis test with a Dunn’s post-hoc test for between-group
differences and Bonferroni adjusted p-values.

3. Results
3.1. DTM and CHM Generation Capability Comparisons

Compared to the baseline ALS DTM, two rounds of CSF parameter optimization
achieved a UAS-SfM-derived DTM with a minimum RMSE of 2.12 m across the study site
(Figure 3I). This was a reduction of 1.68 m of error relative to the DTM generated from CSF
default parameters (Figure 3A). Responses to parameter changes were largely consistent
among vegetation types. Therefore, parameter optimization could be conducted across
the full study site without sacrificing accuracy in any given vegetation type. Across the
wide range of the first round of parameter testing, the rigidness and distance threshold
parameters had minimal effect (Figure 3C,D), while the grid resolution and time step
parameters greatly affected both DTM accuracy and processing time (Figure 3A,B). In
particular, grid resolution processing times rose sharply as the resolution approached zero.
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Figure 3. CSF parameter effect on DTM accuracy for Round 1 (top) and Round 2 (bottom) of optimization. The DTM
root-mean-square error (RMSE, m) for the entire study site is shown by black points and black line. Colored lines depict
RMSE by vegetation type smoothed using local polynomial regression. Red dot and horizontal grey dashed line denote
minimum achieved RMSE. Vertical black line intersecting the x-axis indicates default parameter value.

The post-processing NDVI threshold filter reduced UAS-SfM DTM error in both
rounds of processing (Figure 3E,I). Compared to the DTM produced from the CSF default
parameters alone, the NDVI filter reduced site-wide RMSE by 0.73 m, down to 3.07 m
(Figure 3E). In comparison, two rounds of parameter optimization without the NDVI filter
reduced site-wide RMSE by only 0.66 m. The performance of the NDVI filter was even
more pronounced in the second round. With optimal values for other CSF parameters
in place, the addition of the NDVI filter reduced site-wide RMSE by 1.02 m (Figure 3I).
Therefore, of the final achieved optimization improvement of 1.68 m, ~61% was due to
the NDVI threshold filter. Additional processing time for this filter was negligible. When
the error analysis was limited from the entire DTM to just the identified ground points,
regression results between these ground points and the corresponding elevation of the
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ALS DTM show a strong positive relationship (r ≈ +1, slope ≈ +1). This confirms the CSF
process accurately identifies ground points.

However, the distribution of absolute error from all 1 m cells of the UAS-SfM DTM,
when compared to an ALS DTM, showed a substantial number of extreme outliers across
all vegetation types, and, in some cases, higher than the canopy height (Figure 4). While
the ground finding process improved overall DTM accuracy, the measurement limitations
of UAS-SfM meant that it was unable to detect any ground points in some regions with
substantial changes in terrain height, subsequently resulting in DTM errors observed in
those areas. Based on their respective interquartile ranges, UAS-SfM DTM generation
appears to demonstrate greater consistency in accuracy for grasslands than forested areas.
However, due to the number of outliers across vegetation types, statistical analyses could
not be conducted to differentiate DTM accuracy by vegetation type. Errors over 15 m were
observed even in a few grasslands, indicating that large errors can appear even in areas
without canopy cover. Errors over 4 m represent locations where the DTM inaccuracy
would be so great as to render detection of ladder fuels largely impossible. Eight percent
of the combined forest UAS-SfM DTM cells had errors greater than 4 m, while only 1%
of grass and shrub cells had errors above this threshold, respectively. When separated by
forest type, the forest cell error percentages ranged from 7–10%.

Figure 4. Boxplot of UAS-SfM DTM 1-m cell error by vegetation type for DTM obtained from optimized CSF parameters as
compared to the ALS DTM. Numbers above each boxplot represent percentage of DTM cells with greater than 4 m of error.

