& emote sensing

Article

Robust Antijamming Strategy Design for Frequency-Agile
Radar against Main Lobe Jamming

Kang Li !, Bo Jiu '*, Hongwei Liu ! and Wenqiang Pu >

check for

updates
Citation: Li, K,; Jiu, B.; Liu, H.; Pu, W.
Robust Antijamming Strategy Design
for Frequency-Agile Radar against
Main Lobe Jamming. Remote Sens.
2021, 13, 3043. https://doi.org/
10.3390/rs13153043

Academic Editors: Dmitriy
Garmatyuk and Chandra
Sekhar Pappu

Received: 22 June 2021
Accepted: 29 July 2021
Published: 3 August 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

The National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China;

kli_6@stu.xidian.edu.cn (K.L.); hwliu@xidian.edu.cn (H.L.)

2 Shenzhen Research Institute of Big Data, The Chinese University of Hong Kong, Shenzhen 518172, China;
wengiangpu@cuhk.edu.cn

*  Correspondence: bojiu@xidian.edu.cn

Abstract: To combat main lobe jamming, preventive measures can be applied to radar in advance
based on the concept of active antagonism, and efficient antijamming strategies can be designed
through reinforcement learning. However, uncertainties in the radar and the jammer, which will
result in a mismatch between the test and training environments, are not considered. Therefore, a
robust antijamming strategy design method is proposed in this paper, in which frequency-agile radar
and a main lobe jammer are considered. This problem is first formulated under the framework of
Wasserstein robust reinforcement learning. Then, the method of imitation learning-based jamming
strategy parameterization is presented to express the given jamming strategy mathematically. To
reduce the number of parameters that require optimization, a perturbation method inspired by
NoisyNet is also proposed. Finally, robust antijamming strategies are designed by incorporating
jamming strategy parameterization and jamming strategy perturbation into Wasserstein robust
reinforcement learning. The simulation results show that the robust antijamming strategy leads to
improved radar performance compared with the nonrobust antijamming strategy when uncertainties

exist in the radar and the jammer.

Keywords: main lobe jamming; robust antijamming strategy design; frequency-agile radar; reinforce-
ment learning; imitation learning

1. Introduction

Main lobe jamming is one of the most challenging jamming types because the jammer
and the target are close enough that both are in the main beam of the radar. Common
strategies to combat main lobe jamming involve identifying and eliminating jamming
signals after the radar is jammed [1-3], which can be regarded as passive suppression
methods. However, these methods usually require the jammer and the direction-of-look
to be separable in angular space. Generally, the smaller the angular separation between
the jammer and the direction-of-look, the worse the antijamming performance of the radar
is. As a result, these passive suppression methods do not work well (or do not work at
all) if the angular separation is small. In this paper, we focus on a situation in which
the directions-of-arrival of the received signals incident from the target and the jamming
signals are the same, which is common for a target equipped with a self-protection jamming
system [4].

The principle of electronic counter-countermeasure (ECCM) techniques is to identify
a domain in which the received target signals and the jamming signals can be separated
from each other. In fact, such a domain may exist since it is difficult for the jammer to
effectively and simultaneously jam both the time and frequency domains. Therefore, in
contrast to passive suppression methods, active antagonism requires the radar to actively
sense possible unjammed domains and agilely take actions in such domains to avoid being
jammed. Specifically, these agile actions include frequency agility in transmission [5], pulse
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repetition interval agility [6], pulse diversity [7], and so on. Among the above-mentioned
agile actions, frequency agility in transmission is considered one effective way to combat
main lobe jamming because frequency-agile (FA) radar can actively change its carrier
frequency in a random manner. This makes it difficult for the jammer to intercept and jam
the radar [5,8,9].

