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Abstract: We apply the Support Vector Regression (SVR) machine learning model to estimate surface
roughness on a large alluvial fan of the Kosi River in the Himalayan Foreland from satellite images.
To train the model, we used input features such as radar backscatter values in Vertical–Vertical (VV)
and Vertical–Horizontal (VH) polarisation, incidence angle from Sentinel-1, Normalised Difference
Vegetation Index (NDVI) from Sentinel-2, and surface elevation from Shuttle Radar Topographic
Mission (SRTM). We generated additional features (VH/VV and VH–VV) through a linear data
fusion of the existing features. For the training and validation of our model, we conducted a field
campaign during 11–20 December 2019. We measured surface roughness at 78 different locations over
the entire fan surface using an in-house-developed mechanical pin-profiler. We used the regression
tree ensemble approach to assess the relative importance of individual input feature to predict
the surface soil roughness from SVR model. We eliminated the irrelevant input features using
an iterative backward elimination approach. We then performed feature sensitivity to evaluate
the riskiness of the selected features. Finally, we applied the dimension reduction and scaling to
minimise the data redundancy and bring them to a similar level. Based on these, we proposed five
SVR methods (PCA-NS-SVR, PCA-CM-SVR, PCA-ZM-SVR, PCA-MM-SVR, and PCA-S-SVR). We
trained and evaluated the performance of all variants of SVR with a 60:40 ratio using the input
features and the in-situ surface roughness. We compared the performance of SVR models with six
different benchmark machine learning models (i.e., Gaussian Process Regression (GPR), Generalised
Regression Neural Network (GRNN), Binary Decision Tree (BDT), Bragging Ensemble Learning,
Boosting Ensemble Learning, and Automated Machine Learning (AutoML)). We observed that the
PCA-MM-SVR perform better with a coefficient of correlation (R = 0.74), Root Mean Square Error
(RMSE = 0.16 cm), and Mean Square Error (MSE = 0.025 cm2). To ensure a fair selection of the
machine learning model, we evaluated the Akaike’s Information Criterion (AIC), corrected AIC
(AICc), and Bayesian Information Criterion (BIC). We observed that SVR exhibits the lowest values
of AIC, corrected AIC, and BIC of all the other methods; this indicates the best goodness-of-fit.
Eventually, we also compared the result of PCA-MM-SVR with the surface roughness estimated from
different empirical and semi-empirical radar backscatter models. The accuracy of the PCA-MM-SVR
model is better than the backscatter models. This study provides a robust approach to measure
surface roughness at high spatial and temporal resolutions solely from the satellite data.

Keywords: surface roughness; Sentinel-1; Sentinel-2; machine learning models; AutoML;
backscatter models

1. Introduction

Surface soil roughness is an important parameter in many environmental applica-
tions, such as: agronomy, geomorphology, hydrology, meteorology, and climate change
modeling [1,2]. By definition, surface roughness is a non-zero Gaussian random process
that is parameterised by the Root Mean Square (RMS) height (s), and correlation length
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(l). The root mean square height describes the vertical roughness, whereas the correlation
length is used to describe roughness at a horizontal scale. Usually, surface roughness
measured in the horizontal scale is subject to large variability and uncertainty as compared
to the vertical scale [3]. This is probably one reason that RMS height is used in the inversion
of various backscattering models [4]. The surface roughness (RMS height) is considered a
highly sensitive parameter in modeling soil moisture from the Synthetic Aperture Radar
(SAR) images [5]. It is important to have an accurate measurement of surface roughness in
order to model the soil moisture from SAR images [6].

Surface soil roughness can be categorised into four different scales, such as the mi-
crorelief, random, oriented roughness, and higher-order roughness [7]. The microrelief
roughness is due to individual grains. The random roughness is due to natural changes
such as soil cloudiness and weather conditions (rainfall, freeze). The oriented roughness is
due to tillage operations. The higher-order roughness is due to elevation variation [8,9].
Generally oriented or high-order surface roughness is required in various backscatter
models to estimate soil moisture from SAR images [10,11].

At the field scale, surface soil roughness can be measured using contact methods
(i.e., roller chain and pin profilometer) or sensor methods (i.e., stereo-photogrammetry and
laser scanning). The selection of an appropriate method depends on the field conditions,
accuracy, and spatial resolution [12]. The roller chain method is based on the principle
that, for a given chain length, the horizontal distance covered by the chain decreases as the
surface roughness increases. This method is fast and requires little training, but overesti-
mates the surface soil roughness [12,13]. A pin-profiler measures the surface roughness
by tracing the one-dimensional surface profile from the relative position of pins placed
vertically on the ground. This method is economical and provides acceptable accuracy for
microwave remote-sensing applications, but it is time-consuming and requires physical
contact with the surface [14–18]. In the stereo-photogrammetry technique, the DEM is
calculated from two digital images acquired with 70% overlap of the same area. This
method is economical, but the accuracy of the result highly depends on the data-processing
algorithms [19]. The laser scanner approach uses optical triangulation technique using the
laser beams to measure surface elevation automatically. It measures surface roughness
precisely at high spatial resolution. It is time-consuming and often not recommended for
extensive field campaigns [20].

Recently, active microwave remote-sensing images have been widely used to measure
surface features at regional and local scales [21–23]. The microwave signal is highly
sensitive to both geometric and dielectric properties of the soil. These properties are
interlinked and often studied concurrently. The dielectric properties of the soil are sensitive
to the texture, moisture, temperature, and bulk density of the soil. The geometric properties
of soil correspond to the physical surface roughness [24]. The variation in the dielectric
constant produces a “dielectric roughness effect” apart from the physical roughness. This
effect is significant during the drying-out of the soil [25].

SAR images have significantly improved the measurement and estimation of soil
attributes. Several studies are conducted to estimate surface soil moisture through various
empirical, semi-empirical, and theoretical backscattering models [26–33]. These backscat-
tering models require quad-polarised SAR images and mostly applicable to barren and
agricultural lands. Shi et al. [34,35] were probably the first to estimate surface soil roughness
from SAR images. They inverted the Integral Equation Method (IEM) model to estimate
surface soil roughness from quad-polarised L-band Airborne SAR operated by the Jet
Propulsion Laboratory (AIRSAR) and Spaceborne Imaging Radar-C (SIR-C) data. They re-
ported surface roughness, estimated from the inversion of the IEM model, accord well with
the in-situ measured values for barren and spare vegetated fields with an RMSE of 1.9 dB.
Baghdadi et al. [36] used SAR images (RADARSAT and ERS) of various incidence angles
to estimate surface soil roughness. They reported that surface soil roughness is highly
sensitive to the incidence angle, and a higher incidence angle (>45◦) is more suitable for dif-
ferentiating various surface roughness classes over bare agricultural plots. Zribi et al. [37]
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proposed a semi-empirical model to estimate surface soil roughness over a heterogeneous
terrain. They validated their model using the results of the IEM single-scattering model.
They found a good correlation between these models for small- or medium-range surface
roughness with incidence angle (>35◦). Their model accurately estimates the surface rough-
ness over the homogeneous surface and overestimates in the region characterised by a high
degree of roughness. Rahman et al. [38], applied the IEM model on Envisat ASAR images
to estimate surface roughness and soil moisture. Baghdadi et al. [39] proposed an inversion
model based on multi-layer perceptron to estimate soil parameters using C-band SAR
data over bare agricultural plots. They trained the neural network model using simulated
datasets generated from IEM models over a valid range of input parameters. They reported
a precision of 0.5 cm (RMSE) for surface soil roughness below 2 cm. Sawada et al. [40]
proposed a novel algorithm to retrieve the surface soil roughness through a fusion of
SAR and optical data. They fused the Moderate Resolution Imaging Spectroradiometer
(MODIS) and Advanced Microwave Scanning Radiometer 2 (AMSR2) data to determine
surface roughness through the radiative transfer model. Baghdadi et al. [4] proposed an
inversion technique to estimate the surface soil roughness from Sentinel-1 images. They
generated synthetic data by training a neural network model through IEM model sim-
ulations. More recently, Mirmazloumi et al. [41] proposed a new empirical model to
estimate surface soil attributes (i.e., soil moisture and surface roughness) from AIRSAR
and RADARSAT-1 images.

