
remote sensing  

Article

Using Convolutional Neural Networks for Detection and
Morphometric Analysis of Carolina Bays from Publicly
Available Digital Elevation Models

Mark A. Lundine * and Arthur C. Trembanis

����������
�������

Citation: Lundine, M.A.;

Trembanis, A.C. Using Convolutional

Neural Networks for Detection and

Morphometric Analysis of Carolina

Bays from Publicly Available Digital

Elevation Models. Remote Sens. 2021,

13, 3770. https://doi.org/10.3390/

rs13183770

Academic Editors: Rafael Almar,

Dennis Wilson and Jean-Marc Delvit

Received: 29 August 2021

Accepted: 16 September 2021

Published: 20 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Marine Science and Policy, University of Delaware, Lewes, DE 19958, USA; art@udel.edu
* Correspondence: mlundine@udel.edu

Abstract: Carolina Bays are oriented and sandy-rimmed depressions that are ubiquitous throughout
the Atlantic Coastal Plain (ACP). Their origin has been a highly debated topic since the 1800s and
remains unsolved. Past population estimates of Carolina Bays have varied vastly, ranging between
as few as 10,000 to as many as 500,000. With such a large uncertainty around the actual population
size, mapping these enigmatic features is a problem that requires an automated detection scheme.
Using publicly available LiDAR-derived digital elevation models (DEMs) of the ACP as training
images, various types of convolutional neural networks (CNNs) were trained to detect Carolina
bays. The detection results were assessed for accuracy and scalability, as well as analyzed for various
morphologic, land-use and land cover, and hydrologic characteristics. Overall, the detector found
over 23,000 Carolina Bays from southern New Jersey to northern Florida, with highest densities
along interfluves. Carolina Bays in Delmarva were found to be smaller and shallower than Bays
in the southeastern ACP. At least a third of Carolina Bays have been converted to agricultural
lands and almost half of all Carolina Bays are forested. Few Carolina Bays are classified as open
water basins, yet almost all of the detected Bays were within 2 km of a water body. In addition,
field investigations based upon detection results were performed to describe the sedimentology
of Carolina Bays. Sedimentological investigations showed that Bays typically have 1.5 m to 2.5 m
thick sand rims that show a gradient in texture, with coarser sand at the bottom and finer sand
and silt towards the top. Their basins were found to be 0.5 m to 2 m thick and showed a mix
of clayey, silty, and sandy deposits. Last, the results compiled during this study were compared
to similar depressional features (i.e., playa-lunette systems) to pinpoint any similarities in origin
processes. Altogether, this study shows that CNNs are valuable tools for automated geomorphic
feature detection and can lead to new insights when coupled with various forms of remotely sensed
and field-based datasets.

Keywords: Faster R-CNN; Mask R-CNN; object detection; Atlantic Coastal Plain; k-means classifier;
multi-scale detection; digital elevation model

1. Introduction
1.1. Past Studies on Carolina Bays

Carolina Bays are enigmatic and widespread geomorphic features with an unknown
origin. They are round, shallow, and sandy-rimmed depressions with muddy interiors,
with their major axes typically oriented northwest to southeast (see Figure 1). They span
the Atlantic Coastal Plain (ACP) from southern New Jersey to southern Georgia. The Bays
commonly house lakes, ponds, or ephemeral wetlands, while a significant number of Bays
have been naturally or artificially drained, the latter mainly for agricultural use. Their
origin is highly debated, with many unconfirmed hypotheses. Many [1–6] have argued,
without substantial evidence, that they are meteoritic, comet, or glacial ice impact craters,
while others [7–17] have tried to explain their origin using slower geological processes
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tied to wind, waves, burning peat, and groundwater processes. Sediments collected from
Carolina Bays have returned ages ranging from over 100,000 years old to within the last
5000 years, indicating that these features have undergone numerous stages of genesis and
modification [12,13,15,17–25]. The exact details of their dynamics, however, remain unclear.
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portions of Carolina Bays were then extrapolated to all the other counties in South Caro-
lina, and then extrapolated further to an area covering most of the southeastern ACP. 
There are two main problems with this method: it assumes that the USGS topographic 
maps reflect the complete topography of the ACP, capturing every possible Carolina Bay, 
and it also assumes that the Carolina Bay size and geographic distribution is the same in 
all regions Carolina Bays are found. In the study that determined the count estimate for 
Bays in Delmarva, Bays were annotated with a point in bare-earth LiDAR digital elevation 
models (DEMs). This method is far more accurate in counting Carolina Bays (LiDAR de-
rived DEMs typically have resolutions of 10 m, sometimes as fine as 1 m), but incredibly 
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1.3. Traditional Computer Vision, Pixel-Based Classification, and Object Detection 
With such a large population size spanning the entire ACP, and with such uncer-
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requires an automated detection scheme. When developing a detector, two important in-
itial questions must be answered: what kind of detector should it be, and what data will 
the detector run on? 

Figure 1. (a) Jones Lake, a Carolina Bay in North Carolina. (b) A flooded Carolina Bay in Delaware.
(c) A Carolina Bay in Delaware with bald cypress trees. (d) LiDAR DEM of Carolina Bays on the
eastern shore of Virginia. (e) LiDAR DEM of Carolina Bays in North Carolina.

1.2. Past Population Estimates of Carolina Bays

Twentieth century estimates of the total number of Bays ranged from 10,000 [26] to
500,000 [5], while recent work has estimated the number of Bays from Florida to Virginia
to be approximately 50,000, suggesting that the often-cited estimate of 500,000 is an order
of magnitude too high [27]. In Delmarva, Carolina Bay population estimates exceed
14,000 [28]. The first estimate of 50,000 for the southeastern ACP was obtained through
analysis of USGS topographic maps in a single South Carolina county. The counts and
size proportions of Carolina Bays were then extrapolated to all the other counties in South
Carolina, and then extrapolated further to an area covering most of the southeastern ACP.
There are two main problems with this method: it assumes that the USGS topographic
maps reflect the complete topography of the ACP, capturing every possible Carolina Bay,
and it also assumes that the Carolina Bay size and geographic distribution is the same
in all regions Carolina Bays are found. In the study that determined the count estimate
for Bays in Delmarva, Bays were annotated with a point in bare-earth LiDAR digital
elevation models (DEMs). This method is far more accurate in counting Carolina Bays
(LiDAR derived DEMs typically have resolutions of 10 m, sometimes as fine as 1 m), but
incredibly time consuming. Point annotations also eliminate the opportunity to analyze
morphometric characteristics like maximum relief, area, perimeter, major and minor axis
length and orientation, eccentricity, and other parameters.

1.3. Traditional Computer Vision, Pixel-Based Classification, and Object Detection

With such a large population size spanning the entire ACP, and with such uncertainty
around the actual population size, mapping the Carolina Bays is a problem that requires an
automated detection scheme. When developing a detector, two important initial questions
must be answered: what kind of detector should it be, and what data will the detector run on?