To design FA radar antijamming strategies (hereafter, strategy and policy are used
interchangeably), the works in [10-13] considered a specific jamming strategy situation,
and the antijamming strategy design problems were formulated within the framework of
the Markov decision process (MDP), which is solved through reinforcement learning (RL)
algorithms. The use of RL algorithms to design antijamming strategies has received much
attention in the domain of communication [14,15], but its potentiality for radar antijamming
requires further exploration. In [10], an RL-based approach was proposed in which FA
radar learns the dynamics of the jammer and avoids being jammed. In contrast to the
signal-to-noise ratio (SNR) reward signal used in [10], the authors in [11] proposed utilizing
the probability of detection as the reward signal, and a similar deep RL-based antijamming
scheme for FA radar was proposed. In contrast to the pulse-level FA radar in [10,11],
subpulse-level FA radar and a jammer that works in a transmit/receive time-sharing mode
were considered in [16], which is more similar to real electronic warfare than the scenarios
in [10,11]. In addition, a policy gradient-based RL algorithm known as proximal policy
optimization (PPO) [12] was used in [16] to further facilitate the stability of the learning
process and improve convergence performance. In [13], the antijamming strategy design
was investigated under a partially observable condition, and the authors highlighted that
antijamming performance depends on the random nature of the jammer.

As discussed in [10,11,16], FA radar can learn antijamming strategies offline in the
training environment and then utilize the learned strategies to combat the jammer in
the test environment. At every time step, the jammer will intercept the action of the
radar, and the radar will also sense the whole electronic spectrum to infer the action of
the jammer. The sensing in these procedures was assumed to be accurate and perfect
in the training environment in [10,11,16]. This assumption is not always true in practice
because uncertainties exist in both the radar and jammer. For example, if the interception
occurs in the frequency domain, then the jammer cannot intercept each radar pulse if it
is equipped with a scanning superheterodyne receiver. This is because such a receiver
is time multiplexed, and the number of bandwidths that can be scanned [17] is based
on a preprogrammed scanning strategy. Even if the jammer is equipped with receivers
that have a large instantaneous bandwidth, such as channelized receivers, measurement
errors cannot be excluded [17]. Similarly, due to noise and hardware system errors, the
radar cannot acquire perfect information about the jammer, even if it can sense the entire
electronic spectrum through spectrum sensing [18].

The existence of uncertainties in both the radar and jammer will lead to a mismatch
between the presumed and true environment. If uncertainties in the environment are not
considered, then radar antijamming performance will be heavily degraded. Therefore,
it is of vital importance to design robust antijamming strategies to maintain good per-
formance when uncertainties exist. It should be noted that uncertainties in the jammer
were considered in [13], but the best approach to designing robust antijamming strategies
remains unknown.

To overcome the uncertainties in both the radar and jammer, a robust antijamming
strategy design method for FA radar is proposed in this paper. FA radar and main lobe
jamming with a transmit/receive time-sharing jammer are considered and modeled within
the framework of RL. The proposed robust method was based on imitation learning [19]
and Wasserstein robust reinforcement learning (WRZL) [20], where imitation learning was
used to learn the jammer’s strategy, and WR2L was utilized to design a radar strategy that
was robust against uncertainties in the jammer’s strategy and itself. The main contributions
of this paper are summarized as follows:
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*  To express the jamming strategy mathematically, a jamming strategy parameterization
method based on imitation learning is proposed, where the jammer is assumed to be an
expert making decisions in an MDP. Through the proposed method, we can transform
the jamming strategy from a “text description” to a neural network consisting of a
series of parameters that can be optimized and perturbed;

¢ Toreduce the computational burden of designing robust antijamming strategies, a
jamming strategy perturbation method is presented, where only some of the weights
of the neural network need to be optimized and perturbed;

¢ By incorporating jamming strategy parameterization and jamming strategy perturba-
tion into WR?L, a robust antijamming strategy design method is proposed to obtain
robust antijamming strategies.

The remainder of this paper is organized as follows. The backgrounds of RL, robust
RL, and imitation learning are briefly introduced in Section 2. In Section 3, the signal mod-
els of the FA radar and the main lobe jammer are presented, and then, the RL framework
for the FA radar antijamming strategy design is described. The proposed robust antijam-
ming strategy design method, which incorporates jamming strategy parameterization and
jamming strategy perturbation into WR?L, is explored in Section 4. Simulation results are
shown in Section 5, and Section 6 concludes the paper.