Zribi and Dechambre [42] proposed an empirical model to estimate surface soil rough-
ness by using two SAR images acquired at different incidence angles. They selected a small
incidence angle, i.e., 23◦ and a large incidence angle, i.e., 39◦ to estimate the surface soil
roughness. Srivastava et al. [43] proposed an empirical regression model to estimate surface
soil roughness from SAR (Envisat-1) images. They observed that the linear data fusion of
VH and VV in the form of VH–VV polarisation is more sensitive to surface soil roughness.
Later, Marzahn et al. [24] proposed a novel approach to estimate surface roughness over an
agricultural field using a photogrammetric acquisition system. They generated the surface
models from digital images. They reported that RMS roughness of s ≤ 2 could reliably be
estimated from a 2 m2 acquisition areas. Recently, Ullmann and Stauch [44] evaluated the
relationship between the various mono- and multi-temporal Sentinel-1 (SAR) features with
the surface soil roughness. They concluded that the surface soil roughness is more sensitive
to the vertical variation of the profile than the horizontal. More recently, Azizi et al. [45]
developed a computerised approach to estimate surface soil roughness based on the stereo
vision technique. They computed the elevation component to reconstruct the 3-D model of
the images taken from the field.

Accurate estimates of surface roughness through backscattering models are mainly
limited by the model assumptions. All the studies discussed above assume ideal soil
characteristics. Under this assumption, the soil roughness is explainable by a single-scale
stationary process (i.e., parameters do not change over time). Such assumptions are over-
ruled due to the complex geometry of inherent soil surface [3]. Furthermore, most of the
backscattering models are validated at fine scales under a controlled environment [46,47].
They do not accord well over a region that exhibits large intra-field variability.

To overcome the issues with the existing methods, we propose a novel machine-
learning approach to predict surface soil roughness solely from the publicly available
remote-sensing data. We trained thirty-five variants of seven different machine-learning
algorithms using relevant features and in-situ-measured surface roughness. We extract
these features from Sentinel-1, Sentinel-2, and SRTM data. Once the models are trained, we
evaluated their performance using robust performance metrics in terms of their accuracy
and computational time complexity. Finally, we used the best model to generate a surface
roughness map.
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2. Site Characteristics

We conducted this study on a large alluvial fan of the Kosi River on the Himalayan
Foreland in north Bihar plain, India. This fan has been active since the Holocene, and
resulted from the gradual migration of the Kosi River. During this process, the Kosi River
deposited its sediment, carried from the Himalayas, and built a large conical sedimentary
structure, the Kosi Fan [48–51]. The Kosi Fan is one of the largest fluvial fans, built over an
area approximately 10, 351 km2, and has a radius of about 115–150 km [48,51]. Its surface is
composed of homogeneous quartz sediments with a median grain size, varying in a range
from 300 µm in its proximal to about 100 µm in the distal part [51,52]. The dominant soil
types are sandy, sandy loam, loam, and silty loam. The aerial view of the Kosi fan appears
nearly conical. Elevation of the Kosi Fan from the mean sea level varies between 110 m
and 80 m in the proximal and 50 m and 30 m in the distal part. The surface slope varies
gently from 8 × 10−4 at the apex to 6 × 10−5 near the toe [51].

About 84% of the total fan area is agricultural lands, 9% wetlands and water bod-
ies, and 7 % built-up [53]. The Kosi Fan is very fertile for agriculture. The agriculture
is practiced in two crop seasons; the autumn (last weak of May–October) and spring
(December–April), also called “Kharif” and “Rabi”, respectively. The landuse, geology,
grain sizes, slope, and flat terrain, together, make the Kosi Fan an ideal field site for
this study.

3. Material and Method
3.1. Satellite Data

We have used Sentinel-1, Sentinel-2 satellite images, and SRTM Digital Elevation
Model (DEM) to set up the machine-learning models to estimate surface roughness (Table 1).
These data are freely available; they can be downloaded from the official website of
European Space Agency (https://scihub.copernicus.eu/; accessed on 17 December 2020)
and US Geological Survey (https://earthexplorer.usgs.gov; accessed on 17 December 2020)
respectively. The European Space Agency (ESA) launched the Sentinel-1A (March 2014)
and −1B (March 2016) satellite missions under the Copernicus program.

The Sentinel-1 (1A & 1B) satellites consist of C-band SAR. They operate at a frequency
of 5.405 GHz and measure the uninterrupted backscattered signals from the earth’s surface
in all weather conditions. Depending on the soil type and moisture conditions, at this
frequency, the SAR signals can penetrate up to 5 cm of the topsoil surface [54,55]. Sentinel-1
satellites have a temporal resolution of 12 days, that jointly (1A and 1B) result in a 6-day
repeat pass over the equator [56,57]. Sentinel-1 acquires images in four different modes:
Stripmap (SM), Interferometric Wide swath (IW), Extra-Wide swath (EW), and Wave (WV).
Based on the acquisition mode, they record the signals in co-polarisation (i.e., VV) or cross-
polarisation (i.e., VH) at 10 m × 10 m cell size with 250 km swath. The incidence angle
ranges between 29◦ and 46◦ in near- and far-range, respectively [56]. For our purpose, we
have downloaded the dual polarised (VV & VH) Ground Range Detected (GRD) product
(Table 1). Finally, we processed the Sentinel-1 images using the Sentinel Application
Platform (SNAP) v8.0 Earth Observation processing tool to obtained the backscatter values
(VV and VH). The processing steps include the radiometric calibration, multi-looking
(with a multi-look factor of 6), speckle noise removal/minimising using refined Lee filter,
and terrain correction. After processing, the resulting backscatter image has the cell size
60× 60 m.

We downloaded Sentinel-2 images of level-2A processing (Table 1). These images
are atmospherically corrected for Bottom-Of-Atmosphere (BOA) [58]. Sentinel-2, mission
is a constellation of two satellites: Sentinel-2A and Sentinel-2B. They acquire images of
the earth’s surface in 13 spectral bands at different spatial resolutions (10–60 m) in the
optical region of the electromagnetic spectrum. Sentinel-2 (2A and 2B) satellites have the
temporal resolution 10 days that together result in a 5-day revisit period [59]. We used
band 4 (0.64–0.68 µm) and band 8 (0.77–0.90 µm) of Sentinel-2 to obtain the NDVI. To do
this, we subtracted band 5 from band 4 and divided it by the summation of band 4 and

https://scihub.copernicus.eu/
https://earthexplorer.usgs.gov
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band 5. The resulting NDVI image has spatial resolution 10× 10 m and its value ranges
from −1 to +1. Larger values of the NDVI represent healthy vegetation condition [60].

Table 1. Detailed specifications of Sentinel-1 and 2 images.