For identification of Carolina Bays, high-resolution (at least 10 m) bare-earth digital
elevation models are the best data source. These datasets show the complete topography
and Bays are readily visible as round topographic lows with sharp highs along their rims.
Identification of Carolina Bays from aerial imagery is much more difficult, particularly for
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heavily forested Bays or Bays that have been converted to agricultural land. In a forested
region, all an aerial image could show is the greenish hue of the forests, with maybe
some sense of topographic variability, while the DEM could show every undulation in the
topography, revealing many Carolina Bays (see Figure 2). High resolution digital elevation
datasets are widespread and easily accessible thanks to the USGS National Map program,
so obtaining datasets to run a detector on to look for Carolina Bays is feasible.
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Figure 2. Carolina Bays in central Delaware. (a) LiDAR DEM gridded at 10 m. (b) Aerial imagery
from ESRI World Imagery basemap.

For the selection of the right detection method for Carolina Bays, one might first
try some traditional image processing techniques, including Hough transforms, blob
detectors like the Laplacian of Gaussian or difference of Gaussians, or feature detectors
like the scale-invariant feature transform (SIFT). Or one might experiment with pixel-
based machine learning algorithms, including unsupervised methods like k-means, or
supervised methods like Random Forest, Decision Tree, or Quadratic Discriminant. Pixel-
based methods separate an image into discrete categories based on pixel values in the
image. For example, an aerial image of the near-shore, beach, and salt marsh could be
separated into three classes, and the algorithm would be trained to segment the image into
these three classes. Pixel-based methods have been particularly useful for land-use and
land-cover classification on satellite and aerial imagery [29–31]. The last option would be to
utilize recent advancements in deep-learning object detection algorithms like convolutional
neural networks (CNNs).

CNNs have been proven as valuable object detectors for a variety of applications,
including detecting sea scallops from benthic imagery [32]; detecting object signatures
from ground penetrating radar [33]; detecting archaeological sites from LiDAR DEMs [34];
detecting ice-wedge polygons from aerial imagery [35]; detecting rocks from aerial im-
agery [36]; detecting mining-related valley fill faces from LiDAR DEMs [37]; and detecting
airplanes, tennis courts, basketball courts, baseball diamonds and vehicles from aerial
imagery [38]. CNNs are also fast, with models like Yolo and Faster R-CNN that can run
through and detect objects in several images per second, up to 65 frames per second for
Yolov4 on a Tesla V100 graphical processing unit (GPU) [39].

For Carolina Bay detection, traditional image processing techniques are ineffective
because they are too general. For example, using a Hough ellipse or circle detector on a
DEM would look for every circular or elliptical object in the DEM, not just Carolina Bays.
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Feature detectors like SIFT are also too general, as they look for all interesting features
in an image, like edges, large color gradients, blobs, and corners. This creates additional
post-processing steps to reach the level of object detection, like defining an object by the
collection of features (bag-of-words) SIFT finds within the object [40]. Some examples of
poor results using traditional computer methods for Carolina Bay detection are shown
in Figure 3.
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(SIFT; keypoints and their radii are shown in blue). 

For pixel-based machine learning algorithms, both supervised and unsupervised 
methods are ineffective in Carolina Bay detection. Several types of pixel-based classifiers 
were tested on a sample DEM containing Carolina Bays (see Figure 4). The classifiers were 
designed to classify every pixel in the image as containing Carolina Bays or not containing 
Carolina Bays, based upon a manually annotated training mask. Each classifier failed to 
distinguish the Carolina Bays from the section of a stream in the bottom left corner of the 
DEM. In addition, several of the supervised classifiers resulted in a speckled classification, 

Figure 3. Traditional computer vision algorithms tested for Carolina Bay detection. (a) Input DEM.
(b) Local minima detector (each white point is a local minima). (c) Laplacian of Gaussians blob
detector (detected blobs and their radii are shown in yellow). (d) Scale invariant feature transform
(SIFT; keypoints and their radii are shown in blue).

For pixel-based machine learning algorithms, both supervised and unsupervised
methods are ineffective in Carolina Bay detection. Several types of pixel-based classifiers
were tested on a sample DEM containing Carolina Bays (see Figure 4). The classifiers
were designed to classify every pixel in the image as containing Carolina Bays or not
containing Carolina Bays, based upon a manually annotated training mask. Each classifier
failed to distinguish the Carolina Bays from the section of a stream in the bottom left
corner of the DEM. In addition, several of the supervised classifiers resulted in a speckled
classification, with pixels within Carolina Bays incorrectly tagged as not Carolina Bay
pixels. This speckled effect is a typical defect in pixel-based classification when using
high-resolution imagery [41–45]. The time each classification took was between 5 s for the
Decision Tree classifier and 640 s for the MLP classifier, much greater than the time a Faster
R-CNN or Yolo model would take per image.
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Figure 4. (a) Input DEM. (b) Mask annotation. (c) K-means unsupervised two-class classifier.
(d) GaussianNB supervised classifier. (e) Decision Tree supervised classifier. (f) Random Forest
supervised classifier. (g) Quadratic Discriminant supervised classifier. (h) MLP supervised classifier.
(i) AdaBoost supervised classifier.

Due to the limitations in traditional techniques and pixel-based techniques, this study
aimed to use CNN architectures for Carolina Bay detection. Three different CNNs were
trained for Carolina Bay detection, Faster R-CNN, Mask R-CNN, and Yolov5. Specifics on
the mechanics and architecture of each respective CNN can be found in each algorithm’s
original paper [46–48].

2. Materials and Methods
2.1. Data Sources

Thanks to previous Carolina Bay studies that revealed the broad extent of Carolina
Bays [2,27,28], this study gathered digital elevation models gridded at 10 m resolution from
the region shown in Figure 5. The datasets were obtained from a variety of public sources,
including a 2014 LiDAR survey of the entire state of Delaware [49], Virginia’s online LiDAR
portal run by the Virginia Information Technologies Agency [50], the Maryland Mapping
and GIS Data Portal [51], and the USGS National Map [52]. These datasets gridded at 10 m
amounted to 44 GB, which consisted of tens of thousands of individual GeoTIFFs and
ERDAS Imagine files. The individual DEMs were then merged to produce a continuous
mosaic of elevation for the entire ACP (see Figure 5b). This mosaic is easily navigable in GIS
software like QGIS or ArcGIS Pro. This dataset as well as code for merging multiple DEMs
is available at https://github.com/mlundine/rasterguru (accessed on 17 September 2021).

https://github.com/mlundine/rasterguru
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2.2. Building the Annotation Datasets

For the Faster R-CNN and Yolov5 models, DEM images, with north always pointing
up, with footprints ranging between 3 km2 and 9 km2, and with resolutions ranging
between 1 m and 10 m were selected from various regions of the ACP for annotating.
This amounted to over 1921 images, with 80% randomly selected for training, and 20%
randomly selected for testing. Each image was annotated in LabelImg [53] for Carolina Bays
by a single annotator, which took approximately two weeks to complete. Each annotation
consisted of a bounding box, defined by its four corner coordinates, the image dimensions,
the image file path, and the annotation label (‘bay’). The total number of Carolina Bays
annotated in this annotation dataset amounted to 5913.