2. Background
2.1. Reinforcement Learning

An RL problem can be formulated within the framework of the MDP, which consists
of a five-tuple (S, A, P,R,7y) [21], where S is the set of states, A is the set of actions,
P(st+1]|st, a¢) describes the probability of transition from the current state s; to the next
state sy 1 with the chosen action a;, R(s, a) provides a scalar reward given a state s and
action a, and 1y € [0,1] is a discount factor.

RL emphasizes the interaction between the agent and its environment, and the pro-
cedure can be described as follows. At each discrete time step ¢, the agent is in the state
st € S and chooses the action a; € A according to the specified policy 7(a|s), which is a
function mapping states to a probability distribution over all possible actions. With the
obtained state s; and action a;, the environment and the agent transition to the next state
st+1 according to P(sy11|st, a¢). After that, the agent receives a scalar reward ;1. Finally,
the agent collects a trajectory T = sg, a9, 1, S1, 41, 2, ..., and the objective of the agent is to
find an optimal policy 77* to maximize the cumulative reward, which can be expressed
as follows:

= arg MaX rp(v) [R(7)], @

where R(7) = ZtT;Ol Y'ri 41 is the cumulative reward of T and p(7) is a probability density
function of trajectory 7. p,(7) can be expressed by the transition probability and the policy,
which is defined below:

T-1

pr(t) = po(so)7t(aolso) [ T Pstralst, ar)m(aslst), 2)
=1

where py(sp) denotes the initial state distribution.

2.2. Robust Reinforcement Learning

To train an efficient policy for a real-world task, one practical approach is to let the
agent interact with the environment in a simulator and then transfer the learned policy
to the real world [22]. However, there is a discrepancy between the training environment
in a simulator and the real world. Therefore, robust policies are needed to alleviate
this discrepancy.

Robust RL is usually based on the idea of the “maxmin” criterion [20,22,23], which
aims to maximize the performance of the agent in the worst case. In [23], a softer version
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of the maxmin objective, the conditional value at risk, was used, and the agent maximized
the long-term return for the worst eth percentile of MDPs. Similar to [23], an adversarial
agent was introduced to model the uncertainties, and the original agent maximized the
long-term reward, while the adversarial agent minimized it [22].

In addition to the methods mentioned above, directly optimizing a maxmin objective
can also be used to design robust policies. In [20], a model-free robust policy design
method called WR?L was proposed. In WR?L, the agent formulates robust reinforcement
learning as a minmax game, where the agent aims to improve the performance by opti-
mizing its policy, while the environment tries to worsen the performance by changing the
dynamic parameters.

Note that the method in [23] requires knowledge of the distribution of environmental
parameters that determine the environmental dynamics. Although the method in [22]
overcame this problem, a carefully designed adversarial agent was needed, which was
difficult to obtain in our problem. In contrast to the methods in [22,23], WR2L is model-free
and does not require knowledge of the dynamics of the environment. Furthermore, it
was based on mathematical optimization and thus more reliable. As a result, WR?L was
considered in this paper.

2.3. Imitation Learning

Imitation learning aims to derive a policy from demonstration data that are generated
by an underlying policy 7z, [19]. The demonstration data consist of a series of states and
their corresponding actions, which can be expressed as d = {sé, agy, .., Sp_1, a4 } Note
that the states and actions in d are generated by the expert who executes the underlying
policy 7, and are different from those in T described for RL.

Imitation learning can be accomplished through three main approaches, which are the
behavior cloning [19], inverse reinforcement learning (IRL) [24], and generative adversarial
imitation learning (GAIL) methods [25].

Behavior cloning regards imitation learning as a supervised learning problem, where a
supervised model is trained with training data and labels, which are the states and actions
in d, respectively. After the training process ends, the model is capable of predicting an
appropriate action for a given state. Behavior cloning is simple and easy to implement.
However, each action in the demonstration data d depends on the previous part, which
violates the “iid” assumption in supervised learning and results in poor generalization [26].

In IRL, the expert is assumed to make decisions in an MDP/R, which is an MDP
without the reward function. In contrast to behavior cloning, IRL can be regarded as a
type of indirect imitation learning method, and it aims to recover the reward function on
which the expert decisions are based [24]. IRL does not fit single-time-step decisions, so
the problem encountered in behavior cloning can be avoided [25].

