
remote sensing  

Article

A Deep Learning-Based Framework for Automated Extraction
of Building Footprint Polygons from Very High-Resolution
Aerial Imagery

Ziming Li 1, Qinchuan Xin 1,2,* , Ying Sun 1 and Mengying Cao 1

����������
�������

Citation: Li, Z.; Xin, Q.; Sun, Y.; Cao,

M. A Deep Learning-Based

Framework for Automated Extraction

of Building Footprint Polygons from

Very High-Resolution Aerial Imagery.

Remote Sens. 2021, 13, 3630. https://

doi.org/10.3390/rs13183630

Academic Editors: Mohammad

Awrangjeb, Qin Yan, Beril Sirmacek,

Jiaojiao Tian and Nusret Demir

Received: 13 July 2021

Accepted: 9 September 2021

Published: 11 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Guangdong Key Laboratory for Urbanization and Geo-Simulation, School of Geography and Planning,
Sun Yat-sen University, Guangzhou 510275, China; lizm9@mail2.sysu.edu.cn (Z.L.);
sunying23@mail.sysu.edu.cn (Y.S.); caomy7@mail2.sysu.edu.cn (M.C.)

2 State Key Laboratory of Desert and Oasis Ecology, Research Center for Ecology and Environment of Central
Asia, Chinese Academy of Sciences, Urumqi 830011, China

* Correspondence: xinqinchuan@mail.sysu.edu.cn

Abstract: Accurate building footprint polygons provide essential data for a wide range of urban
applications. While deep learning models have been proposed to extract pixel-based building areas
from remote sensing imagery, the direct vectorization of pixel-based building maps often leads to
building footprint polygons with irregular shapes that are inconsistent with real building boundaries,
making it difficult to use them in geospatial analysis. In this study, we proposed a novel deep
learning-based framework for automated extraction of building footprint polygons (DLEBFP) from
very high-resolution aerial imagery by combining deep learning models for different tasks. Our
approach uses the U-Net, Cascade R-CNN, and Cascade CNN deep learning models to obtain
building segmentation maps, building bounding boxes, and building corners, respectively, from
very high-resolution remote sensing images. We used Delaunay triangulation to construct building
footprint polygons based on the detected building corners with the constraints of building bounding
boxes and building segmentation maps. Experiments on the Wuhan University building dataset and
ISPRS Vaihingen dataset indicate that DLEBFP can perform well in extracting high-quality building
footprint polygons. Compared with the other semantic segmentation models and the vector map
generalization method, DLEBFP is able to achieve comparable mapping accuracies with semantic
segmentation models on a pixel basis and generate building footprint polygons with concise edges
and vertices with regular shapes that are close to the reference data. The promising performance
indicates that our method has the potential to extract accurate building footprint polygons from
remote sensing images for applications in geospatial analysis.

Keywords: building footprint; map vectorization; convolutional neural network; semantic
segmentation

1. Introduction

Information on the spatial distribution and changes of buildings has a wide range of
applications in urban studies, such as urban planning, disaster management, population
estimation, and map updating [1,2]. Local bureaus of urban planning and natural resource
management used to expend high levels of manpower and material resources to obtain
an accurate raster (i.e., map features described by a matrix of pixels, where each pixel
contains an associated value) and vector (i.e., map features delineated by discrete vertices
where each vertex defines the coordinates of the spatial objects) data of buildings [3]. The
spaceborne and airborne technology provides abundant remote sensing images that have
become increasingly important for extracting building information [4]. In early studies,
pixel mixture is one important factor that influences building extraction when only fine-
to coarse-resolution satellite images were available. Nowadays, advanced remote sensing
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technology offers very high-resolution images at sub-meter spatial resolution, making
them attractive to extract accurate building footprint polygons. In the very high-resolution
images, the influence of mixed pixels is minor, and the scene complexity becomes a new
challenge for building footprint extraction. Currently, many government departments
and industrial companies adopt manual methods to delineate the vector data of building
footprints from high-resolution remote sensing images so as to obtain the vector maps
that meet the accuracy requirements of surveying and mapping. As manual annota-
tion is time-consuming and requires expertise [5], there is a need to develop an efficient
and robust scheme for automated extraction of building footprint polygons from remote
sensing images.

Classifying high-resolution remote sensing images to obtain the raster data of build-
ings has been extensively studied for decades [6,7]. Traditional methods include dis-
covering and designing handcrafted features, such as spectral features, texture features,
morphological features, and boundary features, as empirical indicators to distinguish
buildings from other land surface objects in remote sensing images [8,9]. These meth-
ods often use empirical thresholds for classifying building objects and have drawbacks,
such as insufficient uses of spectrum or spatial information and a high sensitivity to the
choice of parameters or thresholds [10,11]. Machine learning models can overcome the
shortcomings of the empirical methods and have been successfully applied for classify-
ing buildings in remote sensing images [12]. Machine learning models, such as support
vector machine, random forests, and artificial neural networks, use computer algorithms
to establish the nonlinear relationships between inputs and targets through the training
and learning processes based on many known samples. Machine learning methods have a
high degree of automation and can efficiently reduce the confusion between buildings and
other man-made features, but the input features to the machine learning models are often
manually designed, such as low-level features or enhanced semantic features [13,14]. In
recent years, with the development of computer technology, deep learning methods can
automatically extract the features of different levels, such as low-level, middle-level, and
high-level features from images [15], and have been widely used in the fields of computer
vision and remote sensing image processing [16]. Earlier studies used patch-based con-
volutional neural networks (CNNs) to process image blocks to train and predict the class
of the center pixel, but CNNs have difficulties in providing full-resolution classification
maps [17,18]. Many studies on classifying buildings from remote sensing images now favor
fully convolutional networks (FCNs), which implement an encoder–decoder framework
and normally include convolution, down-sampling, and up-sampling layers for pixel-wise
prediction or sematic segmentation [19,20]. For example, Maggiori et al. [21] utilized a fully
convolutional architecture and designed a multiscale neuron module to produce dense
predictions of building maps by alleviating the trade-off between recognition and localiza-
tion. Ji et al. [22] proposed a Siamese U-Net that improves the classification performance of
buildings, particularly large buildings. Huang et al. [23] designed an end-to-end trainable
gated residual refinement network that has a competitive performance in extracting build-
ing raster data across urban and suburban scenes based on tests in a publicly available
dataset. The above studies provide feasible methods for generating the classification maps
of buildings using high-resolution remote sensing images. Some studies utilized the light
detection and ranging (LiDAR) point cloud data to carry out building reconstruction given
that the LiDAR data contain three-dimensional information related to buildings [24–26]. Gi-
lani et al. [27] defined three general steps, including feature preservation, surface growing,
and false plane elimination, to achieve automatic detection of building roof planes from
the LiDAR point cloud. Although the LiDAR data can provide supplemental geometry
features, the data acquisition of LiDAR is also more costly and complicated than those of
optical sensors [28].

Extracting the vector data of building footprints from high-resolution remote sensing
images is much more challenging than image classification. Traditional methods that
directly extract the vector data of building footprints often manually design features
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or indexes that allow for generating the vector data of building footprints, but these
methods are normally empirical and have difficulties for uses across images and scenes.
Wang et al. [29] proposed a method to automatically extract rectangular buildings of
different sizes and directions by combining image segmentation, scale-invariant feature
transformation, and adaptive window Hough transform. Qin et al. [30] adopted straight
line detection and graph loop searching to extract building boundaries with different
shapes, sizes, and densities. Recently, some researchers have attempted using the deep
learning methods to improve the extraction of building footprint polygons. Girard and
Tarabalka [31] developed a deep learning-based model that could directly generate the
vector maps, but the developed model has limitations in terms of extracting buildings with
different shapes.