For the Mask R-CNN model, the annotation dataset included DEM images, bounding
box annotations, and binary mask annotations. To construct the binary mask annotations,
existing shapefiles containing Carolina Bay polygons were obtained from the Delaware
Geological Survey [54]. These polygon datasets had been constructed by geologists at DGS
from examining LiDAR data. Then the DEM data for Delaware was gridded into 366 DEMs,
with 3 km2 footprints, and 10 m resolution. The Carolina Bay polygons were then used to
create images that matched the footprints of the DEMs, but instead of elevation, the pixel
values were either zero or one, with the pixels marked zero not containing Carolina Bays,
and the pixels marked one containing Carolina Bays. Again, these images were randomly
assigned for training (80%) and testing (20%), and they were again annotated in LabelImg
by a single annotator. The total number of Carolina Bays annotated in the Mask R-CNN
dataset amounted to 2339.

2.3. Training the CNNs and Assessing Accuracy

Training for Faster R-CNN and Mask R-CNN were performed on an Intel Core i7-
4790k CPU at 4.00 GHz. This took approximately one day for the Faster R-CNN model,
but for the Mask R-CNN model it took almost a week. The Yolov5 model was trained on a
NVIDIA Geforce GTX 1650, which took several hours. Training speed is greatly enhanced
with the GPU, and we recommend avoiding training on a CPU. Several metrics were used
to determine the accuracy of each detector; each metric is described in the results section.
Training settings are described in Table 1.
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Table 1. Training Settings for different CNNs.

Model Pre-Trained Model Batch Size; Iterations;
Epochs

Maximum Image
Size

Faster R-CNN Faster_rcnn_inception_v2_pets 1; 40,193; 27 1024 × 1024
Mask R-CNN mask_rcnn_resnet101_atrous_coco 1; 40,479; 27 1024 × 1024

Yolov5 Yolov5s 16; 36,018; 300 640 × 640

Using the test images from the annotation datasets, precision, and recall were calcu-
lated for each CNN. Precision and recall are defined in Equations (1) and (2), where TP
represents the number of true positives, FP represents the number of false positives, and
FN represents the number of false negatives.

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

For all possible threshold values, between 0.00 and 1.00, precision and recall were
calculated.

To investigate spatial and size discrepancies between the detections, annotations, and
existing DGS Carolina Bay polygons, distributions of area, perimeter, × centroid, and y
centroid were compared. For this analysis, only detections and annotations from Delaware
were compared.

The Faster R-CNN model was chosen as the most efficient model, due to its speed
and accuracy. To obtain a near-complete catalogue of the Carolina Bays across the ACP, it
was run on the entire ACP DEM. To do so, the ACP DEM was tiled into various footprints
(1.5 km × 1.5 km, 3 km × 3 km, and 6 km × 6 km), with each tile size at three different
overlap amounts (0%, 25%, and 50%). Every tile was oriented with north pointing up. The
detector was then run on each dataset to determine the best tiling and overlap scheme for
increasing true positives, decreasing false negatives, and decreasing false positives. These
results were compared to annotations from Delaware.

Each detector produced false positives, so some additional GIS-based analysis was
needed to eliminate these. This consisted of some simple spatial queries based on geology
and land-use. For example, any detections marked outside of the coastal plain in the Pied-
mont were eliminated, and any detections marked in artificial ponds were also eliminated.
In addition, any manmade ponds marked as Carolina Bays were discarded.

2.4. Extracting Morphologic, LULC, and Hydrologic Parameters from Detections

The filtered detection results across the ACP were analyzed for the following mor-
phometric characteristics: area, maximum relief, and bounding box length-to-width ratio.
Bounding boxes with length-to-width ratios of one represent square boxes, while bounding
boxes with length-to-width ratios greater than one represent rectangular boxes. Bays
detected with a more-square box represent Bays with a more circular in shape, while Bays
detected with a more rectangular box represent Bays with a more elliptical shape. The
diagonals of the more rectangular bounding boxes were then analyzed for their azimuthal
orientation. In addition to the morphometric characteristics, the filtered detections were
analyzed for land-use and land-cover (LULC) type. LULC data was collected from the
USGS GAP/LANDFIRE 2011 dataset [55].

Since Faster R-CNN only outputs bounding boxes for detections, we selected a repre-
sentative subset of the detections from various geographic locations and of various sizes
and then annotated these detections with a polygon for Carolina Bays. This allowed us to
estimate the size discrepancy between a bounding box detection and a more-representative
polygon annotation.

The hydrology of Carolina Bay detections was investigated using the USGS National
Hydrography Dataset [56]. The NHD contains georeferenced polygons for various surface
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hydrologic units, including lakes, ponds, swamps, marshes, rivers, streams, and estuaries.
The hydrologic units found within Carolina Bay detections were analyzed for how much
of the Carolina Bay was covered by a water body. In addition, the distance to the nearest
water body for each Carolina Bay detection was recorded.

2.5. Field Investigations Based on Detection Results

Guided by the Carolina Bay detection results, over 50 sites within Carolina Bays
throughout Delaware and the eastern shore of Virginia were sampled with a hand auger
to collect sedimentological data (see Figure 6). This produced over 150 samples that were
later processed for grain size distributions using a sieve shaker for sand and gravel sizes
and pipette analysis for silt and clay sizes.
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2.6. Principal Component Analysis of Topographic Metrics

Principal component analysis (PCA) was performed on multi-band images from
Delaware containing the following bands: elevation, hill shade, valley depth, aspect,
profile curvature, planform curvature, and slope. This was done to determine the amount
of variance described by each of these topographic metrics within Carolina Bays. In
this study, elevation was the only band used for training the detectors, however, we
aimed to investigate whether including these metrics could add information and enhance
the detectors.

2.7. Multi-Scale Detection, Aggregation, and Smoothing

Due to the variable planform size of Carolina Bays as well as the common occurrence of
overlapping Bays, this study aimed to experiment with aggregating detections from various
input image footprints. First, the input ACP elevation dataset was tiled at the following
footprints: 1500 m × 1500 m, 3000 m × 3000 m, 6000 m × 6000 m, 12,000 m × 12,000 m,
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and 20,000 m × 20,000 m. Then the trained Faster R-CNN detector was run on each of these
image sets, and the detections were then filtered to the appropriate confidence threshold.
False positives were filtered from these detections, and then overlapping detections were
aggregated into a single polygon. To capture a more representative Carolina Bay shape,
the aggregated polygons, which were either isolated boxes or aggregations of overlapping
boxes, were smoothed with a polynomial approximation with exponential kernel (PAEK)
with various smoothing tolerances (100 m, 500 m, 1000 m, 1500 m, and 2000 m).