GAIL extracts a policy from the demonstration data directly and does not need to
recover the reward function. Combining imitation learning with generative adversarial
networks (GANSs), GAIL also trains a generator and a discriminator [25]. The generator is
used to produce trajectories whose distribution is close to the distribution of the demon-
stration data, while the discriminator is used to distinguish them. GAIL has been shown to
outperform most existing methods [25]. Based on the above analysis, GAIL was considered
in this paper.

3. Problem Statement
3.1. Signal Models of FA Radar and Jammer

Pulse-level FA radar has the capability of changing carrier frequency randomly from
pulse to pulse, which imparts the radar with a good ECCM capability [27]. However, if the
jammer can react to the current intercepted radar pulse, then the ECCM performance of
the pulse-level FA radar will degrade [16]. To improve the ECCM performance against the
jammer mentioned above, a subpulse-level frequency-agile waveform [9] was adopted in
this paper. For a subpulse-level frequency-agile waveform, one pulse consists of several
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subpulses, and the radar can change the carrier frequency of each subpulse randomly. It was
assumed that a deception subpulse can be chosen for transmission in each pulse. Compared
with regular subpulses, less transmitted power can be allocated to the deception subpulse
in order to mislead the jammer and protect the regular subpulses from being jammed.

The expression of the subpulse-level frequency-agile waveform in a single pulse at
time instant k is provided in (3).

stx(k) = Mi:l rect(k — mTe)uma(k)exp(j27t fink), ©)]
m=0

where a(k) is the complex envelope, M denotes the number of subpulses, T. denotes
the duration of each subpulse, u; can have values between 0 and 1, representing how
much transmitted power is distributed to this subpulse, and f;; denotes the subcarrier
of the m th subpulse. f;; can be expressed as fy + dAf, where Af denotes the step size
between two subcarriers, f) represents the initial carrier frequency, and d,; denotes an
integer varying from 0 to N — 1, with N denoting the number of frequencies available for
the radar. The 0 th subpulse of stx (k) is the deception subpulse. Here, rect(k) represents
the rectangle function:

1 0<k<Te.
0 otherwise.

rect(k) = { 4)
The received signal sgx (k) that includes the target return, the noise signal, and the
main lobe suppression jamming signal at time instant k can be expressed as follows:

M-1
sex(k) = Y u(m)rect(k — mT, — Ty)uma(k — Ty) )
m=0

exp[i27t(fm + f3') (k = fuTy)] + n(k) + J(k),

where p(m) is the complex amplitude with respect to subcarrier fy,,, T, is the time delay
of the target, f1 is the Doppler frequency with respect to subcarrier fy;, n(k) is the noise
signal, and ] (k) is the main lobe suppression jamming signal. Here, 1(k) is white Gaussian
noise, whose mean is zero and variance is ¢?. The suppression jamming signal can be
regarded as having the same statistical characteristics as the noise signal and can also be
modeled as a complex Gaussian distribution [4].

In this paper, it was assumed that the jammer works in a transmit/receive time-sharing
mode, which means that the jammer cannot transmit jamming signals and intercept radar
signals simultaneously. To jam the radar efficiently, the jammer cannot transmit jamming
signals continuously because of the agility of the carrier frequency of the FA radar, and
it will interrupt jamming to allow time for the jammer to catch up with the current radar
parameters, which is referred to as “look-through” [28].

The jammer was assumed to adopt spot jamming and barrage jamming, which are two
typical active suppression jamming types [4]. It should be emphasized that spot jamming is
a narrowband signal and barrage jamming is a wideband signal. Although the bandwidth
of barrage jamming is wide enough to cover all carrier frequencies of the radar, its power
density is much lower than that of spot jamming given the same jammer transmitter power,
which greatly weakens the jamming performance. Therefore, it was assumed that the
jammer prefers spot jamming to barrage jamming and only adopts the latter under certain
conditions due to its limited transmitter power.