Sentinel-1

Date Polarization Incidence Angle
(◦)

Pixel Size
(m×m) Direction

11 December 2019 (VH, VV) 38.6 10 × 10 NE

15 December 2019 (VH, VV) 38.5 10 × 10 NW

17 December 2019 (VH, VV) 38.4 10 × 10 NE

18 December 2019 (VH, VV) 38.5 10 × 10 NE

20 December 2019 (VH, VV) 38.5 10 × 10 NW

Sentinel-2

Date Orbit number
and direction Band Wavelength

(nm)
Spatial Resolution

(m)
9 December 2019 76, Descending 4 646–685 10

9 December 2019 76, Descending 8 774–907 10

To know the elevation and topography of the study area, we used a DEM obtained
from the SRTM. This mission was launched in February 2000 in a joint venture between
NASA, the National Geospatial-Intelligence Agency, and the German and Italian Space
Agencies, with the objective to generate a high-resolution DEM of the Earth [61]. SRTM
employed two synthetic aperture radars, C (λ = 5.6 cm) and X -band system (λ = 3.1 cm).
It provides the earth surface elevation sampled over a grid of 1× 1 arc sec (30× 30 m)
and about 15 m vertical accuracy [62,63]. These data are freely available in the public
domain and can be downloaded from the official website of the US Geological Survey
(https://earthexplorer.usgs.gov/; accessed on 17 December 2020).

3.2. In-Situ Measurement

In a field campaign during 11–20 December 2019, we measured the RMS surface
roughness (s) at 78 different locations on the Kosi Fan (Figure 1). To measure surface
roughness, we designed a one-dimensional pin-profiler (Figure 2a). This is a rectangular
iron frame of length = 115 cm, width = 106 cm, and height = 105 cm. At one end along the
width, a whiteboard (width = 106 cm and height = 65 cm) is attached with the help of two
thin metal strips welded on either side to the arms of the frame. These strips have 100 holes
(each 6 mm) at a regular spacing of 1 cm. They are used to place the aluminium pins
(diameter = 5 mm and length = 60 cm) so that they can freely move vertically. The top end
of these pins is painted in red, and the other end is made flat. This helps to clearly detect
the position of pins on the board and also prevent them from pricking into the ground at
the bottom end. A metal scale is attached vertically at the margin of the whiteboard by
calibrating the instrument over a perfectly smooth surface. When this instrument is placed
on the earth surface, these pins will adjust themselves according to the surface undulation.
The amount of undulation can be measured by reading the position of each pin on the scale.

https://earthexplorer.usgs.gov/
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Figure 1. Image in the top left shows the location of the Kosi megafan in the Himalayan Foreland, India. The rectangles in
different colours represent the Sentinel-1 footprints on different dates during the field campaign. Image in the right shows
the Kosi Fan boundary and locations of in-situ measurements in the field. Circles in different colours show the measurements
locations on different dates. Grids in the bottom left illustrate the random sampling strategy for the measurements.

Camera

Profilometers
Nadir

Flight path

Sub-satellite track

SAR

Azimuth

Sl
an

t r
an

ge

Ground range

Camera

Compass

Spirit level 1 m

In-house developed

Spirit level

Spirit level

(a) (b)

Pin-profilometer

Figure 2. (a) Pin-profilometer used to measure surface roughness in the field. (b) schematic on the top right illustrates the
acquisition direction of the Sentinel-1 satellite sensor. Surface roughness is measured in the field by keeping the profile-meter
parallel to the direction of the satellite.

In the field, we used the random grid sampling approach to measure the in-situ
surface roughness. We divided the study area into several square grids of size 4 km × 4 km
each (Figure 1). The circles marked in different colors (Figure 1) represent an average
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surface roughness value from 3 to 5 sampling sites (within a pixel size of the Sentinel-1)
that are separated at least 20 m from each other. This is done to incorporate the effect of any
spatial heterogeneity (variation) present at the length scale of a two-dimensional satellite
pixel (i.e., 60 m). This minimises the measurement uncertainty and enables direct point-
to-pixel comparison for training and testing the machine learning model [64,65]. Further,
to measure surface roughness, we placed the pin-profiler at the location on the ground
where surface roughness has to be recorded. We leveled the instrument properly using
spirit levels on the two arms and on the top of the whiteboard to avoid any unintentional
tilt (Figure 2a). While conducting measurements, we ensure that the pin-profiler is placed
parallel to the acquisition direction of the Sentinel-1 satellite (Figure 2b). This ensures
that we are measuring the same surface that is illuminated and recorded by the satellite
sensors. This process ensures the qualitative measurements of surface roughness in terms
of measurement directions. We have reported the directions for all the in-situ sites in
Table A1. Once the instrument is laid over the surface, the pins are gently released until
they touch the top surface. We take photographs by keeping the camera horizontal at
the frame arm located in front of the whiteboard to capture the undulation of the pin’s
position. We record the coordinates (latitude and longitude) at each sampling location
using a Garmin-64s handheld GPS. At each sampling location, we have also measured the
surface soil moisture using TDR-Probe (Theta-Probe). Before taking the measurements, we
have calibrated the Theta-Probe (ML3 sensor) for our field using the procedure described
in Singh et al. [56].

We then process the photograph that was automatically taken to detect surface rough-
ness in MATLAB® considering the red tip of the pin as a reference (Figure 3). In doing so,
we first calibrate the image to its natural size using the scale embedded on the instrument.
We identify the red tips of the pins and digitise them. Once the photographs are processed,
we compute the RMS surface roughness according to:

s =

√
∑(xp − x)2

np − 1
(1)

where np is the number of vertical pins, xp is the recorded height of pth pin, and x is the
average height. The average values of the surface roughness and measurement directions
are listed in Table A1 (Appendix A). Additionally, based on these values, we have classi-
fied the roughness into four major classes on the Kosi fan: stubble field, harrowed field,
ploughed field, and furrow field (Figure 4).

3.3. Support Vector Regression

We use SVR algorithms to estimate soil roughness from satellite images. We pre-
ferred the interpretable regression-based machine-learning algorithms over the black-box
models [66]. In black-box machine learning models, the prediction processes are not clear,
whereas in the interpretable models, it is clear how predictions are made. Recently, the use
of interpretable models has increased in machine learning [67].

The objective of a regression-based machine learning model is to obtain mapping
functions that can predict the response variables. Parameters of such mapping func-
tions are obtained from the training data. They are the initial data used to train the
algorithms by fitting and tuning the parameters of a mapping function. This is usually
complemented by a set of unseen datasets called the testing data and used to validate
the trained machine-learning model. The SVR models are widely used to solve various
problems in earth sciences, such as real-time flood stage forecasting, snow-depth retrieval,
drought prediction, and landuse/landcover change analysis. [68–76]. The SVR has an
excellent generalisation capability with optimal accuracy that makes it applicable to the
solution of various problems in earth sciences, image processing, wireless sensor networks,
and blockchain [77–80].
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Figure 3. Surface undulation profile extracted after processing the photographs captured for the pin-profile using a digital
camera in the field.

Figure 4. Field photographs to illustrate the surface roughness conditions in different agricultural plots on the Kosi
Fan. (a) shows the photograph of a stubble field (s < 1 cm), (b) harrow field (1 cm ≤ s < 2 cm), (c) ploughed field
(2 cm ≤ s < 3.5 cm), and (d) furrow field (s ≥ 3.5 cm).

Vapnik [81] introduced the support vector machine in statistical learning theory.
Support vectors that deal with the regression are known as support vector regression [82].
A mathematical explanation of the SVR is provided below.

Given a sample set, S = [(x1,y1), (x2,y2), ..., (xi,yi), ..., (xN ,yN)], where xi is the N-
dimensional input data, yi is the corresponding output variable, and N is the total samples.
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Using SVR, we can estimate the dependent variable, y(x) for a given independent variable,
x, according to Equation (2);

y(x) = wTφ(x) + b (2)

where φ(x) is the high-dimensional feature spaces that are non-linearly mapped with
respect to the independent variable, x. The coefficients w and b are the weight vector and
bias term, respectively. The value of w and b are obtained by minimisation of the empirical
risk function R(C) according to Equation (3):

R(C) = C
1
N

N

∑
i=1

Lε(y(x), yi) +
1
2
‖ w ‖2 (3)

where Lε(y(x), yi) is the loss function (Figure 5b) given by;

Lε(y(x), yi) =

{
|y(x)− yi| − ε i f |y(x)− yi| ≥ ε

0 |y(x)− yi| < ε
(4)

ξi

ε

ε

ξi*

Support vectors

εε

ξi*ξi

(a) (b)

Non-support vector

Error-support vector

Decision boundary

Figure 5. Schematic to illustrate (a) the conceptual structure of the support vector regression, (b) the loss function.