A flowchart depicting the workflow for processing the ACP DEM into tiles, running
the tiles through Faster R-CNN, and then running the Carolina Bay detections through the
various analyses described in this paper is shown in Figure 7.
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3. Results
3.1. Assessment of Detection Results

The precision and recall curve is shown in Figure 8. This allowed us to determine
the optimum threshold of 0.60 for Faster R-CNN and 0.30 for Mask R-CNN. At these
threshold values, we found the best balance between precision and recall, which allowed
us to maximize true positives marked by the detectors, while minimizing false negatives
and false positives. Average precision (AP) is defined as the area under the precision-
recall curve, the closer to it is to one, the more effective the detector. In terms of AP,
Mask R-CNN performed better, however, its annotation set was much smaller due to the
more-laborious nature of constructing mask annotations. In addition, the Mask R-CNN
detector was only trained on data from Delaware and was not reliable when released
upon data outside of Delaware. It is imperative that the training data encompasses all the
subtle regional differences in DEMs, which is why the Faster R-CNN model was more
suitable for implementation on the entire ACP dataset. The Yolov5 model is used only for
demonstration and educational purposes due to its high inference speed.

Figure 9 shows distributions of area, perimeter, and maximum relief for subsets of
the training annotation dataset, the test annotation dataset, the Faster R-CNN detection
dataset at a threshold of 0.60, the Mask R-CNN detection dataset at a threshold of 0.30,
and the DGS polygon dataset. Table 2 lays out the middle quartiles for area, perimeter,
and maximum relief from the bonding box annotations, the mask annotations, the Faster
R-CNN detections, and the Mask R-CNN detections. Figure 10 shows area, perimeter,
x centroid, and y centroid from the test annotation dataset and test detection dataset, with
a linear fit as well as a one-to-one fit. If the detector was retaining the exact location and
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size as the annotations, then every point would fall on the one-to-one lines. Overall, there
was agreement for each parameter (area, perimeter, x and y centroid) between each dataset,
indicating that each detector was performing well in terms of retaining the size and location
of the annotated Carolina Bays. One finer discrepancy is that the detector often slightly
underestimated the size of each Carolina Bay compared to the annotations. The results
for the Delaware detections here differ from the results reported later in this paper for
Delaware. This is due to all detection boxes being included in this analysis—overlapping
boxes were not aggregated into a single box so some of the boxes here are of the same Bay
in adjacent images. Boxes were not aggregated here due to the annotation image dataset
sometimes consisting of partial Bays.

Remote Sens. 2021, 13, 3770 11 of 30 
 

 

 
Figure 8. Precision and recall curves for Faster R-CNN and Mask R-CNN Carolina Bay detectors. 

Figure 9 shows distributions of area, perimeter, and maximum relief for subsets of 
the training annotation dataset, the test annotation dataset, the Faster R-CNN detection 
dataset at a threshold of 0.60, the Mask R-CNN detection dataset at a threshold of 0.30, 
and the DGS polygon dataset. Table 2 lays out the middle quartiles for area, perimeter, 
and maximum relief from the bonding box annotations, the mask annotations, the Faster 
R-CNN detections, and the Mask R-CNN detections. Figure 10 shows area, perimeter, x 
centroid, and y centroid from the test annotation dataset and test detection dataset, with 
a linear fit as well as a one-to-one fit. If the detector was retaining the exact location and 
size as the annotations, then every point would fall on the one-to-one lines. Overall, there 
was agreement for each parameter (area, perimeter, x and y centroid) between each da-
taset, indicating that each detector was performing well in terms of retaining the size and 
location of the annotated Carolina Bays. One finer discrepancy is that the detector often 
slightly underestimated the size of each Carolina Bay compared to the annotations. The 
results for the Delaware detections here differ from the results reported later in this paper 
for Delaware. This is due to all detection boxes being included in this analysis—overlap-
ping boxes were not aggregated into a single box so some of the boxes here are of the same 
Bay in adjacent images. Boxes were not aggregated here due to the annotation image da-
taset sometimes consisting of partial Bays. 

Figure 8. Precision and recall curves for Faster R-CNN and Mask R-CNN Carolina Bay detectors.
Remote Sens. 2021, 13, 3770 12 of 30 
 

 

 
Figure 9. Kernel density estimation for (a) area (b) perimeter, and (c) maximum relief for the Delaware training and test 
annotations, Delaware Faster R-CNN detection at 60%, Delaware Mask R-CNN detections at 30%, and existing data from 
DGS. 

Table 2. Area, perimeter, and max. relief middle quartiles for annotations and detections from 
Delaware. 

Dataset; Sample Size Area (km2) Middle Quar-
tiles 

Perimeter (m) 
Middle Quar-

tiles 

Maximum Re-
lief (m) Middle 

Quartiles 

Delaware bounding box annotations; 
3921 

25%: 0.0138 25%: 474.0 25%: 1.731 
50%: 0.0281 50%: 678.0 50%: 2.348; 
75%: 0.0591 75%: 984.0 75%: 3.128 

Delaware Faster R-CNN detections 
at 0.60; 4557 

25%: 0.0150 25%: 492.4 25%: 1.568 
50%: 0.0286 
75%: 0.0579 

50%: 684.5 
75%: 974.2 

50%: 2.230 
75%: 3.043 

DGS dataset (mask annotations); 
1085 

25%: 0.0109 
50%: 0.0262 
75%: 0.0600 

25%: 393.5 
50%: 662.7 

75%: 1132.9 

25%: 1.515 
50%: 2.171 
75%: 2.990 

Delaware Mask R-CNN detections at 
0.60; 3328 

25%: 0.0912 25%: 378.9 25%: 1.376 
50%: 0.0245 
75%: 0.0613 

50%: 628.1 
75%: 1096.5 

50%: 2.132 
75%: 3.046 

 
  

Figure 9. Kernel density estimation for (a) area (b) perimeter, and (c) maximum relief for the Delaware
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Table 2. Area, perimeter, and max. relief middle quartiles for annotations and detections
from Delaware.

Dataset; Sample Size Area (km2) Middle
Quartiles

Perimeter (m)
Middle Quartiles

Maximum Relief (m)
Middle Quartiles

Delaware bounding
box annotations; 3921

25%: 0.0138 25%: 474.0 25%: 1.731
50%: 0.0281 50%: 678.0 50%: 2.348;
75%: 0.0591 75%: 984.0 75%: 3.128

Delaware Faster
R-CNN detections at

0.60; 4557

25%: 0.0150 25%: 492.4 25%: 1.568
50%: 0.0286 50%: 684.5 50%: 2.230
75%: 0.0579 75%: 974.2 75%: 3.043

DGS dataset (mask
annotations); 1085

25%: 0.0109 25%: 393.5 25%: 1.515
50%: 0.0262 50%: 662.7 50%: 2.171
75%: 0.0600 75%: 1132.9 75%: 2.990

Delaware Mask
R-CNN detections at

0.60; 3328

25%: 0.0912 25%: 378.9 25%: 1.376
50%: 0.0245 50%: 628.1 50%: 2.132
75%: 0.0613 75%: 1096.5 75%: 3.046
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The effect of tile size as well as overlap amount are shown in Figure 11. Smaller tiles
resulted in much larger Carolina Bay counts, mainly due to larger Bays being segmented
into multiple images, resulting in multiple counts of the same Bay. Larger tiles tended to
obscure finer details in the DEMs, which resulted in lower Carolina Bay counts. Increasing
the overlap also increased the Carolina Bay counts, due to adjacent images containing the
same Carolina Bays. In summary, 3 km × 3 km tiles with 25% overlap came the closest to
the test annotation count, indicating that this scheme was the optimum tiling scheme for
breaking up the ACP mosaic DEM for Carolina Bay detection.