An indirect method that extracts building footprint polygons is to first classify build-
ings in remote sensing images, and then convert the raster format of buildings into a
vector format. Buildings often have regular boundaries that consist of straight lines, while
the pixel-wise semantic segmentation methods are often ineffective in describing the de-
tails of building footprint boundaries even if the produced classification map is highly
accurate. It is, therefore, necessary to optimize the building footprint boundaries when
converting them from raster data to vector data. One optimization approach is to improve
the classification results of building boundaries in remote sensing images. Wu et al. [32]
proposed a boundary-regulated network that consists of a modified U-Net and a multi-
tasking framework to generate segmentation maps and building outlines by accounting
for boundary regulation. To resolve the problem of blurry object boundaries, Marma-
nis et al. [33] proposed a DCNN models for semantic segmentation of high-resolution aerial
images, which explicitly accounts for the boundaries of classes in the segmentation process.
Taking the contours into consideration, Liao et al. [34] proposed a boundary-preserved
building extraction approach. By embedding the contour information in the labels, the
proposed approach can enhance the representation of building boundaries and improve
the performance on boundaries of adjacent buildings. Another optimization approach is
to improve the building boundary vertices when converting data formats. Some classic
vector data processing algorithms, such as the Douglas–Peucker [35], Wang–Müller [36]
and Zhou–Jones [37] algorithms, have been widely used by researchers. Maggiori et al. [38]
proposed a new algorithm that uses a labeled triangular mesh to approximate the classifi-
cation maps. Although many methods can improve the generated vector data of buildings,
the obtained polygons generally do not match the building footprints well. One reason
is that it is difficult to distinguish between adjacent buildings and deal with misclassified
small patches during the map vectorization. Existing methods that extract building foot-
print polygons often have limitations; for example, they are only applicable for generating
polygons of individual buildings with regular shapes such as rectangles.

Compared with pixel classification or segmentation, polygon extraction is a different
and challenging task because it involves the transition of data representation. Specifically,
pixel classification or segmentation of images transforms raster data into raster data, while
the process that extract polygons from images transforms raster data into vector data. In
the task of pixel-wise classification, the deep learning model only needs to discriminate
the object pixels from the background pixels. In the task of polygon extraction, it needs to
obtain at least the positions, the belongings, and the connections of the key vertices. Only a
few studies have applied the deep learning models to detect the key points of geographical
objects from remote sensing images. There are two main difficulties when using deep
learning to directly detect a key point. First, compared to segmentation, the imbalance
between positive and negative samples is severe. The annotated key points are much fewer
than the background samples, and as a result, training and converging the deep learning
network is difficult if we treat this task as a classification problem. Second, the number
of key points that exist in an image is unknown. It is difficult to handle the outputs with
irregular length using a convolutional neural network directly. Song et al. [39] proposed an
FCN-based approach to detect building corners in aerial images. The corners are extracted
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by the contours of the predicted building footprints, which means that the performance
of the corner detector largely relies on the accuracy of semantic segmentation. A deep
learning-based model that treats the geolocation of building corners as direct objectives of
optimization is not yet available.

One main problem is that existing segmentation-based methods extract building
footprints with irregular outlines and blurred boundaries, which results in vectorized
polygons with irregular shapes and redundant vertices. Given that existing deep learning-
based studies mainly focus on improving the map classification or semantic segmentation
of buildings, we aim to explore the ability of deep learning methods to learn and extract the
vector data of buildings. The goal of this study is to develop a framework that synthesizes
deep learning models to extract building footprint polygons from the remote sensing
images and allow for the direct production of building maps in a vector format. In the
developed framework, we use three deep learning models to perform different image
processing tasks, including semantic segmentation, bounding box detection, and key point
detection. A polygon construction strategy based on Delaunay triangulation was also
designed to integrate these outputs effectively and thus generate high-quality building
polygon data. The proposed framework is able to achieve comparable mapping accuracies
with semantic segmentation models on a pixel basis and generate building footprint
polygons with concise edges and vertices with regular shapes that are close to the reference
data. Our method has the potential to extract accurate building footprint polygons from
remote sensing images for applications in geospatial analysis.

2. Methodology
2.1. Overview

Our goal is to detect and generate the building footprint polygons that accurately
describe the outline of individual buildings in a vector format from very high-resolution
remote sensing images. Compared with the pixel-based raster data, the vector data contains
not only the geometric information but also topological information, which provides
another efficient way to represent real-world features in a geographic information system.
Geometric information includes the positions of objects and their components in Euclidean
space. Topological information includes the number, relationship, connection, and types
of topological elements, such as vertices. Both geometric information and topological
information are needed to represent objects correctly. To construct an individual building
vector, we need both the accurate position of the vertices and the spatial relationship
among vertices, which are able to generate polylines and polygons for the maps. The vector
data use interconnected vertices to represent the object shapes, and each vertex describes
its position using geographic coordinates in a spatial reference frame. As mentioned
earlier, extracting building footprint polygons from aerial images involves tasks of different
purposes, so it is difficult to optimize an individual deep learning network for different
tasks. Hence, our approach is to split the main task of polygon extraction into several
sub-tasks and utilize an appropriate deep learning model for each subtask. By integrating
several methods in one framework, we are able to extract building footprint polygons
from aerial images automatically and efficiently. As the vertices of building footprint
polygons are often the corners of the building rooftop and the connections between building
footprint corners are often straight lines, our strategy is to extract building polygons from
remote sensing images by detecting the vertices of building footprint polygons first, and
then finding the correct connections among them. Figure 1a illustrates the schematic
workflow of the proposed building extraction method, which consists of four main steps:
corner detection, semantic segmentation, object detection, and polygon construction. The
framework takes very high-resolution aerial remote sensing images with RGB bands as
inputs and extracts key information related to the building footprints from them. It adopts
U-Net to produce the classification maps of buildings, Cascade R-CNN to detect building
objects in the images, and Cascade CNN to detect building footprint corners. The features
extracted using deep learning approaches from the remote sensing images are combined to
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produce building footprint polygons. The proposed deep learning-based framework for
automated extraction of building footprint polygons (DLEBFP) is described in detail in the
following sections.
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R-CNN, and (d) Cascade CNN. In (b), the red arrows denote the operations of convolution and down-sampling, and the
green arrows denote the operations of convolution and up-sampling. In (c), FPN denotes feature pyramid network; RPN
denotes the region proposal network; H1, H2, and H3 denote the network of detection head at different stages; B0, B1, B2,
and B3 denote the results of the bounding boxes predicted at different stages; and C1, C2, and C3 denote the classification
results predicted at different stages. In (d), DCNN represents the deep convolutional neural network; FM denotes the feature
maps generated by DCNN; and HMt (t = 1, 2, . . . , 6) indicates the predicted heat maps at different stages, respectively.

2.2. Building Segmentation

U-Net, originally proposed for biomedical image processing and implemented in
Caffe [40] was found to be effective in the semantic segmentation of remote sensing
images [41,42]. U-Net used skip connections between the encoder and the decoder such
that the decoder can receive low-level features containing abundant spatial and geometric
information from the encoder, and thus it can generate precise classification maps. U-Net
is widely used to extract various natural and man-made objects from remote sensing
images. We use U-Net as a deep learning model for the semantic segmentation of the
buildings. Figure 1b illustrates that U-Net utilizes the encoder–decoder architecture to
make dense pixel-wise predictions. In the original implementation of U-Net, there are
five convolutional blocks in the encoder and four upsampling blocks in the decoder. A
convolutional block consists of two 3 × 3 unpadded convolutions, each followed by a
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rectified linear unit (ReLU). At the end of the block, a 2 × 2 max pooling operation with
stride of 2 is appended for downsampling. After the process of each convolutional block,
the number of feature channels doubled. In the decoder, the upsampling block consists of
an upsampling operation of the feature map followed by a 2 × 2 convolution, which halves
the number of channels. Two 3 × 3 convolutions followed by ReLU are used to process
the concatenation of low-level features and features from the previous block. For the last
layer in the decoder, a convolutional function followed by a sigmoid function is applied to
map the output. In total, the U-Net has 23 convolutional layers, including 9 convolutional
layers in the encoder and 14 in the decoder.