3.2. Comparison of Forest Structure from UAS-SfM and ALS Point Clouds

The vertical structure of UAS-SfM and ALS point clouds reflect the ability of each
sensor to detect structure below the canopy. Across all forest types for the complete site-
wide dataset, ALS point clouds had a negatively tapered vertical density from the middle to
lower part of forest canopies and a high density of ground points (Figure 5). The UAS-SfM
point cloud upper-canopy density structure closely resembled that of ALS data, reaching a
maximum canopy point density at a similar height. However, the lower canopy structure
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for UAS data tapered rapidly, indicating that the UAS point cloud was generally unable
to detect the ground under heavy tree canopy. However, an exception to this pattern was
observed in the evergreen broadleaf forest, which exhibited an increased point density at
ground level. The unburned stand of evergreen broadleaf forest in this analysis contained
trees spatially separated from one another, and it is from these gaps between the trees
that the ground points were measured. Therefore, the increase in ground points does not
actually represent an increased ability of UAS-SfM to detect below canopy structure in this
forest type.

Figure 5. Above-ground point cloud height distributions (meters) from complete study-site data by forest type as measured
by ALS (white) and UAS-SfM height normalized using the ALS DTM (shaded). Plots scaled for equal area. Horizontal lines
represent 25%, 50% and 75% percentiles, respectively.

The area-based metric comparisons between UAS-SfM and ALS data reflect the pre-
ceding observations on sub-canopy detection across vegetation types (Tables 2 and 3). For
both the UAS-SfM height metrics extracted using the UAS-SfM derived DTM and the
ALS DTM for height normalization, only metrics associated with the upper half of the
canopy (e.g., P50, P75, P95, mean height, and max height) exhibited Pearson’s r > +0.80. No
relationships of this type exist between UAS-SfM and ALS for any of the metrics of height
variation, nor those of height density for either of the height normalization approaches,
with the exception of upper-canopy density (10–15 m) from the ALS DTM normalized
dataset. As expected from the errors identified during the UAS-SfM DTM generation anal-
ysis (Section 3.1), the metrics extracted from the UAS-SfM data height normalized using
the ALS DTM systematically performed better than the UAS-SfM data height normalized
using the UAS-SfM DTM. However, these differences were small, especially for percentile
metrics associated with the upper half of the canopy (Figure 6).
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Table 2. Regression slope coefficients and Pearson’s r correlation coefficient for point cloud grid metrics comparison between
airborne laser scanner (ALS) data and unoccupied aerial system structure from motion (UAS-SfM) height normalized
using the UAS-SfM digital terrain model (DTM). Metrics P5, P25, etc. represent height percentiles. Values given are mean
(standard error) of 10,000 bootstrap replicas of 100 unburned plots per forest type. Coefficient and r values greater than 0.8
are shown in bold.

Conifer Evergreen Broadleaf Deciduous Broadleaf All Forest Types

Height Metric Coefficient r Coefficient r Coefficient r Coefficient r

Ladder fuels +0.09 (0.07) +0.13 (0.10) +0.05 (0.09) +0.08 (0.13) +0.16 (0.04) +0.39 (0.07) +0.16 (0.04) +0.23 (0.06)
Density

2–5 m +0.12 (0.18) +0.07 (0.08) +0.09 (0.05) +0.24 (0.11) +0.07 (0.06) +0.18 (0.12) +0.08 (0.04) +0.16 (0.08)
5–10 m +0.36 (0.13) +0.45 (0.13) +0.21 (0.05) +0.39 (0.09) +0.25 (0.04) +0.61 (0.09) +0.33 (0.03) +0.63 (0.04)
10–15 m +0.38 (0.08) +0.64 (0.10) +0.22 (0.05) +0.47 (0.10) +0.21 (0.04) +0.53 (0.09) +0.32 (0.02) +0.67 (0.04)