With a median area of 0.0863 km2 for Carolina Bays, the tile results indicate that using
tiles that are at least 100 times the size of the median feature, with 25% overlap between
tiles provides the best scheme for maximizing detections and minimizing overcounting.
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3.2. Spatial Distribution of Carolina Bay Detections

Faster R-CNN detection results at 60%, with false positives filtered out, are shown in
Figure 12. The total count amounted to 17,107, with 9728 in Delmarva, and the remaining
7379 in North Carolina, South Carolina, Virginia, Georgia, and New Jersey. Starting in New
Jersey, Carolina Bay presence begins south of the Laurentide Ice Sheet extent and continues
southward to the southern New Jersey coast on the Delaware Bay. In Delaware, Carolina
Bay presence begins south of the Fall Line, with its highest density in central Delaware.
Carolina Bays are in great abundance on the eastern shore of Maryland but are absent west
of the Chesapeake Bay. In Virginia, Carolina Bays are in great abundance on its eastern
shore, forming a north-south line of Carolina Bays along the center of this peninsula. In
the Tidewater region of Virginia, west of the Chesapeake Bay, Carolina Bays are virtually
absent, however, there are some isolated occurrences. In North Carolina, South Carolina,
and Georgia, Carolina Bays are in great abundance on interfluves within the coastal plain
and out west to the Fall Line.

Remote Sens. 2021, 13, 3770 14 of 30 
 

 

With a median area of 0.0863 km2 for Carolina Bays, the tile results indicate that using 
tiles that are at least 100 times the size of the median feature, with 25% overlap between 
tiles provides the best scheme for maximizing detections and minimizing overcounting. 

3.2. Spatial Distribution of Carolina Bay Detections 
Faster R-CNN detection results at 60%, with false positives filtered out, are shown in 

Figure 12. The total count amounted to 17,107, with 9728 in Delmarva, and the remaining 
7379 in North Carolina, South Carolina, Virginia, Georgia, and New Jersey. Starting in 
New Jersey, Carolina Bay presence begins south of the Laurentide Ice Sheet extent and 
continues southward to the southern New Jersey coast on the Delaware Bay. In Delaware, 
Carolina Bay presence begins south of the Fall Line, with its highest density in central 
Delaware. Carolina Bays are in great abundance on the eastern shore of Maryland but are 
absent west of the Chesapeake Bay. In Virginia, Carolina Bays are in great abundance on 
its eastern shore, forming a north-south line of Carolina Bays along the center of this pen-
insula. In the Tidewater region of Virginia, west of the Chesapeake Bay, Carolina Bays are 
virtually absent, however, there are some isolated occurrences. In North Carolina, South 
Carolina, and Georgia, Carolina Bays are in great abundance on interfluves within the 
coastal plain and out west to the Fall Line. 

 
  

(a) (b) 

Figure 12. (a) Carolina Bay detections across the ACP. (b) Heat map of Carolina Bay detections showing higher vs lower den-
sity areas. 

3.3. Morphology of Carolina Bay Detections 
Figure 13 shows scatterplots comparing a subset of the detection results with manu-

ally annotated polygons. Also shown in Figure 11 are ordinary least squares (OLS) fits, 
with the detection box parameters as independent variables and the polygon annotation 
parameters as dependent variables. On the area and perimeter plot, one-to-one fit lines 
are shown. The x and y centroid OLS fits were essentially one-to-one fits so these two plots 
do not contain the one-to-one lines. The detection boxes estimate the x and y centroid of 
Carolina Bays with great accuracy while overestimating the area and perimeter. The over-
estimation of the area and perimeter of the detection boxes, however, was linear across 
the size spectrum of Carolina Bays. The slope of the line for each respective OLS fit pro-
vides a method of computing actual area and perimeter from the detection box area and 
perimeter. 

  

Figure 12. (a) Carolina Bay detections across the ACP. (b) Heat map of Carolina Bay detections showing higher vs lower
density areas.



Remote Sens. 2021, 13, 3770 13 of 27

3.3. Morphology of Carolina Bay Detections

Figure 13 shows scatterplots comparing a subset of the detection results with manually
annotated polygons. Also shown in Figure 11 are ordinary least squares (OLS) fits, with the
detection box parameters as independent variables and the polygon annotation parameters
as dependent variables. On the area and perimeter plot, one-to-one fit lines are shown. The
x and y centroid OLS fits were essentially one-to-one fits so these two plots do not contain
the one-to-one lines. The detection boxes estimate the x and y centroid of Carolina Bays
with great accuracy while overestimating the area and perimeter. The overestimation of
the area and perimeter of the detection boxes, however, was linear across the size spectrum
of Carolina Bays. The slope of the line for each respective OLS fit provides a method of
computing actual area and perimeter from the detection box area and perimeter.
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Figure 13. Comparing detection results with manually annotated polygons. Each plot shows an OLS
fit with the x-axis quantity as the independent variable and the y-axis quantity as the dependent
variable. One-to-one fits are plotted on the area and perimeter plots. (a) Area. (b) Perimeter.
(c) Centroid longitude. (d) Centroid latitude.

Looking at Carolina Bay morphology across the ACP (see Figure 14 and Table 3), this
study found that most Carolina Bays (25th to 75th percentile) have a maximum relief of
1.5 m to 3.97 m and an area between 0.0379 km2 and 0.221 km2. The larger Bays are few
in number as are the deeper Bays. The elliptical Bays tend to show a northwest-southeast
orientation (see Figure 15). Moving across the ACP latitudinally, there remains spread in
Carolina Bay area, however, Bays in New Jersey, Delaware, and Maryland tend to skew
towards smaller sizes than Bays further south. Bays further south also tend to be deeper
than the Bays further north.
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Table 3. Area, max. relief, and length to width ratio middle quartiles for subsets of the Carolina
Bay detections.