In this work, we modified the original U-Net. The modified U-Net shared similar
architecture with original U-Net, and we added several modules to improve the perfor-
mance of semantic segmentation. We adopted the encoder part based on ResNet34 [43]
and used a residual unit consisting of multiple combinations of convolution layers, batch
normalization (BN), and rectified linear unit (ReLU) activation. ResNet34 contains five
convolutional blocks but more convolutional layers in each block, and the total number of
convolutional layers was 34. Since many studies have suggested that a deeper network
would produce more discriminative features and achieve better performance, the use of
ResNet34 helps improve the segmentation results of UNet. Instead of directly passing
through the convolution layers, the residual units utilize a shortcut connection and element-
wise addition to transfer the input features directly to the output. It was found that the
identity and projection shortcuts in ResNet could address the degradation problem during
model training and also introduce neither extra parameter nor computation complexity [41].
The ReLU activation function is defined as f (x) = max(x, 0) which reduces the possibility
of vanishing gradient and accelerates the convergence of network during training [44,45].
BN performs the normalization for each training mini-batch and it allows for high learning
rates and addresses internal covariate shift [46]. During the training stage, the mean and
variance of features in a batch are first calculated and then used to normalize the features.
In addition, two learnable parameters γ and β control the rescaling and shifting of the
normalized values. As mini-batches are not used during inference, the moving average
of the training set mean and variance are computed and used to normalize the features
during the test procedure. For the decoder, compared to the blocks used in original U-Net,
the BN layer is also inserted between the convolutional layer and the ReLU activation,
such that we can accelerate the network convergence and improve the model performance.
It should be noted that the cropping operation was removed from our network because
the encoder used convolutional operation with the same padding rather than unpadded
convolutions utilized in original U-Net.

Since the number of nonbuilding pixels is much higher than the number of the building
pixels in most scenes, the effect of class imbalance could cause the learning process to
be trapped in a local minimal of the loss function, making the classifiers strongly biased
towards the background class [23,47]. To address the issue of class imbalance, we combined
DiceLoss with binary cross-entropy loss as the objective function. The total loss calculation
can be written as follows:

Lseg = LDice + LBCE (1)

LDice = 1 −
2×∑H

i=1 ∑W
j=1 yij × ŷij + ε

∑H
i=1 ∑W

j=1 yij + ∑H
i=1 ∑W

j=1 ŷij + ε
(2)

LBCE = − 1
H ×W

H

∑
i=1

W

∑
j=1

[
yij × log ŷij +

(
1− yij

)
× log

(
1− ŷij

)]
(3)

where H is the height of the input image, W is the width of the input image, yij denotes the
binary label of the pixel in the image (0 represents nonbuilding and 1 represents building),
ŷij represents the predicted probability of pixel ranging from 0 to 1, and ε denotes a factor
used to smooth the loss and the gradient.
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2.3. Building Object Localization

We use Cascade R-CNN to identify building objects from the remote sensing images.
Note that many object detection models use intersection over union (IoU) to determine
positive or negative samples; the use of a prescribed IoU significantly influences the model
performance, because a low IoU easily leads to noisy detections and a higher IoU results in
low detection accuracy because of model overfitting and sample mismatching. Cascade
R-CNN can effectively address the abovementioned problems and improve object detection
by adopting a multistage strategy for model training with an increasing IoU [48]. At the
beginning of the model run, the results generated by the region proposal network are
heavily tilted towards low quality, and thus the model uses a low IoU. Following the first
stage of image classification and bounding box regression, the obtained bounding boxes are
resampled using a higher IoU to provide samples with a higher quality. These processes go
iteratively to improve the model performance for detecting objects from images.

Figure 1c illustrates the architecture of Cascade R-CNN model for building object
detection. We use the feature pyramid network [49], which can detect multiscale objects
by combining high-resolution low-level features and low-resolution high-level features to
extract the feature maps at different scales. Lin, Dollar, Girshick, He, Hariharan, Belongie,
and Ieee [49] demonstrated that using more than three stages in Cascade R-CNN would
lead to a decreased performance. Thus, we chose the number of stages to be three and
set the IoU thresholds of the detector in different stages as 0.5, 0.6, and 0.7, respectively.
We used the same loss function in the feature pyramid network and the detection head,
binary cross-entropy loss in the task of image classification, and smoothL1 loss in the task
of bounding box regression:

LSmoothL1 =

{
0.5× (y− ŷ)2 i f |y− ŷ| < 1
|y− ŷ| − 0.5 otherwise

(4)

where y denotes the reference values, and ŷ denotes the predicted values obtained from
the models.

2.4. Corner Detection

Cascade CNN, initially proposed for multi-person pose estimation [50], is a key
point detection network. We used Cascade CNN to detect building footprint corners. We
removed the branch of part affinity field that was used to determine the overall relationship
in the models because our network only focuses on predicting building footprint corners.
Cascade CNN adopts a multistage strategy. In the first stage, the backbone network extracts
high-level features from the input image, and convolutional layers with different kernel
sizes are used to learn semantic information and produce a confidence map of the target
key point. The model structure in the second stage is similar to that in the first stage, but
the network concatenates the feature maps extracted by the backbone network and the
confidence map generated from the previous stage as model inputs. The processes in the
other stages are similar to those in the second stage.

Training a deep learning model to extract the geolocation of key points in an image is
prone to model overfitting when directly using the coordinates as ground truth. We used
heat maps as the ground truth for model developments, such that the network predicts the
confidence map instead of the direct geographic coordinates of key points. The heat map is
a two-dimensional map that represents the possibilities of the occurrence of the key points
at each pixel. In a heat map, the pixel value of the possibilities ranges from 0 to 1. If one
pixel is close to the annotated key point, the possibility value at the given pixel is close to 1.
If multiple key points occur within one pixel, there is a peak corresponding to each key
point. Using a heat map is advantageous, as it is possible to visualize the deep learning
processes, given that the outputs can be multimodal [51]. We generate the heat map S∗k for
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each key point k by placing a Gaussian function with fixed variance at the ground truth
position of the building corners. The heat map S∗k at location p is defined as follows:

S∗k (p) = exp

(
−‖p− xk‖2

2
2σ2

)
(5)

where p denotes the pixel coordinate in the image, xk denotes the coordinate of the key
point, ‖p− xk‖2

2 is the squared Euclidean distance from the given pixel p to the key point
xk, and σ is a constant that controls the spread of the peak.

As there could be many key points in a single image, a max operator is used to
aggregate individual confidence maps of each corner and thus generate the complete
confidence map used for training the models. The operator is defined as follows:

S∗(p) = max
k

S∗k (p) (6)

The architecture of Cascade CNN is shown in Figure 1d. We utilized VGG19 [52] as
the backbone network in the model. The size of the feature map is one eighth of the size of
the input image and the number of stages in Cascade CNN is 6. The loss function used in
both the intermediate layers and the output layers is a mean square error (MSE) loss, which
penalizes the squared pixel-wise differences between the predicted confidence map and
the synthesized heat map. The loss function of the predicted confidence map is defined
as follows:

Lcon f map =
1

H ×W

H

∑
i=1

W

∑
j=1

(yij − ŷij)
2 (7)

where H denotes the height of image, W denotes the width of the image, yij is the value of
the pixel (i, j) in the ground reference map, ranging from 0–1, and ŷ is the value of the pixel
(i, j) in the predicted confidence map obtained from Cascade CNN.