The risk function (Equation (3)) is modified by introducing the relaxation variables ξ
and ξ∗ according to:

minimise : R(C) = C
N

∑
i=1

(ξi + ξ∗i ) +
1
2
‖ w ‖2 (5)

subject to


yi − (w.φ(xi) + b) ≤ ε + ξi

(w.φ(xi) + b)− yi ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0
i = 1, 2, ..., N

(6)

where ε is the loss factor and C is the penalty factor. To extend the SVR for non-linear
function (Figure 5a), the risk function and its constraints can be rewritten in their dual form
by introducing the dual set of variables using the Lagrange function.
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minimise : R(αi, α∗i ) =
1
2

N

∑
i=1

N

∑
i=1

(αi− α∗i )(αj− α∗j )K + ε
N

∑
i=1

(αi + α∗i )−
N

∑
i=1

yi(αi− α∗i ) (7)

subject to


∑N

i=1(αi, α∗i ) = 0
0 ≤ αi, α∗i ≤ C
i = 1, 2, ..., N

(8)

where αi and α∗i are the Lagrange multipliers and K is the kernel function given according to;

K = K(i, j) = φ(xi)
Tφ(xj) (9)

We used the Homogeneous Polynomial kernel because it is a non-stationary kernel
that is well-suited to standardised training data.

K(i, j) = γ(xi ∗ xj)
d (10)

where γ and d represent the structural parameter and degree of the Polynomial func-
tion respectively.

The final risk function for the non-linear SVR reads;

y(x) =
N

∑
i=1

(αi − α∗i )K(xi, xj) + b (11)

3.3.1. Model Setup

We setup the SVR model to estimate surface roughness. This includes feature genera-
tion from the input features, selection of training and validation data, optimisation of the
training model, and finally, model evaluation. A detailed flow chart of the model setup is
illustrated in Figure 6.

We identified five input features, namely incidence angle, backscatter values (σ0)
Sentinel-1 for both (VH and VV) polarisation, NDVI from Sentinel-2, and elevation from
the SRTM DEM. The spatial resolution of these features are different, for example; spatial
resolution of the processed backscatter value (σ0) of the Sentinel-1 image is available at
60× 60 m, NDVI at 10 m, and the surface elevation at 30 m. We applied the nearest-
neighbor algorithm to resample the NDVI and elevation grids at 60× 60 m; a grid size
comparable to the backscatter images. Finally, these input features were used to train the
model and predict surface roughness. We evaluated the in-sample error (i.e., MSE) in the
input features. They constitute an in-sample error of about 4× 10−15. Furthermore, from a
linear combination/fusion of input features, we generated two more features by taking the
ratio of VH/VV and difference of VH–VV polarisation [83]. All seven features together
reduce the in-sample error (MSE) to 1.8× 10−22.

Now, we individually evaluate the relative importance of input features through
regression tree ensemble in the prediction of surface roughness. We applied the Least-
Squares Boosting (LSBoost) ensemble aggregation method with tree learner for 100 learning
cycles to train the regression ensemble. We then calculated the predictor importance by
adding changes in the MSE (created due to a split in the tree learner) and normalised it using
the total branch nodes. The higher value of this ratio corresponds to high importance for
the ensemble. Furthermore, we estimated predictive measures of association (i.e., feature
association matrix) through Pearson’s linear correlation approach. The input features of a
machine learning model should not be highly correlated. This makes the machine learning
models unstable and highly sensitive [84].
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Figure 6. Flowchart illustrates the overall methodology used to set-up the SVR model.

We applied the Principal Component Analysis (PCA) to select the most uncorrelated
information from the feature data. We selected the first five principal components of the
feature data. This explains about 99% variance and reduces the time and space complexity
required for the training and evaluation of the model. We then standardised the features
to find the optimal scaling methods to predict surface roughness. We applied different
methods, i.e., Not Standardised (NS), Center Mean (CM), Z-score Mean (ZM), Min–Max
(MM), and Scale (S), to standardise our input features. Table 2 reports the description of
different standardisation methods.

Finally, we use the result of each standardisation method (i.e., PCA-NS-SVR, PCA-CM-
SVR, PCA-ZM-SVR, PCA-MM-SVR, and PCA-S-SVR) to train the SVR model (Figure 7).

Table 2. Different scaling methods and their descriptions.

Standardisation
Method Formulation Description

Not Standardised xs = x Same as input
Center Mean xs = x− x Features are centered with zero mean.

Z-score Mean xs =
x−x

σ

It converts the features to a common scale with zero mean and unit
standard deviation. It has same skewness and kurtosis as that of
original data.

Min-Max xs =
x−xmin

xmax−xmin

It converts the features to an identical range [0, 1]. The extreme values
has strong influence on the final output.

Scale xs =
x
σ Features are scaled by the standard deviation.

Note: xs is the standardised data, x is the original data, x is the mean of x, σ is the standard deviation of x, xmin is the minimum value of x
and xmax is the maximum value of x.
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Figure 7. SVR variants based on dimension reduction and scaling.

3.3.2. Hyperparameter Optimisation

The hyperparameters (ε and C) of the SVR model determine the predictive efficiency
and training error in the model. A condition where the overall residual is greater than ε,
the hyperparameter C penalises the model output. A lower value of C results in compu-
tational complexity and a higher value of C in model under-fitting. To overcome these
problems, we use the universal grid search algorithm to optimise the hyperparameter (C)
by keeping the ε fixed in the SVR model. The Gird search algorithm needs an objective func-
tion to estimate the optimal value of the hyperparameter. In a regression model, the MSE is
the most commonly used objective function [85]. The objective function (MSE) reads;

1
n

n

∑
i=1

(Yi − Ŷi)
2 (12)

where n is the size of testing samples, Yi is the observed values, Ŷi is the predicted values.
The grid search algorithm minimises the objective function to find the optimal value of C.
Table 3 reports the optimal values of hyperparameters.

Table 3. Simulation parameters of the SVR model.

Parameters Values

Penalty factor (C) 0.1–0.5
Epsilon (ε) 0.1
Kernel Homogeneous Polynomial
Polynomial degree (d) 1
Gamma (γ) 1

4. Result
4.1. Feature Importance

The bar plot (Figure 8a) shows relative importance of our input features. A feature
that has higher relative importance score is considered more important in the model for
predicting surface roughness.
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(a) (b)

Figure 8. (a) Bar plot illustrates the relative feature importance score of the input features, (b) feature association matrix.

Among all the input features we used for training SVR models, the incidence angle
has the lowest, and DEM has the highest feature importance score. This indicates incidence
angle has less impact, and DEM has more impact in predicting the surface soil roughness.
Additional features (VH/VV and VH–VV) generated from the linear data fusion have
more importance than the native features. It is important to highlight that the feature
importance only calculates the relative importance, without the segregation of irrelevant
and relevant features [86]. It is a common practice in machine learning to eliminate noisy,
redundant, and irrelevant features, as they can reduce the prediction accuracy and increase
the computational cost.