For one radar pulse at time step ¢ (the time step is equivalent to the pulse index in the
radar scenario), we considered three possible jammer choices, which are stated as follows
and depicted in Figure 1:

*  Choice 1: The jammer performs the look-through operation throughout the whole
pulse, which means that the jammer does not transmit a jamming signal and just
intercepts the radar waveform;
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e  Choice 2: The jammer performs the look-through operation for a short period, and
then, the jammer transmits a spot jamming signal with a central carrier frequency of
fl or a barrage jamming signal;

®  Choice 3: The jammer does not perform the look-through operation and just transmits

a spot jamming signal with a central carrier frequency of ft] or a barrage jamming sig-

nal.
asingle pulse
f—%
subpulse 0 subpulse 1 subpulse 2
— "
dd
—% H—>
choicel |« L »|
choice 2 |je—L—pje——T—]
choice 3 e T N|

L: Time for look-through. T: Time for transmitting jamming signal.

Figure 1. Three possible jammer choices.

3.2. RL Formulation of the Anti-Jamming Strategy Problem

As in [10,11], the MDP was used to describe the interaction between the FA radar and
the jammer, which were regarded as the agent and the environment, respectively. Here, M
is used to denote this MDP.

At time step ¢, the FA radar is in state s; and then takes action 4;. The jammer performs
look-through and/or transmits jamming signals according to predefined rules, and as a
result, the state transitions to s; 1 and the radar receives a scalar reward r;; 1. The basic
elements, including actions, states, and rewards, in our RL problem were previously defined
in [16], and we apply these definitions herein. These definitions are briefly reviewed below.

Actions: There are M subpulses in one pulse, including the deception subpulse and
regular subpulses. For each regular subpulse, the radar can select one frequency from N
available frequencies. For the deception subpulse, the radar can not only decide whether it
is transmitted or not, but also determine its subcarrier if it is transmitted.

Here, the radar action at time step ¢ is encoded into a vector a; with size 1 x M. All
elements except for the first one in a; are within 0 and N — 1, which corresponds to the
subcarriers of regular subpulses varying from fj to fo + (N — 1)Af. For the deception
subpulse, the first element in a; is within 0 and N, in which N means that the deception
subpulse is not transmitted. Taking M = 3 as an example, a; = [3,1,2] means that the radar
does not transmit the deception subpulse, and the subcarriers of the other two subpulses
are fo + Af and fy + 2Af, respectively.

The action of the jammer can also be encoded into a vector a} with the size 1 x 3, which
is described as follows. If Choice 1 is selected, then a]t can be expressed as ai =[1,2, 9],
where @ is just used to ensure that the lengths of a] are equal. For Choices 2 and 3, if
the jammer transmits a barrage jamming signal, then a} is denoted as a} = [0, 2, 0]; if
the jammer transmits a spot jamming signal, then a} is denoted as a, = [0,x, @] with
x € [0,1,..., N — 1], corresponding to the central carrier frequency fy + kAf of the spot
jamming signal.

States: The k th-order history [21] is used to approximate the state to alleviate the
problem of partial observability, and state s; can be expressed as follows:

St = [Ot, ar—1,0¢—-1,-- -ratfk]/ (6)

where 0; = ui is the observation of the radar and is actually the action of the jammer at
time step ¢.
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Reward: The proposed method still applies the probability of detection p; as the
reward signal [11,16], and the goal of the FA radar is to find an optimal strategy to max-
imize py in one coherent processing interval (CPI). If the frequency step between two
frequencies is greater than AF = 7;, with ¢ denoting the speed of light and I denoting the
target along the radar boresight, then their corresponding target returns will be decorre-
lated [29]. If the frequency step is less than AF, then their corresponding target returns are
partially correlated.

To simplify the analysis, we assumed that the frequency step was large enough to
decorrelate the target returns. In one CPI, the target returns with the same subcarriers can be
first integrated coherently, and then, all coherent integration results of all subcarriers can be
processed by the SNR weighting-based detection (SWD) algorithm [30]. This procedure is
illustrated in Figure 2, and the detailed calculation procedure of p; is given in Appendix A.