Distribution
Max +0.52 (0.12) +0.67 (0.07) +0.64 (0.08) +0.76 (0.07) +0.62 (0.11) +0.69 (0.11) +0.81 (0.03) +0.89 (0.02)
Mean +0.52 (0.06) +0.80 (0.05) +0.38 (0.08) +0.60 (0.10) +0.35 (0.09) +0.56 (0.11) +0.66 (0.02) +0.88 (0.02)
P5 +0.01 (0.01) +0.17 (0.12) −0.00 (0.02) +0.00 (0.13) +0.00 (0.00) +0.07 (0.10) +0.01 (0.01) +0.19 (0.08)
P25 +0.44 (0.06) +0.66 (0.07) +0.12 (0.11) +0.17 (0.15) +0.03 (0.04) +0.09 (0.12) +0.53 (0.04) +0.74 (0.04)
P50 +0.62 (0.08) +0.80 (0.05) +0.39 (0.08) +0.58 (0.10) +0.41 (0.12) +0.41 (0.12) +0.73 (0.03) +0.86 (0.02)
P75 +0.61 (0.09) +0.77 (0.05) +0.44 (0.07) +0.68 (0.09) +0.47 (0.11) +0.59 (0.12) +0.75 (0.03) +0.89 (0.02)
P95 +0.56 (0.10) +0.73 (0.06) +0.55 (0.07) +0.75 (0.07) +0.55 (0.11) +0.67 (0.11) +0.78 (0.03) +0.89 (0.02)

Variation
SD +0.24 (0.08) +0.29 (0.09) +0.47 (0.05) +0.72 (0.07) +0.28 (0.12) +0.33 (0.15) +0.71 (0.04) +0.72 (0.03)
Skewness +0.29 (0.04) +0.63 (0.08) +0.16 (0.09) +0.28 (0.11) +0.05 (0.04) +0.15 (0.11) +0.15 (0.04) +0.33 (0.07)
Kurtosis +0.05 (0.02) +0.42 (0.12) −0.02 (0.04) −0.05 (0.08) −0.03 (0.01) −0.33 (0.08) +0.01 (0.01) +0.04 (0.08)

Table 3. Regression slope coefficients and Pearson’s r correlation coefficient for point cloud grid metrics comparison between
ALS data and UAS-SfM height normalized using an ALS DTM. Metrics P5, P25, etc. represent height percentiles. Values
given are mean (standard error) of 10,000 bootstrap replicas of 100 unburned plots per forest type. Coefficient and r values
greater than 0.8 are shown in bold.

Conifer Evergreen Broadleaf Deciduous Broadleaf All Forest Types

Height Metric Coefficient r Coefficient r Coefficient r Coefficient r

Ladder fuels +0.16 (0.06) +0.26 (0.10) +0.02 (0.10) +0.04 (0.14) +0.08 (0.04) +0.19 (0.10) +0.08 (0.04) +0.13 (0.07)
Density

2–5 m +0.40 (0.13) +0.35 (0.10) +0.16 (0.08) +0.33 (0.14) +0.18 (0.07) +0.43 (0.10) +0.20 (0.05) +0.40 (0.08)
5–10 m +0.54 (0.08) +0.74 (0.07) +0.35 (0.05) +0.61 (0.07) +0.23 (0.04) +0.61 (0.07) +0.36 (0.03) +0.70 (0.03)
10–15 m +0.62 (0.06) +0.83 (0.04) +0.35 (0.04) +0.72 (0.07) +0.26 (0.03) +0.68 (0.07) +0.39 (0.02) +0.80 (0.03)

Distribution
Max +0.72 (0.18) +0.81 (0.09) +0.71 (0.10) +0.79 (0.08) +0.73 (0.11) +0.85 (0.12) +0.92 (0.04) +0.93 (0.02)
Mean +0.65 (0.09) +0.84 (0.07) +0.41 (0.10) +0.60 (0.15) +0.49 (0.06) +0.81 (0.06) +0.75 (0.03) +0.91 (0.03)
P5 +0.01 (0.01) +0.23 (0.05) −0.01 (0.03) −0.03 (0.15) −0.00 (0.01) −0.03 (0.11) +0.01 (0.01) +0.17 (0.10)
P25 +0.57 (0.10) +0.67 (0.08) +0.13 (0.12) +0.17 (0.15) +0.02 (0.02) +0.11 (0.10) +0.60 (0.05) +0.75 (0.04)
P50 +0.76 (0.12) +0.82 (0.07) +0.41 (0.10) +0.57 (0.13) +0.66 (0.09) +0.70 (0.07) +0.83 (0.04) +0.89 (0.03)
P75 +0.78 (0.14) +0.83 (0.07) +0.49 (0.10) +0.69 (0.12) +0.64 (0.08) +0.82 (0.08) +0.86 (0.03) +0.92 (0.02)
P95 +0.75(0.16) +0.84(0.08) +0.61(0.10) +0.77(0.09) +0.69(0.10) +0.85(0.10) +0.89(0.03) +0.93(0.02)