Cascade CNN uses the inputs of the aerial images to generate confidence maps of
key points. We extracted the locations of the building footprint corners by performing a
nonmaximum suppression (NMS) on the heat maps [50,53]. Specifically, we used a max
filter with the size of 3 × 3 slides along the heat map to extract the local maximum pixels
as the pixels of key points. Note that we calculate the losses for the confidence maps in
each stage during the training processes and avoid the problems of vanishing gradient or
exploiting gradient when training the network.

2.5. Polygon Construction

To construct the structure of the building footprint polygons, we used two-dimensional
Delaunay triangulation to transform the detected key points into the candidate polygons.
Delaunay triangulation, as proposed by Boris Delaunay in 1934, has been widely used
in computer graphics and geographical studies [54,55]. Given a set of discrete points,
Delaunay triangulation generates a triangulated irregular network, where no points are
located inside the circumcircle of any triangle in the network and the minimum angle
of all triangles is the largest among all possible networks. We used the bounding boxes
obtained by Cascade R-CNN to constrain the key points and constructed a triangulated
irregular network for each individual building. Owing to the limitations in computational
resources, there is a need to crop large remote sensing images, resulting in buildings being
truncated at the borders of the cropped images. We defined the intersection points between
the segmentation mask and the border of the cropped image as virtual corners (VC) and
used them together with the key points detected by Cascade CNN for constructing a
triangulated irregular network. The use of VC when constructing building polygons based
on Delaunay triangulation could largely reduce erroneous triangles. For each triangle in
the triangulated irregular networks generated by Delaunay triangulation, we calculated
the ratio of the building areas obtained from the segmentation map generated using U-Net
to the triangle areas and applied an individual threshold to classify the triangles as either
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building or nonbuilding triangles. All building triangles were merged to produce the
building footprint polygons across the entire region.

3. Experiment Setup
3.1. Dataset

The performance of the deep learning model relies on a dataset with high-quality
samples. An aerial imagery dataset from the Wuhan University (WHU) building dataset
was used (http://gpcv.whu.edu.cn/data/ (accessed on 10 November 2020). This dataset
consists of more than 84,000 independent buildings labeled in the vector format and the
aerial images at a 0.075 m spatial resolution covering an area of 78 km2 in Christchurch,
New Zealand. This area contains buildings of various architectural types with varied
colors, sizes, shapes and usages, making it ideal to evaluate the deep learning models.
The original aerial images are open-source data provided by the Land Information New
Zealand (LINZ) Data Service (https://data.linz.govt.nz/layer/53451-christchurch-0075m-
urban-aerial-photos-2015-2016/ (accessed on 29 Aug 2021)). The photographs were taken
around 2015 and 2016, and the images were ortho-rectified digital orthophoto maps (DOMs)
with RGB channels in New Zealand Transverse Mercator (NZTM) map projection [22,56].
The spatial accuracy is 0.2 m with 90% confidence level. As shown in Figure 2, the area
was divided into three sub-regions for model training, validation, and testing. The main
reason for using the WHU dataset for model tests is that the vector data provided by
the land information service of New Zealand have been carefully checked and corrected
by cartography experts [22]. The high-quality vector data of building footprints can be
easily transformed into raster building maps, bounding boxes, and heat maps with vertex
coordinates for training and testing the deep learning models.
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Figure 2. The aerial image (left) and the vector map of building footprint polygons (right) are shown for the study area in
Christchurch, New Zealand.

Additionally, we used the publicly available benchmark dataset, ISPRS Vaihingen se-
mantic labeling dataset (https://www2.isprs.org/commissions/comm2/wg4/benchmark/
2d-sem-label-vaihingen/ (accessed on 20 January 2021)), to test the robustness of the pro-
posed framework. The Vaihingen dataset consists of pairs of images and labels at the spatial

http://gpcv.whu.edu.cn/data/
https://data.linz.govt.nz/layer/53451-christchurch-0075m-urban-aerial-photos-2015-2016/
https://data.linz.govt.nz/layer/53451-christchurch-0075m-urban-aerial-photos-2015-2016/
https://www2.isprs.org/commissions/comm2/wg4/benchmark/2d-sem-label-vaihingen/
https://www2.isprs.org/commissions/comm2/wg4/benchmark/2d-sem-label-vaihingen/
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resolution of 9 cm. The dataset contains 33 true orthophotos with near infrared (NIR), red
(R), and green (G) bands, which are beneficial for roof contour detection. These tiles have
different image sizes with an average size of 2494 × 2064 pixels. The pixel-based labels
have six categories, including impervious surfaces, buildings, low vegetation, trees, cars,
and clutter. We manually delineated building footprint polygons based on both images
and pixel-based labels for studies. We used six in the 33 tiles for testing and the others for
model training and validation.

3.2. Implementation Details

All the deep learning models and experiments were implemented on the Ubuntu
18.04 system equipped with a single NVIDIA RTX 2080Ti GPU with 11 GB of memory under
CUDA10.0 and cuDNN7.5. U-Net was implemented based on the open-source machine
learning library of PyTorch (https://pytorch.org/ (accessed on 10 November 2020)). The
encoder part in the network was initialized using a pretrained ResNet-34 model, and the
network was trained with a batch size of four. We only used the feature maps that were
generated from the first four stages to make predictions. An Adam optimizer was used
to optimize the parameters with a learning rate of 0.0001. Data augmentation, including
rotation, flipping, and random manipulation of brightness and contrast, was applied to
the images at the training stage. The network was trained for 40 epochs using the training
set, and the model that performed well in the validation set was stored. Cascade R-CNN
was implemented using MMDetection, an object detection and instance segmentation
code based on PyTorch. The backbone was initialized using a pretrained ResNeXt101
model. The basic module of the ResNeXt101 model was different from that of ResNet-
34. It used a bottleneck design to decrease the parameters in the network and make it
efficient. In ResNeXt101, group convolution was introduced to improve the model accuracy
without increasing complexity. Feature maps obtained at all stages were used in the feature
pyramid network to detect objects with different scales. The network was trained using the
stochastic gradient descent optimizer with a batch size of four, an initial learning rate of
0.02, a momentum of 0.9, and a weight decay of 0.0001. We used the learning rate warmup
with a ratio of 1/3 in the first 500 iterations. The total number of epochs was set to 100, and
the learning rate was reduced to one-tenth of the current learning rate every 30 epochs.
Cascade CNN was implemented based on PyTorch. When generating the heat maps, we
set σ in the Gaussian function as 12. Data augmentation was also applied to the training
data. The backbone was initialized using the pretrained VGG-19 model. Only the feature
maps in the third stage were used for prediction. The entire network was trained using
the stochastic gradient descent optimizer with a batch size of four, an initial learning rate
of 0.02, a momentum of 0.9, and a weight decay of 0.0001. The network was trained for
50 epochs. All the model configurations and hyper-parameters were chosen according to
parallel experiments.

Note that all model configurations and hyper-parameters were carefully designed
according to parallel experiments. Hundreds of experiments were conducted to test
the performances of possible configurations and hyper-parameters, and we chose the
one that outperformed any other settings, namely the architecture and specific values
presented above.

3.3. Comparative Methods

To understand the model performance, we compared DLEBFP with three different
deep learning models for the semantic segmentation results in the raster format and with a
popular approach for generating vector results on the WHU building dataset.

We applied the deep learning methods of U-Net, FCN, and SegNet [57] to produce
semantic segmentation maps for model comparisons. FCN alters the original CNN struc-
ture to enable dense prediction. FCN uses transposed convolution to upsample feature
maps to match the sizes of the images and exploit the skip layer strategy. FCN has proven
its performance in terms of model accuracy and computational efficiency across several

https://pytorch.org/
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benchmark datasets. SegNet has an encoder–decoder architecture and is often used for
evaluating the performance of semantic segmentation models. In SegNet, the pooling
indices computed in the max-pooling step in the encoder are reused in the corresponding
decoder to perform nonlinear upsampling. Normally, the memory required in SegNet is
much less than FCN for the same task of semantic segmentation.