We applied the backward elimination to identify the irrelevant features in our
model [87–91]. It is an iterative approach that eliminates the least important features
and re-calculates the model loss (i.e., MSE) in each iteration. If the model loss for a feature
decreases, we consider that feature irrelevant and eliminate it from the computation. This
process continues until the model loss is constant. Alternatively, if the model loss increases,
that feature is relevant and the process is terminated. As the incidence angle has the least
feature importance score, we eliminated it using the backward elimination approach and
re-calculated the model loss. We observed that, after the elimination of incidence angle, the
model loss increased (MSE = 7.9× 10−16). This indicates that the incidence angle is not an
irrelevant feature in the prediction of soil roughness. Similarly, the elimination of other
features degrades the result. This suggests that all seven features are relevant in predicting
surface soil roughness. Among them, DEM is the most important. Figure 8b shows the
Pearson correlations of the features. All the input features are uncorrelated, which suggests
the good reliability of our model.

4.2. Feature Sensitivity

Feature importance does not examine if a feature is positively or negatively affecting
the models. To evaluate this, we performed a sensitivity analysis of our features when
predicting the surface roughness. We generated the Partial Dependence Plot (PDP) [92]
of each feature with their corresponding histogram (Figure 9). PDP measures the average
marginal effect of all features on the predicted variable. The PDP of DEM shows a high
partial dependency for surface roughness (Figure 9). The incidence angle and DEM are
positive, whereas the NDVI has a negative effect on the surface roughness. The backscatter
values (σ0) for VV and VH/VV have a fluctuating positive, and VH–VV has a fluctuating
negative effect. We did not observe any clear trend for VH.



Remote Sens. 2021, 13, 3794 14 of 27

1

2

3

4

01
0

2
0

1

2

3

4

01
0

2
0

0 0.01 0.02 0.03 0.04 0.05
0

20

40

0 0.1 0.2 0.3 0.4
0

20

40

0.05 0.1 0.15 0.2 0.25 0.3
0

10

20

30

-0.3 -0.25 -0.2 -0.15 -0.1 -0.05
0

10

20

30 35 40 45
0

10

20

0 0.2 0.4 0.6
0

20

40

30 40 50 60 70
0

10

20

Figure 9. PDP and ICE plot to show the sensitivity of different input features (i.e.; (a) VH, (b) VV, (c) VH/VV, (d) VH–VV,
(e) incidence angle, (f) NDVI, and (g) DEM) on surface roughness. Curves in red and gray illustrate the PDP and
ICE respectively. The corresponding histograms illustrate the probability distribution of the individual features and
surface roughness.

Furthermore, to explore the localised explanation of individual features at each in-
stance, we plotted the Individual Conditional Expectation (ICE) in the same plot [93]. This
is considered a non-linear sensitivity analysis that disaggregates the averaging effects and
evaluates the model at each instance. The average of all the ICE lines provides the PDP
plot [94–96]. The averaging effect of PDP conceals any heterogeneous relationship present
at any particular instance. For example, some instances in the ICE of DEM (between 50
and 55 m) behave differently compared to the majority instances (i.e., PDP).

4.3. Surface Roughness

We used the different variants of our SVR model to estimate surface roughness and
compared the result with the ground measurement. We plot the model surface roughness
against the in-situ values (Figure 10). We observed that the PCA-MM-SVR outperforms all
other variants of SVR, with R = 0.75 and RMSE = 0.19 cm (Figure 10). The predicted surface
roughness from PCA-MM-SVR accord well with the in-situ values. All the datapoints
are clustered around the 1:1 line. The result of PCA-CM-SVR also compares well with
the ground measurement. This ranks second-best in predicting the surface roughness
with R = 0.70 and RMSE = 0.25 cm. The non-standardise version of SVR (PCA-NS-SVR)
poorly performs with R = 0.50 and RMSE = 0.44 cm. This is primarily because PCA-NS-
SVR underestimates the surface roughness value, and the datapoints are non-uniformly
distributed on a 1:1 line with large scattering. This indicates bias in the prediction.



Remote Sens. 2021, 13, 3794 15 of 27

0 0.5 1 1.5 2 2.5 3 3.5
In-situ Surface Roughness [cm]

0

0.5

1

1.5

2

2.5

3

3.5
Pr

ed
ic

te
d
 S

u
rf

ac
e 

R
ou

g
h
n
es

s 
[c

m
] PCA-NS-SVR (R=0.50, RMSE=0.44)

PCA-CM-SVR (R=0.70, RMSE=0.25)
PCA-ZM-SVR (R=0.67, RMSE=0.22)
PCA-MM-SVR (R=0.75, RMSE=0.19)
PCA-S-SVR (R=0.65, RMSE=0.26)

N=33

Figure 10. Predicted surface roughness against the in-situ measurement. Symbols in different colours and shape illustrate
the different variants of SVR models used for the prediction.

5. Discussion
5.1. Comparison with the Benchmark Machine Learning Models

Our results show that the PCA-MM-SVR predicts surface soil roughness more accu-
rately compared to the other variants of SVR models. However, any conclusion based solely
on a comparison of the different variants of the same machine-learning model may lead
to a biased result. To overcome this, we compare the performance of the SVR model with
the benchmark machine-learning algorithms (i.e., GPR, GRNN, BDT, Bragging Ensemble
Learning, and Boosting Ensemble Learning). Apart from these benchmark algorithms,
we also compared the performance of the SVR models with the recently emerged auto-
mated machine learning (AutoML) algorithms [97]. An AutoML module is embedded
in MATLAB® and can be accessed through fitrauto library. It automatically selects the
regression model (i.e., SVR, GPR, linear regression, BDT, and ensemble learning) with
optimised hyperparameters. This uses Bayesian optimisation to iteratively tune the model
through parallel computing by assuming log(1 + MSE) as an objective function.

In machine learning, it is customary to use R and RMSE values to evaluate the model
performance. These metrics are suitable for estimating the accuracy of a single model,
but not for comparing the performance of different machine-learning models [98–100].
To ensure a fair evaluation, we use performance metrics such as: Akaike’s Information
Criterion (AIC), corrected AIC (AICc), and Bayesian Information Criterion (BIC) [101]
(Appendix B). These metrics penalise the model for a higher number of model parameters
to select the best model [102,103]. The model with a lower value of AIC, AICc, and BIC
is preferred.

Table 4 reports the performance of other machine learning models, evaluated using
the same training and testing datasets. The SVR performs relatively well compared to
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the other machine-learning models. The PCA-MM-SVR exhibits the lowest values of
AIC, and BIC amongst all other methods; this indicates the best goodness-of-fit. We also
evaluate the model performance in terms of computational time complexity (using CPU @
3.3 GHz, 10 cores). We observed that the computational time complexity of PCA-MM-SVR
is optimal. The time complexity of the non-standardised variant of SVR (i.e., PCA-NS-SVR)
is relatively high.

Table 4. Comparison of SVR model with the benchmark machine-learning algorithms.

Methods Parameters
R RMSE (cm) MSE (cm2) AIC AICc BIC Time (s)

SVR

PCA-NS-SVR 0.50 0.44 0.19 −87.01 −39.42 −83.39 0.95

PCA-CM-SVR 0.70 0.25 0.06 −138.53 −90.95 −134.92 0.26

PCA-ZM-SVR 0.67 0.22 0.05 −147.12 −99.53 −143.51 0.12

PCA-MM-SVR 0.75 * 0.19 * 0.04 * −160.32 * −112.74 −156.71 * 0.08 *

PCA-S-SVR 0.65 0.26 0.07 −133.70 −86.14 −130.09 0.18

GPR

PCA-NS-GPR 0.30 0.21 0.04 −152.97 −105.38 −149.35 1.09

PCA-CM-GPR 0.23 0.24 0.06 −139.93 −92.35 −136.32 0.25

PCA-ZM-GPR 0.44 0.32 0.10 −116.37 −68.78 −112.75 0.16

PCA-MM-GPR 0.29 0.24 0.06 −140.10 −92.51 −136.48 0.11

PCA-S-GPR 0.46 0.27 0.07 −131.36 −83.77 −127.75 0.30

GRNN

PCA-NS-GRNN 0.11 0.63 0.40 752.17 −113.76 1483.87 1.68

PCA-CM-GRNN 0.25 0.55 0.31 740.11 −125.82 1471.81 0.36

PCA-ZM-GRNN 0.51 0.28 0.08 680.14 −185.80 1411.84 0.23

PCA-MM-GRNN 0.67 0.04 0.00 509.29 −356.65 * 1241.00 0.17

PCA-S-GRNN 0.51 0.21 0.05 653.93 −212.01 1385.63 0.45

BDT

PCA-NS-BDT 0.22 0.54 0.29 −65.80 −17.80 −60.38 1.09

PCA-CM-BDT 0.41 0.54 0.29 −65.95 −17.95 −60.53 0.19

PCA-ZM-BDT 0.36 0.55 0.30 −64.95 −16.95 −59.53 0.10

PCA-MM-BDT 0.19 0.61 0.37 −55.17 −7.17 −49.75 0.08

PCA-S-BDT 0.24 0.53 0.28 −67.32 −19.32 −61.90 0.26
Bagging EL

(Random Forest)