State/Region Area (km2)
Middle Quartiles

Maximum Relief (m)
Middle Quartiles

Length:Width
Middle Quartiles Sample Size

New Jersey
25%: 0.022 25%: 1.828 25%: 1.05

111650%: 0.039 50%: 2.509 50%: 1.11
75%: 0.067 75%: 3.507 75%: 1.21

Delaware
25%: 0.030 25%: 1.761 25%: 1.05

240850%: 0.052 50%: 2.332 50%: 1.11
75%: 0.091 75%: 3.045 75%: 1.21

Maryland
25%: 0.028 25%: 0.800 25%: 1.05

487150%: 0.049 50%: 1.345 50%: 1.11
75%: 0.091 75%: 2.412 75%: 1.21

Virginia
25%: 0.097 25%: 2.184 25%: 1.05

31250%: 0.267 50%: 3.064 50%: 1.11
75%: 0.620 75%: 4.511 75%: 1.22

North Carolina
25%: 0.169 25%: 2.789 25%: 1.04

101750%: 0.373 50%: 4.050 50%: 1.09
75%: 0.910 75%: 5.675 75%: 1.17

South Carolina
25%: 0.143 25%: 2.828 25%: 1.08

238350%: 0.268 50%: 4.151 50%: 1.15
75%: 0.602 75%: 6.016 75%: 1.26

Georgia
25%: 0.125 25%: 3.497 25%: 1.05

112950%: 0.200 50%: 4.848 50%: 1.13
75%: 0.406 75%: 6.875 75%: 1.24

North of 37◦
25%: 0.028 25%: 1.100 25%: 1.05

869950%: 0.050 50%: 1.963 50%: 1.11
75%: 0.092 75%: 2.839 75%: 1.21

South of 37◦
25%: 0.142 25%: 2.976 25%: 1.06

455250%: 0.264 50%: 4.316 50%: 1.13
75%: 0.608 75%: 6.190 75%: 1.24

Entire ACP
25%: 0.038 25%: 1.500 25%: 1.05

13,25150%: 0.086 50%: 2.533 50%: 1.12
75%: 0.221 75%: 3.970 75%: 1.22
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3.4. LULC of Carolina Bay Detections

In Figure 16, the general land-use type within Carolina Bays is shown. Forest and
woodland accounted for 41.4% of the total area of the detected Carolina Bays, agricul-
ture accounted for 32.1%, and open water accounted for 16.8%. Shrub and Herb wetland
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accounted for 6.7% and developed land accounted for 1.35%. The other two categories
accounted for very little of the total area of all the Carolina Bay detections. As for the
fraction of total count of the detected Bays, agriculture accounts for the highest fraction,
followed by forested land, with these two categories amounting to over 90% of the fraction
of total count. These results indicate that most Carolina Bays have been converted from
wetlands to agricultural lands and that open water Bays are few in number but are typ-
ically on the larger end of the Carolina Bay size spectrum. One caveat is that the USGS
GAP/LANDFIRE dataset is gridded at 30 m resolution, while the Carolina Bay detections
were obtained from 10 m resolution LiDAR. This means that there could be many smaller
open-water Bays that are not reflected in the GAP/LANDFIRE dataset.
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3.5. Hydrology of Carolina Bay Detections

In Figure 17, distributions for the fraction of Carolina Bay surface water cover are
shown by water body type according to the USGS NHD. The only water body types found
within Carolina Bays were classified as swamp/marsh or lake/pond. The fraction of water
cover in Carolina Bays is typically less than 0.10 for lakes and ponds. For the Carolina Bays
containing swamps and marshes, most are less than 10% covered by water, however, there
is more spread out to higher water cover fractions when compared to the Bays with lakes
and ponds. Overall, 21.28% of the Carolina Bay detections were found to contain surface
water, with 12.76% containing swamps or marshes and 8.52% containing lakes or ponds.
Bays with surface water were found across the entire spatial extent of the Carolina Bay
detections, showing a similar spatial distribution as the detections.

In Figure 18, a bar chart is shown illustrating the closest bodies of water to all the
Carolina Bay detections by fraction of the total count. Overall, over half of the detected Car-
olina Bays are closest to a lake/pond and approximately 40% are closest to a swamp/marsh.
All the other water body types make up less than 10% of the detected Bays. Since many of
these Bays overlapped or completely contained the water bodies, we filtered these Bays out
to investigate how far the Bays with no surface water are from the nearest body of water.
The empirical cumulative distribution function (ECDF) of the distance from each Carolina
Bay detection to a water body is shown in Figure 19. Nearly all the Carolina Bays that do
not contain surface water are within 2 km of a water body, half of these Carolina Bays are
within 1 km of a water body, and a quarter of these Carolina Bays are within 200 m of a
water body.



Remote Sens. 2021, 13, 3770 16 of 27Remote Sens. 2021, 13, 3770 18 of 30 
 

 

 
Figure 17. KDEs for fraction of Bay covered by lake/pond water and swamp/marsh water. 

In Figure 18, a bar chart is shown illustrating the closest bodies of water to all the 
Carolina Bay detections by fraction of the total count. Overall, over half of the detected 
Carolina Bays are closest to a lake/pond and approximately 40% are closest to a 
swamp/marsh. All the other water body types make up less than 10% of the detected Bays. 
Since many of these Bays overlapped or completely contained the water bodies, we fil-
tered these Bays out to investigate how far the Bays with no surface water are from the 
nearest body of water. The empirical cumulative distribution function (ECDF) of the dis-
tance from each Carolina Bay detection to a water body is shown in Figure 19. Nearly all 
the Carolina Bays that do not contain surface water are within 2 km of a water body, half 
of these Carolina Bays are within 1km of a water body, and a quarter of these Carolina 
Bays are within 200 m of a water body. 

Figure 17. KDEs for fraction of Bay covered by lake/pond water and swamp/marsh water.
Remote Sens. 2021, 13, 3770 19 of 30 
 

 

 
Figure 18. Closest bodies of water to Carolina Bay detections by fraction of total detection count. 

 
Figure 19. EDCF for distance to water body for Carolina Bay detections that did not intersect any 
NHD water bodies. 

3.6. Sedimentology of Carolina Bays 
Cumulative distributions for the grain sizes of samples taken from Carolina Bay rims 

and basins are shown in Figure 20. Figure 21 shows a profile of hand augers taken across 
a Carolina Bay within Delaware. The sedimentological patterns found in Carolina Bays of 
different size and distant geographic regions are similar, but within a single Bay, there are 
differences depending on where in the Bay the sample is collected. Carolina Bay interiors 
are often filled with a mix of fine to medium sand, silt, and clay, with the highest clay 
content (up to 45%) occurring near the centers of the basins. The interior sands and silts 
typically show a light brown to light gray color, with some occurrences of an oxidized 

Figure 18. Closest bodies of water to Carolina Bay detections by fraction of total detection count.



Remote Sens. 2021, 13, 3770 17 of 27

Remote Sens. 2021, 13, 3770 19 of 30 
 

 

 
Figure 18. Closest bodies of water to Carolina Bay detections by fraction of total detection count. 

 
Figure 19. EDCF for distance to water body for Carolina Bay detections that did not intersect any 
NHD water bodies. 

3.6. Sedimentology of Carolina Bays 
Cumulative distributions for the grain sizes of samples taken from Carolina Bay rims 

and basins are shown in Figure 20. Figure 21 shows a profile of hand augers taken across 
a Carolina Bay within Delaware. The sedimentological patterns found in Carolina Bays of 
different size and distant geographic regions are similar, but within a single Bay, there are 
differences depending on where in the Bay the sample is collected. Carolina Bay interiors 
are often filled with a mix of fine to medium sand, silt, and clay, with the highest clay 
content (up to 45%) occurring near the centers of the basins. The interior sands and silts 
typically show a light brown to light gray color, with some occurrences of an oxidized 

Figure 19. EDCF for distance to water body for Carolina Bay detections that did not intersect any
NHD water bodies.