Additionally, we vectorized the semantic segmentation maps produced by U-Net
and applied the Douglas–Peucker algorithm to generalize the vector maps. The Douglas–
Peucker algorithm is widely used for processing vector graphics and cartographic gen-
eralization [35,58]. Many building extraction researches also chose the Douglas–Peucker
algorithm for building vector simplification due to its simplicity and efficiency [59,60].
Additionally, its performance has been proven superior to other classic simplification
algorithms, such as the Reumann–Witkam algorithm and the Visvalingam–Whyatt algo-
rithm [58]. The Douglas–Peucker algorithm simplifies a curve that is composed of line
segments to a similar curve with fewer points by accounting for the maximum distance
between the original curve and the simplified curve. At each step, the Douglas–Peucker
algorithm attempts to find a point that is the farthest from the line segment with the first
and the last points as end points. If the distance between the farthest point and the line
segment is smaller than a prescribed threshold, it decimates all points between the first and
the last points; otherwise, it keeps the farthest point and recursively calls itself with the
first point and the farthest point and then with the last point and the farthest point. The
Douglas–Peucker algorithm can produce objective quality approximations [61]. We applied
different thresholds for the maximum distance in the Douglas–Peucker algorithm (i.e., 0.1,
0.5, and 1.0 m) to produce building footprint polygons based on the classification maps
derived from U-Net for five sub-regions and the entire study region. By comparing the
results simplified by different thresholds, we are able to analyze the performance variance
with thresholds. Moreover, the results of simplification by Douglas–Peucker are also used
to compared with the vector generated by our methods DLEBFP to verify the superiority
of our approach.

To test the robustness of the proposed method, we also conducted experiments in the
ISPRS Vaihingen dataset and compared the comparative methods with DLEBFP. Similar to
the experiments on the WHU dataset, we trained and analyzed the model performance on
the Vaihingen dataset.

3.4. Ablation Studies

Ablation studies aim on investigating how individual or combination of features affect
the model performance by gradually removing some features of the model. Ablation stud-
ies have been widely adopted in the field of remote sensing and computer science [62–64].
Here, we conduct experiments to investigate the ablated features of both the virtual corner
and bounding boxes. In DLEBFP, virtual corners generated from the semantic segmenta-
tion maps and bounding boxes detected by Cascade R-CNN are both used to improve the
model performance in producing the building vector data. We can still extract the building
footprint polygons by methods without these components.

To evaluate the uses of virtual corners and bounding boxes, we set four kinds of
experiments on the WHU dataset in the ablation studies, including a baseline method.
The baseline method (hereinafter referred to as Baseline) only uses two deep learning
models (i.e., Cascade CNN and U-Net) for feature extraction and Delaunay triangulation
for polygon construction. In Baseline, we constructed the triangulation network based on
the building corners detected by Cascade CNN and classified the constructed triangles
into building or nonbuilding triangles based on the segmentation map extracted by U-Net.
We merged all building triangles to produce building footprint polygons. In the other
three experiments, we tested the virtual corners and bounding boxes detected by Cascade
R-CNN and extracted the building footprint polygons by (1) the baseline method with
bounding boxes (hereinafter referred to as Baseline + BB), (2) the baseline method with
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virtual corners (hereinafter referred to as Baseline + VC), and (3) the baseline method with
both bounding boxes and virtual corners (hereinafter referred to as Baseline + BB + VC).

3.5. Evaluation Metrics

We evaluated the model performance based on the raster format and used the metrics,
including precision, recall, and IoU, which have been widely used in the assessment of
building extraction results [65,66]. For the raster map, precision is the ratio of the true
positive pixels to all detected building pixels, recall is the ratio of the true positive pixels
to the reference building pixels, and IoU is the ratio of the true positive pixels to the total
number of true positive, false positive, and false negative pixels. IoU is extensively used
in evaluating model performance for image classification, as it provides a measure that
penalizes false positive pixels. The abovementioned metrics are defined as follows:

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

IoU =
TP

TP + FP + FN
(10)

where true positive (TP) denotes the number of building pixels correctly classified as
buildings, false positive (FP) denotes the number of nonbuilding pixels misclassified
as buildings, and false negative (FN) denotes the number of building pixels that are
not detected.

In addition to assessments based on the pixel-wise metrics, we computed the vertex-
based F1-score (VertexF) as proposed by Chen, Wang, Waslander, and Liu [60] to evaluate
the performance of the generated building footprint polygons. To derive VertexF, the
extracted polygons and the reference polygons were interpreted as two different sets of
vertices. We set a buffer distance for every ground truth vertex and then classified all the
vertices of the extracted building polygon as true positive (TP), false positive (FP), and
false negative (FN). VertexF is calculated as:

VertexFs =
2TPs

2TPs + FNs + FPs
(11)

where the subscript s denotes the buffer distance, TPs is the number of true positive vertices,
FNs is number of false negative vertices, and FPs is the number of false positive vertices.
We tested the buffer distances at 0.5 m and 1.0 m, respectively.

Evaluating the mapping accuracies of vertices is particularly meaningful for the
vector data, because a simple and accurate representation is crucial to the map production.
Moreover, the mapping accuracies of vertices better reflect the required manual editing
workload when converting the extraction results to real map products [60].

4. Results
4.1. Results on WHU Dataset

Figure 3 shows the rasterized results of the extracted building footprints using different
methods in the test area. Visually, the four methods have their own pros and cons. DLEBFP
(Figure 3c) has fewer FPs than the three semantic segmentation models but contains more
FNs. One reason is that the object detection method used in our approach is functionally
similar to a filter that only screens pixels with high confidence of building footprints, such
that it would improve the precision but impair the recall of the model. Among the three
segmentation-based methods, FCN (Figure 3d) produces results similar to those of our
method. FPs produced by FCN are less than those derived from either SegNet (Figure 3e)
or U-Net (Figure 3f). Compared with the other methods, SegNet and U-Net generated
more misclassified building pixels and generally performed well in extracting relatively
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large buildings. U-Net occasionally misclassified water pixels as buildings, for example,
the pixels that are located in the river in the test area.
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Figure 3. Comparisons of different methods for producing the raster classification maps on the WHU dataset are shown
for (a) the true-color composite image, (b) the binary ground reference image where the white color denotes building
areas and the black color denotes nonbuilding areas, (c) the building classification map derived from DLEBFP, (d) the
building classification map derived from FCN, (e) the building classification map derived from SegNet, and (f) the building
classification map derived from U-Net. In (c–f), the true positives (TPs), false positives (FPs), and false negatives (FNs) are
marked in green, red, and blue colors, respectively.

Figure 4 shows five scenes with the window size of 3000 × 3000 pixels, where the
extent and location of buildings are marked in red rectangles in Figure 3a, for intuitive com-
parisons of the mapping results. All methods were able to identify most of the buildings
correctly, demonstrating the power of deep learning approaches for the semantic segmen-
tation of remote sensing images. Compared with the semantic segmentation models, our
method generates fewer FPs. For example, in the first scene, three semantic–segmentation-
based methods misclassified the road pixels as the building pixels (Figure 4c–e), and our
method avoided misclassification because we used Cascade CNN to detect building foot-
print corners such that the falsely classified roads were screened out. In the second scene,
many pixels surrounding a large building are also classified as buildings by both SegNet
(Figure 4d) and U-Net (Figure 4e), whereas FCN (Figure 4c) produces a relatively lesser
misclassification of pixels in the surroundings of the same building. In the same scene, our
method distinguishes buildings from other objects and preserves the geometric details of
building footprint boundaries. Although DLEBFP can extract most buildings accurately,
there are some omission errors in buildings, resulting in higher FNs than the semantic
segmentation methods. In general, among the three semantic segmentation methods, FCN
did not extract the shape of buildings accurately and lost some details along the building
boundaries, and U-Net and SegNet had similar performance across five scenes.
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Figure 4. The true-color-composite images and the extracted classification maps of buildings using different approaches
for five close-up scenes in the WHU dataset are shown for (a) the true-color composite images, (b) the binary ground
reference images where the white color denotes building areas and the black color denotes nonbuilding areas, (c) the
building classification maps derived from FCN, (d) the building classification maps derived from SegNet, (e) the building
classification maps derived from U-Net, and (f) the building classification maps derived from DLEBFP. The true positives
(TPs), false positives (FPs), and false negatives (FNs) of buildings are marked in green, red, and blue colors, respectively.