Variation
SD +0.22(0.10) +0.21(0.10) +0.50(0.06) +0.69(0.07) +0.26(0.10) +0.35(0.14) +0.80(0.05) +0.67(0.03)
Skewness +0.30(0.07) +0.48(0.09) +0.25(0.05) +0.45(0.07) +0.12(0.04) +0.35(0.11) +0.18(0.03) +0.34(0.05)
Kurtosis +0.06(0.02) +0.28(0.10) −0.01(0.03) −0.04(0.08) −0.02(0.01) −0.25(0.15) −0.01(0.01) −0.03(0.06)
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Figure 6. Comparison of Pearson correlations for point cloud height metrics extracted from UAS-SfM
height normalized using either UAS-SfM DTM or ALS DTM across all forest types. Coefficients and
their standard errors computed using 10,000 bootstrap replicates between UAS-SfM and ALS.

3.3. Utility of UAS-SfM for Detecting Post-Fire Forest Change

Ladder fuels: Across all forest types, the mean rank ladder fuel density was significantly
higher in the high burn severity class, as compared to all other areas (Table 4, Figure 7). In
evergreen broadleaf forests, the mean rank ladder fuel density was significantly lower in
the medium burn severity class, as compared to the unburned and high burn severities
classes (Table 4, Figure 7). The ladder fuel densities did not differ among burn severities
for the other forest types.
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Table 4. Kruskal–Wallis one-way analysis of variance results for 2017 Tubbs fire burn severity impact
metrics. Significance at the 95% level denoted in bold.

Metric and Sample χ2 p df N

Pre-fire ladder fuel
All forests 18.99 <0.001 3 220
Conifer 2.59 0.46 3 80
Evergreen broadleaf 13.68 0.003 3 80
Deciduous broadleaf 0.41 0.82 2 60

∆P95
All forests 7.16 0.06 3 220
Conifer 0.79 0.85 3 80
Evergreen broadleaf 10.82 0.01 3 80
Deciduous broadleaf 0.73 0.69 2 60

∆P75
All forests 35.01 <0.001 3 220
Conifer 10.98 0.01 3 80
Evergreen broadleaf 30.41 <0.001 3 80
Deciduous broadleaf 1.17 0.56 2 60

P75 NDVI
All forests 89.81 <0.001 3 220
Conifer 54.49 <0.001 3 80
Evergreen broadleaf 35.31 <0.001 3 80
Deciduous broadleaf 9.21 0.01 2 60

Figure 7. Relationship among pre-fire ladder fuels derived from 2013 ALS data and 2017 Tubbs fire burn severity by forest
types. Lower case letters represent statistically similar groups at the 95% confidence level using a Dunn’s post-hoc test.

∆P95: In evergreen broadleaf forests, the mean rank in pre-fire (ALS) to post-fire (UAS-
SfM) P95 canopy height change (∆P95) was significantly more negative (i.e., greater decrease
in heights) in the high burn severity class as compared to the low and medium burn severity
classes (Table 4, Figure 8B). The mean rank ∆P95 was not significantly different across burn
severities in the other forest types or for all forests combined (Table 4, Figure 8B–D).
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Figure 8. The impact of the 2017 Tubbs Fire on 95th percentile (P95) and 75th percentile heights (P75) and P75 mean NDVI
by MTBS fire severity in forest types. Lower case letters represent statistically similar groups at the 95% confidence level.
Change in canopy height metrics calculated as pre-fire ALS percentile height minus post-fire UAS-SfM percentile height.

∆P75: Across all forest types and in evergreen broadleaf forests, the mean rank ∆P75
was significantly more negative in the high burn severity class as compared to all others
(Table 4, Figure 8F,H). In conifer forests, the mean rank ∆P75 was significantly more negative
in the high burn severity class as compared to the low burn severity (Table 4, Figure 8E).
The mean rank ∆P75 did not differ in deciduous broadleaf forests.