3.6. Sedimentology of Carolina Bays

Cumulative distributions for the grain sizes of samples taken from Carolina Bay
rims and basins are shown in Figure 20. Figure 21 shows a profile of hand augers taken
across a Carolina Bay within Delaware. The sedimentological patterns found in Carolina
Bays of different size and distant geographic regions are similar, but within a single Bay,
there are differences depending on where in the Bay the sample is collected. Carolina
Bay interiors are often filled with a mix of fine to medium sand, silt, and clay, with the
highest clay content (up to 45%) occurring near the centers of the basins. The interior sands
and silts typically show a light brown to light gray color, with some occurrences of an
oxidized orangish-brown color. The interior clays typically show gray coloring with varves,
indicating seasonal dynamics in sediment deposition. The thickness of the interior deposits
range between 0.5 m and 2 m. The sand rims typically show an oxidized, brownish-orange
color and grade from silt, fine and medium sand at the top, medium and coarse sand
further down, and then coarse and very coarse sand at the bottom. However, at times,
silty and clayey deposits were found at the bottom of a sand rim. The sand rims range
between 1.5 m and 2.5 m thick and are always thicker than the deposits in the basin. Along
the slopes of the rims, there is often mixing of the basin mud and the rim sand, however,
the sand along the slopes shows less oxidation than in the rims. The sediment underlying
Carolina Bays is typically a coarse to very coarse sand with significant gravel content (up
to 44%), and it typically is an aquifer.

The sand found in rim samples is composed mostly of frosted quartz grains, and the
clays found in the Bay basins are composed mostly of kaolinite, a product of the chemical
weathering of granitic rocks. The coarser sediments underlying the Bays are typically
composed of mostly quartz with some feldspars, mica, and heavy minerals, common for
sediments that are products of the physical weathering of granitic rocks. Meteoric material
was not found in any of the Bays sampled, and none of the sediments analyzed showed any
signs of high-pressure/low-temperature modification, a typical characteristic of material
found in impact craters.
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Figure 20. Grain size cumulative mass fractions with standard errors by sample type. Top: Grain size
cumulative mass fractions for samples with more than 10% silt/clay. Bottom: Grain size cumulative
mass fractions for samples with less than 10% silt/clay.
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3.7. Principal Component Analysis of Topographic Metrics

The PCA results are shown in Figure 22. Overall, elevation provided the most infor-
mation out of each topographic metric, accounting for nearly 85% of the variance. Hill
shade was the next most valuable metric, accounting for most of the remaining variance.
Valley depth, aspect, profile curvature, planform curvature, and slope were all redundant
and accounted for nearly zero percent of the variance.
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3.8. Multi-Scale Detection, Aggregation, and Smoothing

Visual comparisons between unaggregated detections, aggregated detections, and
smoothed detections of Carolina Bays from North Carolina are shown in Figure 23. Smooth,
aggregated detections from Delmarva, the Carolinas, and Georgia are shown in Figure 24.
This multi-scale aggregation approach resulted in a near complete catalogue of all Carolina
Bays visible within the ACP elevation dataset (131,665 unaggregated detections, 23,458 ag-
gregated polygons). Larger Bays get detected in the larger footprint images while smaller
bays get detected in smaller footprint images. Bays that are counted multiple times or
overlap one another are aggregated into a single polygon. Smoothing with PAEK and a
smoothing tolerance of 1000 m helped refine the detection boxes to a more representative
shape for Carolina Bays.
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Figure 23. (a) Carolina Bay detections at various image footprint scales. (b) Aggregation of overlap-
ping detections. (c) PAEK-smoothed polygons.
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Figure 24. Smooth, aggregated, multi-scale detections in (a) Central Delaware, (b) Southern Delaware,
(c) Virginia, (d) North Carolina, (e) South Carolina, and (f) Georgia.

4. Discussion

Fast and accurate CNN-based object detection on LiDAR DEMs is a highly useful
tool for geomorphic feature detection. This study succeeded in developing a Carolina
Bay detector on data encompassing the entire extent of Carolina Bays across the ACP. The
detection results (over 23,000 Carolina Bays) were analyzed to show that Carolina Bays are
typically 0.0379 km2 to 0.221 km2 in area and 1.5 m to 3.97 m deep from the rim apex to the
basin floor.

Carolina Bays are widespread throughout the ACP from New Jersey to Georgia,
particularly along interfluves, and are absent outside of the unconsolidated sediments of
the ACP. Carolina Bays north of 37◦ latitude have a smaller area distribution, are more
circular, and are shallower than the more elliptical Carolina Bays south of 37◦ latitude. The
data sources (often complex linear interpolation instead of LiDAR) in regions of Georgia
and South Carolina have lower precision and accuracy compared to the data sources
through the rest of the ACP, which limits the detector’s utility in those areas. As more
LiDAR is collected and made publicly available in these regions, the detection results will
be updated to reflect the higher quality DEMs.

Mask R-CNN and Faster R-CNN produce reliable results when compared to man-
ually annotated features, with Mask R-CNN retaining the planform shape particularly
well. Faster R-CNN is useful for larger datasets due to its higher inference speed and
less-intensive annotation requirements. Faster R-CNN detection bounding boxes overes-
timate the size of Carolina Bays, but this overestimation is linear across the Carolina Bay
size distribution. Yolov5 is a useful tool for quick development of feature detectors for
educational and demonstration purposes.

At least a third of Carolina Bays have been converted to agricultural lands and almost
half of all Carolina Bays are forested. Very few open water Carolina Bays remain today yet
they comprise the largest of the Bays. Many Bays house smaller ponds that have seasonal
fluctuations in water-levels. Almost all the Carolina Bays are within 2 km of a water body.
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The Carolina Bays are a plentiful yet diminishing source of habitat for various fauna and
a variety of ecosystem services. Due to their proximity to many different types of water
bodies, Carolina Bays have the potential to limit flashier floods, to filter nutrient runoff,
and to limit sedimentation into larger bodies of water by absorbing snowmelt and/or rain.

As “isolated” wetlands, Carolina Bays were once federally protected by the Clean
Water Rule of 2015 [57], however, this legislation was repealed and replaced by the Navi-
gable Waters Protection Rule [58], which greatly narrowed the protections outlined in the
Clean Water Rule. When Carolina Bays are left in their natural state, they can provide
natural habitat for various plant and animal fauna [59–62]; they can provide an outlet
for stormwater during floods [63]; they can sequester atmospheric carbon [64], and as
richly natural features they can offer aesthetic, recreational, and even therapeutic value
to society [65]. It is dismal that almost a third of all Carolina Bays have been converted to
agricultural land, often clear-cut and drained. In the future, we hope to see new legislation
that expands protections on wetlands and aims to restore the once plentiful wetlands in
the US.

LiDAR-derived elevation in the form of a DEM was a reliable data source for de-
veloping a Carolina Bay detector. Including hillshade as an extra band in the training
images could possibly enhance the detector, but other topographic metrics like slope and
valley depth would be redundant and likely have no effect on the detector’s utility. Since
elevation is the source dataset for each of these topographic metrics, with all the other
metrics just being an operation on elevation, it is not surprising that the other metrics were
redundant and added little new information according to the PCA.