Table 1 summarizes the quantitative evaluation results of our method and the three
deep learning models in the close-up scenes and the entire testing dataset at the pixel level.
The results of quantitative comparisons are in line with the visual examination results. Our
method achieved the best results in Scene 1, Scene 2, and Scene 3, with the IoU values of
0.932, 0.886, and 0.895, respectively. U-Net achieves the best performance in Scene 4 and
Scene 5 with the IoU values of 0.902 and 0.893, respectively, which are both 0.006 higher
than our method. SegNet only performs better than our method in Scene 4, with an IoU of
0.898. FCN performs worse than the other methods across all scenes. For the entire testing
data, DLEBFP outperforms FCN and SegNet and obtains a precision of 0.926, the recall of
0.914, and the IoU of 0.851. The IoU obtained by DLEBFP is lower than that obtained by
U-Net. The high IoU of U-Net is due to more correctly classified building pixels, while the
other methods omit these pixels, and thus U-Net has the highest recall values. DLEBFP
has the highest precision values among all methods, because it combines the results of
three deep learning models and effectively refines the building footprint detection on a
step-by-step basis.
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Table 1. The statistical results obtained by different models in the close-up scenes and the entire test dataset of the
WHU dataset.

Model
Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Test Dataset

Precision Recall IoU Precision Recall IoU Precision Recall IoU Precision Recall IoU Precision Recall IoU Precision Recall IoU

FCN 0.941 0.941 0.889 0.925 0.921 0.857 0.918 0.942 0.868 0.942 0.917 0.868 0.938 0.909 0.858 0.932 0.897 0.841
SegNet 0.941 0.959 0.905 0.887 0.957 0.853 0.898 0.957 0.864 0.951 0.941 0.898 0.922 0.940 0.870 0.911 0.925 0.848
U-Net 0.945 0.970 0.917 0.908 0.956 0.872 0.907 0.964 0.879 0.947 0.949 0.902 0.933 0.954 0.893 0.917 0.933 0.861
DLEBFP 0.959 0.970 0.932 0.943 0.939 0.886 0.935 0.954 0.895 0.950 0.941 0.896 0.932 0.949 0.887 0.926 0.914 0.851

Figure 5 displays the vector maps of individual building examples obtained using
different methods. Note that the building examples vary considerably in terms of colors,
shapes, and surroundings. All methods are able to capture building footprint boundaries
in general but with different accuracies. There are large differences among the methods
in terms of the vertex number of the constructed polygons. As shown in Figure 5c, if
we directly transform the semantic segmentation maps produced by U-Net into building
footprint polygons without further processing, dense vertices are located near the building
footprint boundaries, which are not useful for survey applications and not appropriate for
data storage and transmission. Map simplification using the Douglas–Peucker algorithm
with a 0.1 m threshold of the maximum distance (Figure 5d) results in fewer vertices
than before, but many redundant vertices still exist when compared with the reference
data. The number of vertices decreases as the threshold of the maximum distance in the
Douglas–Peucker algorithm increases (Figure 5e,f), but the details of the building footprint
boundaries are missing, resulting in inconsistency between the obtained building footprint
polygons and the reference data in terms of building shapes. Our method (Figure 5g)
performed the best among these methods in depicting the boundaries of buildings with
different shapes and sizes. Note that the proposed method uses concise vertices to generate
fine-grained building footprint boundaries and preserve geometric details as well as the
shapes and structures of buildings. As seen from the second and seventh buildings, our
method can accurately detect the buildings obstructed by trees. The multistage prediction
in Cascade CNN can infer invisible building corners using the locations of the other corners
and the extracted high-level features. In comparison, U-Net does not recover the buildings
obstructed by trees and underperforms in comparison to our method in terms of the
constructed building footprint polygons.

Table 2 lists the quantitative results obtained using different approaches. The vector
results of U-Net have an IoU value of 0.858, which is slightly lower than that of the
raster result. The results of our methods in the vector format have an IoU value of 0.850,
which is lower than that of U-Net. In terms of the number of extracted buildings, the
results of our method are closer to the reference data. DLEBFP generates 14,687 building
footprint polygons, only 988 (approximately 6.3%) less than the reference data. One
reason is that our method generates a few adjacent polygons that share building footprint
corners with the other polygons, and the adjacent polygons could be recognized as a
single polygon when conducting statistical analysis. The vector results of U-Net give
18,302 building polygons, 2627 (roughly 16.8%) more than the reference data, because
there are many fragmented patches in the results. As mentioned earlier, the number of
vertices is important for the management and application of the vector data. The vector
results of U-Net have nearly eight million vertices, much higher than those of the ground
reference. When generalizing the vector data using the Douglas–Peucker algorithm with
the maximum distance thresholds of 0.1 m, 0.5 m, and 1.0 m, the number of vertices
decreases to approximately 1 million, 278,541, and 250,132, respectively, and IoU decreases
to 0.858, 0.851, and 0.840, respectively. Our method generates building footprint polygons
with 135,623 vertices, only 1377 more than the reference data, and obtains an IoU value of
0.850. A vertex-based metric was calculated based on the extraction of different methods.
As displayed in Table 2, our method outperforms other methods with VertexF0.5 of 0.668
and VertexF1.0 of 0.744, which are much higher than those derived from the other methods.
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Table 2. Statistical results obtained using different models after vectorization on the WHU dataset.

Method
IoU Based

on the
Raster Data

IoU Based
on the

Vector Data

Changing
Rate

Number of
Reference
Buildings

Number of
Extracted
Buildings

Number of
Reference
Vertices

Number of
Extracted
Vertices

VertexF0.5 VertexF1.0

DLEBFP 0.851 0.850 0.1% 15,675 14,687 134,246 135,623 0.668 0.744
U-Net 0.861 0.858 0.3% 15,675 18,302 134,246 7,990,152 0.022 0.025

U-Net + Douglas–Peucker
(d = 0.1 m) 0.861 0.858 0.3% 15,675 18,302 134,246 1,138,969 0.114 0.134

U-Net + Douglas–Peucker
(d = 0.5 m) 0.861 0.851 1.0% 15,675 18,302 134,246 278,541 0.229 0.309

U-Net + Douglas–Peucker
(d = 1.0 m) 0.861 0.840 2.1% 15,675 18,302 134,246 250,132 0.216 0.295
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4.2. Results on Vaihingen Dataset

In order to test the robustness of the proposed method, we conduct extra experiments
on the ISPRS Vaihingen dataset. Figure 6 displays the examples for the extraction results
using different methods. Our method can obtain more accurate building footprints with
distinctive boundaries and regular shapes. There are less FPs in the extraction results of
our proposed method. For example, in the first and third images, there are many FPs
located around the buildings in the results obtained using FCN, SegNet, and U-Net, and
our method can discriminate it accurately. As shown in the second scene, both FCN and
SegNet produce considerable FNs inside a large building, and both DLEBFP and U-Net
can extract the large building accurately.
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Figure 6. Building extraction results of different models on the ISPRS Vaihingen dataset are shown
for (a) the false-color composite images (NIR-R-G), (b) the binary ground reference images where the
blue color denotes building areas and the white color denotes nonbuilding areas, (c) the building
classification map derived from FCN, (d) the building classification map derived from SegNet, (e) the
building classification map derived from U-Net, and (f) the building classification map derived from
DLEBFP. In c–f, the true positives (TPs), false positives (FPs), and false negatives (FNs) are marked in
green, red, and blue colors, respectively.