P75 NDVI: Across all forest types and in evergreen broadleaf forests, the mean rank in
NDVI at post-fire (UAS) P75 canopy height (P75 NDVI) was significantly lower in the high
burn severity class as compared to all others (Table 4, Figure 8L,J). In addition, across all
forest types, the mean rank P75 was significantly lower in the medium burn severity class as
compared to the low and unburned classes (Table 4, Figure 8L). In conifer forests, the mean
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rank in P75 NDVI was significantly lower in the medium and high burn severity classes as
compared to all others (Table 4, Figure 8I). In deciduous broadleaf forests, the mean rank in
P75 NDVI was significantly lower in the medium burn severity class as compared to the
low burn severity class (Table 4, Figure 8K).

In summary, only evergreen broadleaf forests exhibited a change in 95th percentile
canopy height at higher burn severities. Bulk canopy height, represented by the 75th
height percentile, decreased at high burn severity when considering all forests together,
and within evergreen broadleaf and conifer forests. We also found that NDVI values in the
bulk canopy decreased (i.e., lower greenness) with increasing burn severity, regardless of
forest type.

4. Discussion
4.1. DTM and CHM Generation Capability Comparisons

This study sought to assess the capacity of UAS-SfM as a stand-alone forest monitoring
tool to be employed in Mediterranean forests without pre-existing ALS data. This requires
that a sufficiently accurate DTM can be estimated from UAS-SfM 3D point clouds, consider-
ing both detection of ground points and the classification of these points as ground relative
to understory vegetation. This terrain finding process enables the isolation of canopy-
height from topography. While it is possible to achieve sub-centimeter DTM accuracy from
UAS-SfM for bare ground conditions [46], increasing vegetation cover heavily impacts
DTM accuracy [47–49]. Through two rounds of ground finding parameter optimization,
we achieved a site wide DTM RMSE of 2.12 m. However, 8% of DTM coverage in forest
areas contained errors over 4 m. This height threshold represents the upper limit of the
ladder fuel metric from Green et al. [45], so errors of this magnitude connote an inability to
detect surface or ladder fuels.

While the proliferation of error of this magnitude is serious, deciding whether this
represents an unacceptable level of error largely depends on the context in which these data
will be used. To determine canopy height and other metrics in areas of dense forest, having
a baseline DTM from a more reliable source, such as airborne or UAS lidar, will always
be best practice [50,51], assuming terrain does not change considerably over a study time
period. However, in situations where these data do not exist, 8% error coverage may have
to represent an acceptable margin. Of perhaps more importance among this erroneous area
are the individual DTM sites with extreme errors, linked with gaps in the distribution of
detected ground points. Future research should analyze the role of topography and canopy
type in producing these areas of extreme error magnitude in order to determine conditions
under which UAS-SfM cannot function without a preexisting DTM. Another future avenue
of research to avoid these errors entirely is to determine if DTM-independent methods for
extraction of forest metrics, which have been validated in forestry growing stock volume
measurements [52], can be applied to the mapping of fuel loads.

This study employed the Cloth Simulation Filter (CSF) from Zhang et al. [44] in
conjunction with a subsequent NDVI filter to classify ground points from which a DTM
could be generated through interpolation. In Mediterranean shrublands, Carvajal-Ramirez
et al. [53] found the CSF performance was weaker relative to an NDVI classifier, and the
authors called for the need to assess the impact of CSF parameter setting on ground-finding
accuracy. In this study, CSF parameter optimization alone only marginally improved RMSE
over the default parameters. However, the addition of our NDVI threshold filter resulted
in a large (>60%) improvement in RMSE. Drawing on the concept of the NDVI classifier
from Carvajal-Ramirez et al. [53], the combination of CSF with an NDVI filter leverages
the strengths of both methods. The CSF identifies an initial set of ground points from
which the NDVI filter removes misclassified vegetation. When multispectral data exist, this
filter provides a computationally simple way to improve ground finding based on point
cloud structure alone. While methods for ground finding are continually being developed
or improved e.g., [54], this filter provides an additional tool in mitigating the subcanopy
detection shortcomings of UAS-SfM. However, one important caveat to our results is that
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our study area benefits from relatively low senesced grass (depending on cattle rotations
and deer grazing) and higher live shrubs in late summer, thereby providing a strong NDVI
contrast that aids the ground filter. Further tests of the CSF and NDVI filter combination in
other ecosystems are certainly warranted.