Aggregating detections from multiple image sizes was an effective method for ob-
taining the most complete catalogue of the Carolina Bays. Smoothing the detection boxes
with PAEK resulted in polygons that were more representative of the planform shape of
Carolina Bays. A drawback is that after aggregation, individual Bays cannot be isolated for
morphometric analysis—if bays are overlapping, they are treated as one polygon. However,
for comprehensive mapping of all Carolina Bays of various planform sizes, this method is
highly effective.

Contrary to the more extreme origin stories (meteorites, comets, glacial ice impact),
the results from this study imply a more gradual origin involving aeolian and lacustrine
dynamics. First, Carolina Bays are clearly restricted to a particular substrate—the uncon-
solidated sediments of the ACP. Second, the depth and planform size of Carolina Bays
show no resemblance to impact craters. Using the detection results, an estimate of the
diameter of each Carolina Bay can be calculated from the length of the diagonal of the
bounding box. In addition, the maximum relief calculation provides an estimate of depth.
The depth to diameter ratio (d/D) is a typical computation for known impact craters. In
a study investigating 930 lunar impact craters with diameter ranges between 40 m and
10 km, the D/d parameter was found to range between 0.11 and 0.17 [66]. In another study
investigating smaller diameter lunar impact craters, using a sample size of 849 craters
with diameters less than 1 km, the mean d/D was found to be 0.13, with a standard error
of 0.03 [67]. The estimate of d/D for the Carolina Bay detections for this study had a
median of 0.00567, a 25th percentile of 0.00312, a 75th percentile of 0.00938, a minimum of
3.639 × 10−5, and a maximum of 0.0725. The median d/D ratio of Carolina Bays is almost
two orders of magnitude less than the d/D of known lunar impact craters. Removing the
Carolina Bay deposits (thickness estimates from this study: 0.5 m to 2 m for basin deposits,
1.5 m to 2.5 m for rim deposits) would not increase the d/D ratio enough to match the d/D
ratio found in known impact craters.

In other words, the lower relief of Carolina Bays when compared to known impact
craters is not due to sediment deposition after an impact event. A Carolina Bay with a
diameter of 1 km and a d/D that matches smaller diameter lunar impact craters (0.13)
would be 130 m deep, far from what is observed. Figure 25 compares a typical Carolina
Bay profile (d/D = 0.008) with a shallower impact crater profile (d/D = 0.08), as well as a
curve indicating a constant basin deposit thickness of 2.5 m.
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Figure 25. Comparing a Carolina Bay elevation profile with a hypothetical impact crater elevation
profile. The sediment deposit thickness curve is plotted to show how much basin sediment fill has
occurred in the Carolina Bay since its formation.

Looking at the sedimentology and stratigraphic results, Carolina Bays show signs of
aeolian and lacustrine processes, not signs of an impact origin. Their sand rims resemble,
in texture and composition, relict parabolic dune deposits found throughout Delmarva
and the southeastern ACP [19,68,69]. The presence of clayey deposits at the bottom of
some sand rims indicate regression, or reduction in water-levels over time. In addition,
many Bays possess multiple concentric sand rims, with the inner rims typically returning
younger OSL ages when compared to the outer rims [12]. Their basins indicate low-energy
lacustrine processes, with silt, clay, and finer sand deposits, often showing varves. The basin
sediments likely were deposited after the sand rims formed, supported by ages returned
from OSL-dating of sand rims and radiocarbon dating of basin sediments [12,13,15,17–25].
However, the occurrence of rim sediments mixed with basin sediments along the slopes
of Bays could indicate possible coeval depositional dates in some cases for the basin and
rim sediments, shoreline processes, or possibly flood events that caused transportation of
the rim deposits inward into the basins. All this information together indicates the Bays
were once active geomorphic features controlled by slow morphodynamic processes, not
immediate results of a widespread impact event.

Carolina Bays have also been compared to thermokarst or thaw lakes in the Arc-
tic [11,70], due to their similar appearance (oriented, elliptical depressions). The maximum
relief of thaw lakes (rim apex to bottom of basin) often exceeds 10 m, much greater than
the maximum relief results reported for Carolina Bays. Again, if the Carolina Bay basin
deposits are removed, their maximum reliefs are only increased by a few meters, still
much less than that of the typical thaw lake. The presence of permafrost, a prerequisite for
thermokarst formation, as far south as the coastal plain of Georgia seems unlikely even
during prior glacial maximums. It also is not supported by proxies nor is it supported by
model predictions of past permafrost extents [71,72].

Another similar feature, found in great number in the high plains of Kansas, as well
as in the West Siberian Plain, are playa-lunette systems [73–78]. These are depressions
that form in arid climates, where unconsolidated sediment (typically loess in Kansas, and
alluvial deposits in the West Siberian Plain) gets scoured out by wind, and if the climate
remains dry and unconducive to vegetative growth, sediment can often get deposited on
one end of the depression and form a dune-like mound known as a lunette [77]. Otherwise,
in more humid climates, the depressions tend to fill with water which can also scour
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out a deeper depression, in addition to depositing clays within the playa [77]. There are
over 20,000 of these playas in Kansas, with a median area of 0.0064 km2, a mean area of
0.0165 km2, a maximum area of 1.872 km2, and a minimum area of 0.0003 km2 [74], all
of which follow quite closely but are slightly smaller than area parameters for Carolina
bays. The median heights of the lunettes were reported as 3 m [78], similar to the heights
of the sand rims found in Carolina bays. The similarities between the Kansan playa-lunette
systems and Carolina Bays of great interest and deserve further attention in future research.

5. Conclusions

In this paper, we demonstrated the development of a Carolina Bay detector using
convolutional neural networks and publicly available LiDAR data encompassing the entire
Atlantic Coastal Plain (see Video S1 for demonstration video). The detector proved to be
accurate and efficient, managing to map over 23,000 Carolina Bays, from southern New
Jersey to northern Florida. In addition, the detection results allowed for the quantification of
various morphometric, land use and land cover, and surface hydrologic characteristics. Last,
detection results were used to guide field investigations into Carolina Bay sedimentology
and stratigraphy. Together, the results from this study indicate that Carolina Bays are
perhaps the dominant geomorphic feature of the Atlantic Coastal Plain and are likely the
result of slow lacustrine and aeolian processes rather than the result of a catastrophic
impact event. In conclusion, the descriptive results presented in this paper will guide
future field and modelling investigations on the formation and dynamics of Carolina Bays,
as well as serve as an example of the potential information that CNNs can be used to
extract from abundant geomorphic features.

Future studies in geomorphic feature detection could greatly benefit from the use
of CNNs, and scientists interested in this methodology are encouraged to visit https:
//github.com/mlundine/tensorflow_app (accessed on 17 September 2021) for guidance
on constructing a custom detector with georeferenced imagery.

Supplementary Materials: The following video is available online at https://www.mdpi.com/
article/10.3390/rs13183770/s1, Video S1: Carolina Bay Detection Demo.
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