Table 3 lists the statistical results for model comparisons on the ISPRS Vaihingen
dataset. DLEBFP outperforms the other models in the metrics of precision, VertexF0.5,
and VertexF1.0. Among all the tested methods, FCN produced the worst results with
the IoU of 0.844. For the entire dataset, DLEBFP outperforms both FCN and SegNet
and achieves a precision of 0.947, a recall of 0.922, and an IoU of 0.876. The IoU of
DLEBFP is slightly lower than that of U-Net. The VertexF1.0 of polygons obtained by three
semantic segmentation models are less than 0.05, indicating that all these models are not
directly suitable for practical applications, and further manual editing is required. We
also compared the simplified results of U-Net with the results obtained by our proposed
method. Simplification using the Douglas–Peucker algorithm with a 0.1 m threshold of
maximum distance results in higher VertexF0.5 and VertexF1.0 than before, but the metric
is still less than one third of that obtained by DLEBFP. As the threshold of maximum
distance increases, the IoU of U-Net becomes lower than that of our method, but both
Vertex-F1.0 and Vertex-F0.5 were still lower than that of DLEBFP. Taking both pixel-based
and vertex-based evaluation results into consideration, DLEBFP can generate building
footprint polygons better than the comparative methods. Overall, the performance of
DLEBFP on the Vaihingen dataset are better than on the WHU dataset as indicated by both
the pixel-based and vertex-based metrics, probably because the ISPRS Vaihingen datasets
have high quality images and accurate image registrations.



Remote Sens. 2021, 13, 3630 18 of 25

Table 3. Statistical results obtained by different models on ISPRS Vaihingen dataset.

Model Precision Recall IoU VertexF0.5 VertexF1.0

FCN 0.883 0.950 0.844 0.024 0.040
SegNet 0.910 0.932 0.854 0.023 0.030
U-Net 0.932 0.942 0.881 0.037 0.043

U-Net + DP0.1 0.932 0.941 0.879 0.198 0.245
U-Net + DP0.5 0.936 0.929 0.874 0.404 0.555
U-Net + DP1.0 0.938 0.917 0.865 0.417 0.562

DLEBFP 0.947 0.922 0.876 0.731 0.782

4.3. Ablation Studies

Figure 7 displays the results of the ablation experiments in the test area. The results of
Baseline (Figure 7d) and Baseline + BB (Figure 7e) are similar, and both have considerable
FNs and large omission errors in building detection. The extracted results using the
Baseline + VC approach are generally comparable to those of Baseline + BB + VC. Visual
comparisons suggest that both methods can extract most of the buildings correctly, but the
Baseline + BB + VC method produces more FNs.
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Figure 7. Comparisons of different models with different improved strategy for producing the rasterized classification
maps on the WHU dataset are shown for (a) the true-color composite image, (b) the binary ground reference image where
the white color denotes building areas, and the black color denotes nonbuilding areas. In (c–f), the true positives (TPs), false
positives (FPs), and false negatives (FNs) are marked in green, red, and blue colors, respectively.

Figure 8 shows the results of the ablation experiments in the selected scenes of the
test areas as marked in red rectangles in Figure 7a. As shown in Figure 8c, the Baseline
method produces many FPs in the gaps among buildings and does not extract buildings
accurately. Because the Delaunay triangulation generates triangles of buildings that share
one or more corners with the other buildings, it could result in the adhesion of buildings.
By applying the constraint of bounding boxes, the results of Baseline + BB (Figure 8d)
show a reduced number of FPs among buildings but have many FNs because of missing
buildings at the edge of the cropped images in the deep learning models. Baseline +
VC (Figure 8e) achieves larger improvements over the Baseline method by reducing FNs
considerably and detecting most of the erroneously mapped buildings correctly, but still
results in considerable FPs among buildings. Baseline + BB + VC (Figure 8f), the complete
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method, integrates the advantages of the earlier two strategies and considerably reduces
both FPs and FNs of buildings.

Remote Sens. 2021, 13, x FOR PEER REVIEW 20 of 26 
 

 

 

Figure 8. Close-up images and classification results obtained by models with different strategy combinations across five 

scenes are shown for (a) the true-color composite images, (b) the binary ground reference image where the white color 

denotes building areas, and the black color denotes nonbuilding areas, (c) the building classification map derived from 

Baseline, (d) the building classification map derived from Baseline + BB, (e) the building classification map derived from 

Baseline + VC, and (f) the building classification map derived from Baseline + BB + VC. . The true positives (TPs), false 

positives (FPs), and false negatives (FNs) of buildings are marked in green, red, and blue colors, respectively. 

Table 4 lists the quantitative results in the ablation experiments. For all five scenes, 

Baseline + BB could achieve a higher precision but a lower recall than Baseline. Compared 

with the Baseline method, the Baseline + BB method has a lower IoU in Scenes 3, 4, and 5, 

and a higher IoU in Scenes 1 and 2. Applying the constraint of bounding boxes did not 

enhance the model performance effectively. Compared with Baseline, the Baseline + VC 

method increases both recall and IoU and achieves the IoU values higher than 0.82 in five 

scenes, indicating that adding virtual corners helps reduce omission caused by image clip-

ping. By integrating two improvement strategies, the Baseline + BB + VC method achieves 

the best performance in five different scenes. Compared with the Baseline + VC method, 

adding the constraints of bounding boxes could increase the values of precision, recall, 

and IoU. The impact is different from that when only adding the constraints of bounding 

boxes to Baseline, implying that the strategy of using bounding boxes only improves the 

model accuracy when buildings can be extracted more accurately. The performance of 

these methods is consistent in the entire test dataset with that on the five scenes. Com-

pared with Baseline, Baseline + BB reduces IoU by 0.6% and Baseline + VC increases IoU 

by 16.2%. The Baseline + BB + VC method outperforms the other methods and achieves 

the best performance with a precision of 0.926, a recall of 0.914, and an IoU of 0.851. In 

Figure 8. Close-up images and classification results obtained by models with different strategy combinations across five
scenes are shown for (a) the true-color composite images, (b) the binary ground reference image where the white color
denotes building areas, and the black color denotes nonbuilding areas, (c) the building classification map derived from
Baseline, (d) the building classification map derived from Baseline + BB, (e) the building classification map derived from
Baseline + VC, and (f) the building classification map derived from Baseline + BB + VC. The true positives (TPs), false
positives (FPs), and false negatives (FNs) of buildings are marked in green, red, and blue colors, respectively.

Table 4 lists the quantitative results in the ablation experiments. For all five scenes,
Baseline + BB could achieve a higher precision but a lower recall than Baseline. Compared
with the Baseline method, the Baseline + BB method has a lower IoU in Scenes 3, 4, and
5, and a higher IoU in Scenes 1 and 2. Applying the constraint of bounding boxes did
not enhance the model performance effectively. Compared with Baseline, the Baseline +
VC method increases both recall and IoU and achieves the IoU values higher than 0.82 in
five scenes, indicating that adding virtual corners helps reduce omission caused by image
clipping. By integrating two improvement strategies, the Baseline + BB + VC method
achieves the best performance in five different scenes. Compared with the Baseline + VC
method, adding the constraints of bounding boxes could increase the values of precision,
recall, and IoU. The impact is different from that when only adding the constraints of
bounding boxes to Baseline, implying that the strategy of using bounding boxes only
improves the model accuracy when buildings can be extracted more accurately. The
performance of these methods is consistent in the entire test dataset with that on the five
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scenes. Compared with Baseline, Baseline + BB reduces IoU by 0.6% and Baseline + VC
increases IoU by 16.2%. The Baseline + BB + VC method outperforms the other methods
and achieves the best performance with a precision of 0.926, a recall of 0.914, and an IoU of
0.851. In comparison with Baseline, the precision, recall, and IoU of our method increased
by 4.4%, 17.8%, and 18.1%, respectively.