4.2. Comparison of Forest Structure from UAS-SfM and ALS Point Clouds

Linear regression comparisons between UAS-SfM and ALS confirm past findings
from other forest types and applications that UAS-SfM can only reliably resolve upper-
canopy structure, but does so with a high degree of accuracy e.g., [49,55]. The analysis
presented here closely matches Filippelli et al. [8], who found similar relationships in
a montane coniferous and lodgepole pine forest between ALS and SfM DAP collected
using an airplane flown at high altitude and with lower image overlap than used in this
study. This suggests that SfM DAP has the same strength and limitations irrespective of
image acquisition method and forest type. In particular, SfM DAP provides a powerful
tool for measuring upper-canopy forest structure. The strength of this tool is dependent
on the accuracy of the DTM underlying the analysis. While the use of the ALS DTM for
height normalization systematically improved the accuracy of extracted canopy metrics
as compared to the UAS-SfM, both methods performed well in measuring all metrics
associated with the upper half of the canopy.

For SfM DAP to determine a point’s 3D location, it must appear in multiple overlap-
ping images. Therefore, the technique often fails to detect gaps in canopy cover, let alone
resolve what lies below the canopy [28]. In our study, this shortcoming was most acutely
demonstrated in our attempt to measure ladder fuels. No relationship existed between
the ALS and UAS-SfM derived metrics. SfM DAP overestimates metrics of density, such
as the ladder fuels metric, and canopy cover due to this lack of subcanopy detection [50].
The analysis of the point cloud’s respective vertical structure lends additional weight to
the conclusion that UAS-SfM cannot measure ladder fuels using the same metric as is
employed for ALS. However, this study was limited in this analysis due to the six years
between the collection of ALS and UAS-SfM data. While we restricted this analysis to
areas of the study site unaffected by the Tubbs Fire, forest structure may have changed
during the interim period (e.g., tree growth, disease, or mortality), which may account for
some of the measured UAS-SfM error relative to the ALS baseline. Despite the subcanopy
detection limitations of SfM DAP, Filippelli et al. [8] found DAP models of canopy struc-
ture performed comparably to those derived from ALS. Future studies with coincident
ALS and UAS-SfM data should investigate this relationship further to determine if other
methods can measure ladder fuel density from UAS-SfM despite its limitations under high
canopy cover.

4.3. Utility of UAS-SfM for Detecting Post-Fire Forest Change

Two years after the Tubbs Fire swept through Pepperwood, UAS-SfM found minimal
changes in canopy height relative to pre-fire metrics. In the aggregate analysis of all forest
types, measures of maximum height (95th percentile) did not change, while bulk canopy
height (75th percentile) decreased significantly in regions with the highest burn severity.
We observed significant decreases in NDVI with increasing burn severity across all forests
regardless of structural change. While we did not have calibrated pre-fire measures of
NDVI on the same spatial scale to which we could compare, the unburned areas were
used as a control reference in this comparison. This demonstrates the long-lasting impact a
severe wildfire has on Mediterranean forest health.

The role of NDVI in understanding forest health indicates that multispectral sensors
have an important role in forest monitoring for fire hazard and post-fire recovery. Change in
NDVI can detect fine-scale forest physiological stress [56]. Change in NDVI also provides
the best estimator of post-fire severity in Mediterranean vegetation [45,57]. The long-
term trend of NDVI over a stand or ecosystem can be used to measure the degree to
which different vegetation types manage to recover from a severe fire event [58]. In our
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study ecosystem, UAS-SfM-based measures of NDVI or other greenness indices over
multiple times post-fire could provide valuable crown-scale information on tree response
to fire [59,60], such as initiation of epicormic sprouting and subsequent canopy growth.
As demonstrated here, this information can provide insight on impacts beyond what
structural information alone could provide. In addition, since multispectral UAS-SfM
provides coupled spectral and structural information, it offers a means to target analysis at
particular levels of the canopy in a way that is not possible with aerial or satellite imagery
alone. For example, here we were able to use this technology to disentangle bulk canopy
changes in NDVI from other post-fire ecosystem changes, such as ground vegetation
recovery. While our results targeted change detection at the 20 m grid level, future studies
should leverage the high resolution of this technology to analyze change at finer scales or
even at the individual tree level.