PCA-NS-BAGG 0.44 0.24 0.06 55.36 −263.51 245.06 3.07

PCA-CM-BAGG 0.56 0.24 0.06 65.61 −253.27 255.31 1.16

PCA-ZM-BAGG 0.58 0.24 0.06 63.44 −255.43 253.14 0.82

PCA-MM-BAGG 0.50 0.22 0.05 55.36 −263.51 245.06 0.71

PCA-S-BAGG 0.46 0.20 0.04 46.46 −272.41 236.16 1.05
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Table 4. Cont.

Methods Parameters
R RMSE (cm) MSE (cm2) AIC AICc BIC Time (s)

Boosting EL
(LSBoost)

PCA-NS-BOOST 0.31 0.69 0.47 160.17 −158.70 349.87 1.48

PCA-CM-BOOST 0.38 0.61 0.37 148.03 −170.83 337.73 0.54

PCA-ZM-BOOST 0.50 0.57 0.32 142.60 −176.26 332.30 0.38

PCA-MM-BOOST 0.20 0.65 0.42 154.23 −164.65 343.93 0.36

PCA-S-BOOST 0.36 0.60 0.36 146.92 −171.95 336.61 0.51

AutoML

PCA-NS-AutoML 0.44 0.19 0.04 284.17 −232.59 690.68 5.82

PCA-CM-AutoML 0.59 0.21 0.04 292.12 −224.64 698.62 3.98

PCA-ZM-AutoML 0.59 0.20 0.04 291.05 −225.70 697.55 3.87

PCA-MM-AutoML 0.32 0.21 0.05 337.79 −220.62 784.04 3.79

PCA-S-AutoML 0.38 0.20 0.04 288.57 −228.18 695.07 4.32

Note: The values marked in blue and red represent the best and worst for each column. Values marked in asterisk represent the global best.

Other than SVR, the GRNN performs well and ranks second in terms of performance
evaluation. In GRNN, the mix–max scaling variant (i.e., PCA-MM-GRNN) performs better
(R = 0.67, RMSE = 0.04 cm, AIC = 509.3, AICc =−356.7, and BIC = 1241). This model is com-
putationally more efficient than its other variants. Among the AutoML variants, we found
that PCA-ZM-AutoML ranks third in terms of performance evaluation by outperforming
all other variants, with R = 0.59, RMSE = 0.20 cm, AIC = 291.05, AICc = −225.70, and
BIC = 784.04. We observed that the time complexity of mix–max and non-standardised scal-
ing variant behave in a similar way for all the machine-learning models. The performance
of mix–max scaling is the best in terms of computational time complexity and relatively
low for the non-standardised scaling.

5.2. Comparison with Backscatter Models

We also compared the PCA-MM-SVR model’s result with the different empirical,
semi-empirical backscatter, and regression models. We applied modified Dubois, modified
Oh 2002, and modified Oh 2004 models [28–30] to estimate the surface roughness of the
Kosi Fan from dual polarised Sentinel-1 images [56,104,105]. We inverted these models
to obtain surface roughness from single co-polarised (i.e., VV) and single cross-polarised
images (i.e., VH), and in-situ soil moisture. The inversion of different backscatter models
is explained in Appendix C. Surface roughness can be estimated from SAR images by
using calibrated regression curves. For example, Srivastava et al. [43] have proposed that
the empirical coefficients of the linear regression model retrieve surface roughness for
the Indian soils from the multi-polarized Envisat-1 ASAR images. We use this regression
model to estimate the surface soil roughness of the Kosi Fan.

The surface roughness from backscatter and regression models is subjected to system-
atic errors and model biases. To obtain a fair comparison between the SVR, backscatter,
and regression models, we use un-bias RMSE (ubRMSE) instead of RMSE. Table 5 reports a
comparison of modelled surface roughness with the ground measurements.
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Table 5. Comparison of soil moisture estimated from SVR with the result of different backscatter and empirical regres-
sion models.

Parameters Methods
Modified Dubois Modified Oh, 2002 Modified Oh, 2004 Srivastava, 2008 PCA-MM-SVR

R 0.34 0.08 0.07 0.11 0.75
ubRMSE (cm) 1.25 0.86 1.35 0.07 0.08

MSE (cm2) 0.60 0.31 1.23 0.23 0.04

Among all the models discussed above, the PCA-MM-SVR machine learning performs
better (R = 0.75, ubRMSE = 0.08 cm, and MSE = 0.04 cm2). The accuracy of SVR is relatively
high compared to the backscatter and regression models. This is probably because the SVR
considers a higher number of input features to predict the soil roughness as compared to
the backscatter and regression-based models.

5.3. Surface Roughness of the Kosi Fan

Finally, we used the PCA-MM-SVR model to predict the surface roughness of the
Kosi Fan for two consecutive satellite passes (11–12 and 17–18 December 2019) of the
Sentinel-1. Figure 11 shows the spatial and temporal variation in surface roughness and its
anomaly on the Kosi Fan Surface. The time difference between the two consecutive passes
of Sentinel-1 A and B satellites is six days; we do not expect much change in the surface
roughness. This is clearly reflected by the cross-section profiles drawn at a common region
of the surface roughness maps of two different dates (Figure 11). We observed the negative
surface roughness anomalies where surface roughness values were less than 1.5 cm and
positive anomalies where the surface roughness values were greater than 1.5 cm.

Interestingly, we observed some spatial patterns in the surface roughness of the Kosi
Fan. Visually, it appears that the surface roughness is high near the apex of the fan and
decreases towards the toe. Based on the elevation variation, we categorised the fan surface
into proximal (110–70 m) , middle (70–50 m), and distal (50–30 m) part. We drew the surface
roughness profile along a longitudinal transect from the apex to the fan toe (Figure 12). We
can clearly see that the surface decreases non-linearly (approximated using a nonlinear
second-order polynomial equation) along the transect. The histogram of surface roughness
in the proximal, middle, and distal parts appears to be normally distributed. We found a
mild decrease in the average surface roughness from the proximal (1.7± 0.5 cm), middle
(1.2± 0.3 cm), to the distal (0.9± 0.2 cm) part of the Kosi Fan. This is consistent with
the values measured in the field. Further, it is important to note, on the Kosi fan, that
the elevation (110–30 m) and median grain size (300–100 µm) gradually decreases from
the proximal to distal part. This indicates a possible control of the grain size of the soil
sediments and elevation on the surface roughness.

Further, we observed that the dependency of the surface soil roughness on different
features is highly dynamic and unclear. We observed no clear trend between the surface
soil roughness and the features (Figure 9). However, an overall trend (or impact) is visible,
with few features. For example, we observed a positive impact of DEM and incidence
angle with the surface soil roughness. This observations are in consistent with the recent
studies [40,106].