Table 4. Statistical results obtained in the ablation experiments.

Model
Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Test Dataset

Precision Recall IoU Precision Recall IoU Precision Recall IoU Precision Recall IoU Precision Recall IoU Precision Recall IoU

Baseline 0.885 0.776 0.705 0.891 0.771 0.704 0.875 0.792 0.712 0.869 0.702 0.635 0.906 0.817 0.753 0.882 0.736 0.670
Baseline + BB 0.958 0.737 0.714 0.943 0.743 0.711 0.926 0.736 0.694 0.941 0.653 0.627 0.927 0.790 0.743 0.918 0.706 0.664
Baseline + VC 0.914 0.954 0.877 0.911 0.890 0.820 0.909 0.954 0.871 0.896 0.931 0.840 0.925 0.946 0.879 0.905 0.911 0.832

Baseline + BB + VC 0.959 0.970 0.932 0.943 0.939 0.886 0.935 0.954 0.895 0.950 0.941 0.896 0.931 0.949 0.887 0.926 0.914 0.851

5. Discussion

By combining the deep learning models for different tasks, our method can accurately
extract building footprint polygons from very high-resolution aerial images. One advantage
of our method is that it can extract building footprints with sharp boundaries in a vector
format and use concise vertices to represent building footprint boundaries that are close
to the ground reference. Another advantage of our method is that it can be executed on a
regional scale instead of on an individual building. The reasons our method performs well
are as follows. First, we used a deep learning model to detect the building footprint corners,
which are used to guide the construction of building footprint polygons. Compared to the
key point detection methods in the traditional methods, such as Harris and scale-invariant
feature transform, the deep learning model can detect building footprint corners accurately.
The traditional methods likely detect erroneous key points belonging to other man-made
objects, such as roads. Second, our method integrates the multi-task results generated by
the deep learning models based on the Delaunay triangulation. The ensemble framework
enhances the model performance and makes it possible to automatically extract building
footprint polygons from remote sensing images on a regional scale.

The accuracy of the corner detection influences the performance of the entire frame-
work and Figure 9 exhibits the corner detection results on the two studied datasets. As
shown in the figure, most of the corners can be detected by Cascade CNN despite of
errors. First, our method cannot detect the corners that are severely obscured by trees.
Although Cascade CNN can infer the existence of corners sheltered by trees in some cases,
the predicted location of corners often deviates from their real locations. Second, a few
redundant points that did not exist in the ground truth data were detected because these
points have representation similar to building corners. The redundant detected points
have limited impacts on the overall performance of our results because such points are
normally removed when we classified the triangles based on the semantic segmentation
maps. In addition, our method performs weakly on the corners that are closely located.
It is difficult to accurately and completely distinguish adjacent corners. In this case, an
incomplete set of corners causes a loss of geometric details and decreases the accuracy
of the extracted building footprint polygons. When comparing with the results of corner
detections on the WHU dataset, Cascade CNN performs better in the Vaihingen dataset.
Visually, the results in the Vaihingen dataset have less omitted corners than in the WHU
dataset. The statistical results associated with vertex-based evaluation metrics illustrate
that the model performance in the Vaihingen dataset is better than in the WHU dataset. The
differences in the model performance are likely due to different standards of classification
labels and image quality. In the Vaihingen dataset, fewer buildings are obscured by trees
or the other objects, and the sheltered buildings are not annotated as the building pixels.
By comparison, the WHU dataset has more sheltered buildings that are still labeled as the
building pixels in the ground truth maps. It is, therefore, challenging to detect building
corners in the WHU dataset. DLEBFP achieves higher IoU in the Vaihingen dataset than in
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the WHU dataset because better corner detection results were obtained in the Vaihingen
dataset when using Cascade CNN.
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Our framework may extract inaccurate building footprint polygons and Figure 10
exhibits four typical types of inaccurate detections. In the first case (Figure 10a), one of
the corners obscured by the other objects could not be detected by our model and thus we
obtained an incomplete building polygon with FNs. The second error type, as shown in
Figure 10b, is mainly caused by the omission of the corner detection model, which results in
FNs. The third type, as demonstrated in Figure 10c, is also mainly caused by the occasional
omission of the corner detection model but leads to FPs instead of FNs. Figure 10d shows
the fourth type of errors, in which two separated buildings were merged into one building,
and there are FNs located in the gaps between the two buildings. Although we utilized the
bounding box detected by Cascade R-CNN to constrain the extent of polygon construction
processes, there are difficulties in a few cases when some buildings are very close to
one another.
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Model efficiency is also an important indicator when evaluating a method. As shown
in Table 5, we compare our method with the others in terms of the time cost of inferencing
deep learning models and post-processing, and the storage size of files in the shapefile
format. As for the inference time of the deep learning models, the computational cost
of our method is approximately four times that of the other methods because we use
three deep neural networks for different tasks. As for the post-processing time, the time
needed for directly converting the raster data to vector data is acceptable. For example,
converting the raster map produced by U-Net to the vector data of building footprints
needs 37.94 ms. When applying a vector generalization method of the Douglas–Peucker
algorithm, the post-processing time increases by approximately 100 ms. Our method costs
the processing time approximately three times more than the method that uses U-Net
with vector generalization. Note that the vector file obtained using our method only has a
storage size of 3.3 MB, which is less than one third the size of the files obtained using the
other methods. It is important to generate files with smaller sizes and maintain both high
pixel-based and vertex-based accuracies in the field of surveying and mapping. A large
file size indicates that the vector file likely contains redundant vertices and does not meet
the requirement of vector map production. In addition, practical applications including
data storage, management, transmission, and spatial analysis prefer accurate and concise
vector data. As the comparative methods tested here generated data with much redundant
information, it is worthwhile producing the vector data with a smaller file size.

Table 5. Comparisons of model efficiency and file sizes.

Model Inference Time (ms) Post-Processing
Time (ms) File Size (MB)

FCN 153.11 11.29 95.6
SegNet 131.43 21.22 129.7
U-Net 185.64 37.94 141.8

U-Net + DP0.1 185.64 141.37 26.4
U-Net + DP0.5 185.64 135.95 10.9
U-Net + DP1.0 185.64 135.05 9.9

DLEBFP 523.49 351.52 3.3

The calculation of both inference time and post-processing time is based on the average
of the test dataset including patches with the size of 1024 × 1024 pixels. The inference
time indicates the time cost of the inference of different deep learning models. The post-
processing time denotes the time cost of the vectorization process. File size denotes the
storage size of the output vector files in a shapefile format.

6. Conclusions

In this work, we proposed a novel framework that combines three deep learning
models for different tasks to directly extract building footprint polygons from very high-
resolution aerial images. The framework uses U-Net, Cascade R-CNN, and Cascade
CNN to provide semantic segmentation maps, bounding boxes, and corners of building,
respectively. Furthermore, a robust polygon construction strategy was devised to integrate
three types of results and then generate the building polygon with high accuracy. In
the strategy, Delaunay triangulation utilizes the detected building footprint corners to
generate the polygons of individual building footprints, which are further refined using
the maps of bounding boxes and semantic segmentation. The experiments on a very
high-resolution aerial image dataset covering 78 km2 and containing 84,000 buildings
suggest that our method can extract the building polygons accurately and completely.
Our method achieves a precision of 0.926, recall of 0.914, and the IoU of 0.851 in the
test dataset of the WHU building dataset. The proposed method was compared with
benchmark segmentation models and classic map generalization methods. Qualitative and
quantitative analyses indicate that our methods can generate a comparable accuracy with
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fewer redundant vertices and provide high-quality building footprint polygons. These
promising results suggest that the developed method could potentially be applied in the
mapping of buildings polygon across large areas.
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