The analysis of post-fire canopy changes would not have been possible without the
existence of the pre-fire ALS data. While the unburned areas could be used as a control in
the absence of such data, as done here with the NDVI analysis, change analysis of this type
greatly benefits from ongoing monitoring. It is in this capacity that UAS-SfM provides a
particularly strong benefit due to the ease of data acquisition at plot to stand scales.

Although UAS-SfM could not estimate ladder fuels, our analysis with ALS-based
pre-fire ladder fuels and burn severity revealed a pattern that merits further investigation.
In the aggregate analysis of all forest types, the high burn severity class exhibited greater
pre-fire ladder fuel density than the low burn severity class. We found a significant
relationship between increasing pre-fire ladder fuel densities and medium to high burn
severity in evergreen broadleaf forest, but not in the conifer forest. Neither forest type
had a significant difference between low and high burn severities. Conifers in particular
showed no relationship between burn severity and ladder fuel density. Two explanations
are possible for this. First, the majority of conifer forest that burned at high severity
during the Tubbs Fire did so during the initial “Diablo” wind-driven portion of the event.
Green et al. [45] identified these winds to be an even stronger driver of burn severity than
ladder fuels. Therefore, the mixed signal across forest types and in conifer forests may
be attributable to wind strength overwhelming any difference that ladder fuel densities
may have otherwise caused in burn severity [61]. An alternative explanation, however, is
that the ladder fuel metric employed here performs well in shorter evergreen broadleaf
forests, especially in determining if higher intensities fires are able to cross the high severity
threshold, but does not apply in tall conifer forests where canopy base height may be
well above 4 m. Further work is needed to investigate the utility of different measures of
vertical fuel continuity, such as ladder fuel metrics, in different forest types. Furthermore,
the estimation of such sub-canopy metrics at a stand scale using UAS may best be achieved
with an attached lidar sensor instead of the SfM approach used here [62]. Although UAS-
SfM is currently more economical, prices for UAS lidar are expected to decrease over
time [25].

5. Conclusions

For fire hazard mitigation land management treatments to be effective, land managers
must implement them at broad spatial scales, from single forest stands to larger regions [63].
This requires an improved understanding of forest structure and fuel loading to inform
management practices.

Due to the comparatively low investment in time or resources involved in conducting
repeated data collection missions, UAS-SfM provides a unique opportunity to monitor
ongoing changes and recovery of forest structure and physiological health following
major disturbance events at plot to stand scales [26,64]. Our study in a Mediterranean
forest site in Northern California found UAS-SfM able to accurately detect ground points.
However, ground points in some areas were too sparsely distributed to reliably estimate
ground elevation, a limitation that affects subsequent canopy height retrieval and limits
its use in these areas as a stand-alone tool in the absence of more accurate terrain data.
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This shortcoming arose from UAS-SfM’s limited subcanopy detection ability, which also
hindered its ability to detect ladder fuels and other below-canopy metrics. Across the study
site, UAS-SfM excelled at mapping the upper canopy of forests and, when combined with a
multispectral sensor, can provide information on vegetation productivity and physiological
stress. This accuracy can be improved further when the UAS-SfM is paired with an accurate
baseline measurement of ground elevation (e.g., from an airborne lidar sensor). UAS-SfM,
therefore, provides a valuable tool for monitoring post-fire impacts and recovery through
the use of upper-canopy metrics of structure and health, especially at sites with pre-fire
data as presented here. Much work remains to be done in the evaluation of UAS-SfM as
a fire fuel monitoring tool in Mediterranean ecosystems. Future work should focus on
leveraging the strengths of this method to improve management outcomes.
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