5.4. Sensitivity Analysis

Finally, we performed a sensitivity analysis of the PCA-MM-SVR machine learning
model to assess the impact of individual features on the surface soil roughness. At every
iteration, we estimated surface roughness by introducing a small uncertainty (±5% and
±10%) in any one input feature at a particular time and keeping the remaining features
constant. This was carried out for all the input features and the results were compared. We
observed that an introduction of ±10% errors in the input features of the PCA-MM-SVR
model resulted in an approximately ±1% change in the output (Figure 13).
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Figure 11. Spatial distribution of surface roughness predicted from PCA-MM-SVR (top) and the corresponding anomaly
(bottom). The anomaly is calculated by subtracting the surface roughness at each pixel with the mean surface roughness
value of the entire fan. The pixels in white represent invalid regions.
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Figure 12. Surface roughness variation from the proximal to distal part of the Kosi fan. The graph in the bottom right
illustrates the surface roughness against the distance from fan apex to the toe. Histograms show the corresponding
distribution of surface roughness in the proximal, middle and distal parts of the Kosi Fan.
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Figure 13. Heat map illustrates the the sensitivity of the PCA-MM-SVR model for +5%, −5%, +10%,
and −10% uncertainty in the input features.

6. Conclusions

We compared the accuracy of surface roughness estimated from SVR models with
six different benchmark machine-learning algorithms (i.e., GPR, GRNN, BDT, BAGG,
BOOST, and AutoML) and three backscatter models (modified Dubois, modified Oh 2002,
and modified Oh 2004). We conclude that the PCA-MM-SVR model outperforms all the
different variants of SVR, different benchmark machine learning, backscatter, and empirical
regression models in terms of accuracy and computational time complexity. The PCA-MM-
SVR model is relatively more sensitive to uncertainly in the VV polarisation as compared
to the other input features. On the Kosi Fan, the surface roughness appears to be more in
the proximal and decreases gradually towards the distal part of the fan. Although it is not
clear at this stage, we suspect that this could be associated with the elevation (110–30 m)
and median grain size variation (300–100 µm) from proximal to the distal part of the fan.

This study provides a robust approach to estimate surface soil roughness from optical
and SAR remote-sensing data. A comprehensive work using multiple SAR sensor data
fusion may be examined in the future to assess the prediction of surface roughness using
different machine-learning models. The result of this study can be used in various appli-
cations, such as: to study soil erosion, surface soil moisture, infiltration, overland flow,
sediment detachment, and many other applications in earth sciences.
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Appendix A

Surface roughness measurements on the Kosi Fan (Table A1).

Table A1. Details of the ground condition and surface roughness measured in the field.

Site ID Longitude Latitude Date
(dd-mm-yyyy)

Mission
Identifier

Surface Roughness
(cm) Lobe Direction Soil Temperature

(◦C) Landuse Training/
Testing

01 86.63923 26.13257 11 December 2019 S1A 2.4029 I NE 21 Uncultivated bare land (Ploughed) Training
02 86.64361 26.10979 11 December 2019 S1A 1.2736 I NE 22 Uncultivated bare land (Harrowed) Training
03 86.62364 26.09691 11 December 2019 S1A 2.4072 I SW 20 Uncultivated bare land (Ploughed) Training
04 86.62604 26.0954 11 December 2019 S1A 1.5181 I NE 16 Uncultivated bare land (Harrowed) Training
05 86.62061 26.0632 11 December 2019 S1A 3.0288 I NE 16 Uncultivated bare land (Ploughed) Training
06 86.566 26.0243 11 December 2019 S1A 1.5175 I NE 18 Uncultivated bare land (Harrowed) Training
07 86.57533 25.97547 11 December 2019 S1A 1.1172 I NE 19 Uncultivated bare land (Harrowed) Training
08 86.64431 25.99772 11 December 2019 S1A 1.9886 I NE 23 Harrowed + wheat sowed Training
09 86.64072 26.03379 11 December 2019 S1A 1.3282 I SW 24 Uncultivated bare land (Harrowed) Training
10 86.62675 26.15357 11 December 2019 S1A 3.7350 I SW 17 Furrow field Training
11 86.66584 26.19629 11 December 2019 S1A 3.8858 I NE 19 Furrow field Training
12 86.6998 26.21087 11 December 2019 S1A 1.9685 I NE 20 Uncultivated bare land (Harrowed) Training
13 86.73994 26.22444 11 December 2019 S1A 1.7677 I NE 20 Harrowed + wheat sowed Training
14 86.75186 26.23693 11 December 2019 S1A 1.8670 I NE 21 Uncultivated bare land (Harrowed) Training
15 86.78488 26.24503 11 December 2019 S1A 2.2774 I NE 19 Uncultivated bare land (Ploughed) Training
16 86.79723 26.26185 11 December 2019 S1A 2.5599 I SW 20 Uncultivated bare land (Ploughed) Training
17 86.80273 26.2389 11 December 2019 S1A 1.4094 I NE 21 Uncultivated bare land (Harrowed) Training
18 86.79795 26.20753 11 December 2019 S1A 3.6128 I SW 20 Furrow field Training
19 86.79031 26.18241 11 December 2019 S1A 3.7361 I NE 20 Furrow field Training
20 86.76803 26.1514 11 December 2019 S1A 2.3002 I NE 20 Uncultivated bare land (Ploughed) Training
21 86.65507 26.11443 11 December 2019 S1A 1.2325 I NE 18 Harrowed + wheat sowed Training
22 86.70612 26.06255 11 December 2019 S1A 1.1504 I NE 21 Harrowed + wheat sowed Training
23 86.73248 26.04625 11 December 2019 S1A 0.6181 I NE 21 Direct stubble seeding Training
24 86.71229 26.03606 11 December 2019 S1A 1.0680 I NE 20 Uncultivated bare land (Harrowed) Training
25 86.75741 26.02952 11 December 2019 S1A 3.3369 I NE 20 Uncultivated bare land (Ploughed) Training
26 86.75144 25.91161 11 December 2019 S1A 1.6568 I NE 20 Uncultivated bare land (Harrowed) Training
27 86.66203 25.86703 15 December 2019 S1A 1.0155 I SE 18 Uncultivated bare land (Harrowed) Training
28 86.68053 25.82926 15 December 2019 S1A 1.1016 I SE 18 Uncultivated bare land (Harrowed) Training
29 86.68639 25.78836 15 December 2019 S1A 1.9144 I NW 18 Uncultivated bare land (Harrowed) Training
30 86.6876 25.74611 15 December 2019 S1A 1.3448 II NW 19 Harrowed + maize sowed Training
31 86.71125 25.6878 15 December 2019 S1A 1.0688 II NW 18 Uncultivated bare land (Harrowed) Training
32 86.69384 25.70237 15 December 2019 S1A 2.2058 I NW 21 Ploughed + wheat sowed Training
33 86.65567 25.72331 15 December 2019 S1A 2.1397 I NW 20 Uncultivated bare land (Ploughed) Training
34 86.80625 25.91648 15 December 2019 S1A 1.4551 II NW 18 Harrowed + wheat sowed Training
35 86.93388 25.89581 15 December 2019 S1A 1.8875 II NW 17 Harrowed + maize sowed Training
36 87.00225 25.90533 15 December 2019 S1A 2.4824 II NW 20 Uncultivated bare land (Ploughed) Training
37 87.06107 25.90827 15 December 2019 S1A 1.2896 II SE 20 Uncultivated bare land (Harrowed) Training
38 87.09836 25.92137 15 December 2019 S1A 1.7548 II SE 22 Uncultivated bare land (Harrowed) Training
39 87.21534 25.88781 15 December 2019 S1A 1.7604 II SE 22 Uncultivated bare land (Harrowed) Training
40 86.6099 25.72783 17 December 2019 S1B 2.3510 I NW 20 Uncultivated bare land (Ploughed) Training
41 86.57812 25.7314 17 December 2019 S1B 0.9426 I NW 21 Direct stubble seeding Training
42 86.54615 25.77154 17 December 2019 S1B 1.2406 I NW 20 Uncultivated bare land (Harrowed) Training
43 86.52457 25.80515 17 December 2019 S1B 1.4675 I NW 20 Uncultivated bare land (Harrowed) Training
44 86.53774 25.85775 17 December 2019 S1B 2.1787 I SE 19 Uncultivated bare land (Ploughed) Training
45 86.56369 25.8713 17 December 2019 S1B 1.8584 I NW 20 Uncultivated bare land (Harrowed) Training
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Table A1. Cont.

Site ID Longitude Latitude Date
(dd-mm-yyyy)

Mission
Identifier

Surface Roughness
(cm) Lobe Direction Soil Temperature

(◦C) Landuse Training/
Testing

46 87.46254 25.72741 17 December 2019 S1B 0.8180 III NE 17 Direct stubble seeding Testing
47 87.42014 25.6838 17 December 2019 S1B 0.8593 III NE 17 Direct stubble seeding Testing
48 87.39914 25.64069 17 December 2019 S1B 1.2080 III SW 18 Uncultivated bare land (Harrowed) Testing
49 87.39871 25.60628 17 December 2019 S1B 1.4618 III NE 21 Uncultivated bare land (Harrowed) Testing
50 87.42513 25.61369 17 December 2019 S1B 1.3488 III NE 21 Uncultivated bare land (Harrowed) Testing
51 87.034 26.29657 17 December 2019 S1B 2.1895 II NE 15 Uncultivated bare land (Ploughed) Testing
52 87.475 25.60035 18 December 2019 S1A 1.0862 III SW 20 Uncultivated bare land (Harrowed) Testing
53 87.48171 25.59672 18 December 2019 S1A 1.1235 III SW 22 Uncultivated bare land (Harrowed) Testing
54 87.55177 25.60905 18 December 2019 S1A 1.0174 III SW 20 Uncultivated bare land (Harrowed) Testing
55 87.54285 25.62759 18 December 2019 S1A 0.9566 III SW 21 Direct stubble seeding Testing
56 87.53111 25.65317 18 December 2019 S1A 1.0716 III NE 22 Uncultivated bare land (Harrowed) Testing
57 87.52139 25.67509 18 December 2019 S1A 1.0026 III SW 21 Uncultivated bare land (Harrowed) Testing
58 87.51138 25.70004 18 December 2019 S1A 2.0085 III SW 21 Uncultivated bare land (Ploughed) Testing
59 87.51614 25.81319 18 December 2019 S1A 2.0704 III NE 17 Uncultivated bare land (Ploughed) Testing
60 87.52789 25.82046 18 December 2019 S1A 1.9143 III SW 17 Uncultivated bare land (Harrowed) Testing
61 87.54014 25.91021 18 December 2019 S1A 1.9034 III NE 18 Uncultivated bare land (Harrowed) Testing
62 87.51805 25.99278 18 December 2019 S1A 1.9106 III SW 18 Uncultivated bare land (Harrowed) Testing
63 87.50936 26.00962 18 December 2019 S1A 1.1215 III SW 18 Uncultivated bare land (Harrowed) Testing
64 87.46062 26.12101 18 December 2019 S1A 1.5554 III SW 19 Uncultivated bare land (Harrowed) Testing
65 87.29737 26.22082 18 December 2019 S1A 1.9698 III SW 17 Uncultivated bare land (Harrowed) Testing
66 87.27813 26.24172 18 December 2019 S1A 2.2836 III SW 18 Uncultivated bare land (Ploughed) Testing
67 87.23487 26.27511 18 December 2019 S1A 2.2357 III SW 19 Uncultivated bare land (Ploughed) Testing
68 87.2269 26.24339 18 December 2019 S1A 1.5040 III SW 20 Uncultivated bare land (Harrowed) Testing
69 87.2321 26.20331 18 December 2019 S1A 2.2703 III SW 18 Uncultivated bare land (Ploughed) Testing
70 87.23437 26.17834 18 December 2019 S1A 2.0355 III NE 19 Ploughed + wheat sowed Testing
71 87.23401 26.13083 18 December 2019 S1A 1.0870 III NE 18 Harrowed + wheat sowed Testing
72 87.25929 26.01328 18 December 2019 S1A 1.7560 II SW 18 Uncultivated bare land (Harrowed) Testing
73 87.30746 25.93218 18 December 2019 S1A 1.1182 III NE 17 Harrowed + maize sowed Testing
74 87.20622 26.326 18 December 2019 S1A 2.2675 III SW 15 Uncultivated bare land (Ploughed) Testing
75 87.00787 26.17258 20 December 2019 S1A 2.8180 II NE 16 Uncultivated bare land (Ploughed) Testing
76 86.99307 26.05495 20 December 2019 S1A 2.0213 II NE 17 Uncultivated bare land (Ploughed) Testing
77 86.97813 25.77722 20 December 2019 S1A 1.7262 II SW 18 Uncultivated bare land (Harrowed) Testing
78 86.96597 25.71033 20 December 2019 S1A 1.3681 II NE 18 Uncultivated bare land (Harrowed) Testing
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Appendix B

The performance metrics are estimated according to;

R =

√
1− SSE

SST
(A1)

SSE = ∑(yobs − ysat)
2 (A2)

SST = ∑(yobs − ȳobs)
2 (A3)

RMSE =
√

MSE =

√
1
n ∑(ysat − yobs)2 (A4)

where, SSE is the sum of squares of errors, SST is the sum of squares of total, yobs is the
observed or in-situ values, and ysat is the satellite derived or predicted values.

AIC = ntrain · ln
(

SSE
ntrain

)
+ 2 · p (A5)

BIC = ntrain · ln
(

SSE
ntrain

)
+ p · ln (ntrain) (A6)

AICc = ntrain · ln
(

SSE
ntrain

)
+

(ntrain + p)(
1− (p+2)

ntrain

) (A7)

where ntrain is the number of training samples and p is the number of parameters that the
machine learning model evaluates internally.

Appendix C

Equation (A8) proposed by Dubois et al. [28] can be inverted according to (Equation (A9))
to estimate surface soil roughness (s).

VV = 10−2.35 ·
(

cos3θ

sin3θ

)
· 100.046·ε·tanθ · (k · s · sinθ)1.1 · λ0.7 (A8)

s =
1

k · Sinθ

{
VV·Sin3θ

λ0.7 · 10−2.35 · Cos3θ · 100.046·ε·tanθ

}0.9090

(A9)

where λ, θ, k, and ε are the wavelength, incidence angle, wave number, and soil permitivity
respectively.

Equation (A10) proposed by Oh et al. [29] can be inverted according to (Equation (A11))
to estimate soil surface roughness.

VH = 0.11 ·m0.7
v · (Cosθ)2.2 ·

[
1− e0.32(k·s)1.8

]
(A10)

s =

{
−1
0.32 ln

[
1− VH

0.11·m0.7
v ·(cosθ)2.2

]}0.555

k
(A11)

where mv is the measured volumetric surface soil moisture (in-situ).
Equation (A12) proposed by Oh [30] can be inverted according to (Equation (A13)) to

estimate surface roughness:

q =
VH
VV

= 0.095 · (0.13 + sin1.5θ)1.4
(

1− e−1.3(k·s)0.9
)

(A12)
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s =

{
−1
1.3 ln

[
1− q

0.095·(0.13+sin1.5θ)1.4

]}1.111

k
(A13)

Linear regression model proposed by Srivastava et al. [43] can be used to estimate
surface soil roughness.

s = A + B · [VH −−VV] (A14)

where A and B are the empirical constants.
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