In practice, the radar will make use of all pulses in one CPI to detect the target,
meaning that it only receives the reward p; at the end of one CPI. This will result in a
sparse reward problem, which hinders the learning of the radar. To address this problem,
an additional negative reward v, which is proportional to the signal-to-interference-plus-
noise ratio (SINR) of that pulse, is given. The overall reward signal can be expressed
as follows.

v tisnot the end of one CPI
rt = (7)

ps tisthe end of one CPI

f=fo | [ F=h CF=far
coherent coherent b coherent
integration integration integration

SWD

Figure 2. Signal processing procedure for the FA radar.

4. Radar Robust Antijamming Strategy Design
4.1. Robust Formulation

Given a predefined jamming strategy, an optimal antijamming strategy can be obtained
by using a large number of RL algorithms in the training environment based on the perfect
sensing and interception assumption. As mentioned previously, if this antijamming strategy
is used in a test environment in which uncertainties exist in the radar and the jammer, then
antijamming performance may degrade because of the mismatch between the training and
test environments.

From an RL perspective, uncertainties in the radar and the jammer will result in a
discrepancy in the transition probability between the training and test environments. A
detailed explanation is given as follows. In Figure 3, the left and right images illustrate
the transition probability in the training and test environments, respectively. When the
radar is in the training environment, the current state of the radar is s¢, and it will choose
an action a; according to the policy 7, as shown in the left image in Figure 3. Based on the
perfect sensing and interception assumption, the observation of the radar is 0;,1, and the
next state will transition to s; 11 ~ P(s¢y1]|st, a¢). When the radar is in the test environment,
it is assumed that it is also in s; and chooses an action a;, which is the same as the radar in
the training environment. The difference is that the observation of the radar may not be
the same as 0441 due to errors caused by the jammer. In the right-hand image in Figure 3,
we use a circle filled with dotted lines to distinguish it from the observation in the training
environment. As a result, the next state will not be s; 1. Given the same current state s; and
action ay, the resultant next state is different. Therefore, there exists a discrepancy between
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the transition probability in the training and test environments. Thus, we considered a
robust antijamming strategy design problem, where the transition probability of the test
environment deviates from that of the training environment.

’
041 O¢t1

Training environment Test environment

Figure 3. Illustration of the transition probability in the training and test environments.

Based on the above analysis, WR?L [20] is used to solve the radar robust antijamming
strategy design problem. As reported in [20], the transition probability of the environment
is determined by dynamic parameters. Taking the CartPole [31] task as an example, the
length of the pole is the dynamic parameter, and the transition probability varies with the
length of the pole. Given the reference dynamic parameters ¢y of a task, WRL perturbs the
dynamic parameters ¢ to determine the worst-case scenarios within an e-Wasserstein ball
and identifies a policy with parameters 6 to maximize the worst-case performance. With
the help of zeroth-order optimization [32], WRZL is able to handle high-dimensional tasks.

The objective function of WR2L can be expressed as follows:

max m(;n ETNPZ(T) [R(T)]

, 8
s.t.E W3(Py(:|s,a), Py, (+|s,a))] <€ ®

(s,a)~7tu()o%0 () [

where W3 (Pg (+|s, a), Py, (+|s, a)) is the Wasserstein distance of order 2 [20] between Py (+|s, a)
and Py, (-|s,a), € > 0 is the radius of the e-Wasserstein ball, 77, (a|s) is a policy with
a uniform distribution over actions a given the state s, and pﬁz(s) follows a uniform

distribution over states s. For notational convenience, the term (s, a) ~ 7,(+) pﬁg (-)in (8)
is ignored in the rest of the paper.

As discussed previously, the uncertainties in the radar and those in the jammer have
the same effect on the change in the transition probability. As a result, only the uncertainties
in the jammer are considered in this paper. In the radar and the jammer scenario, the
reference dynamic parameters ¢g can be regarded as the jamming strategy in the training
environment with the perfect interception assumption. The dynamic parameters ¢ can be
regarded as jamming strategies with the existence of uncertainties. However, WR?L cannot
be applied directly. The reasons and their corresponding solutions are given below:

(1) The dynamic parameters remain unknown for a given jamming strategy, and we
can only describe it using predefined rules. For example, a jamming strategy can
be expressed by the following rule: the jammer transmits a spot jamming signal
whose central frequency is based on the last intercepted radar pulse. Therefore, we
proposed a method of imitation learning-based jamming strategy parameterization, as
presented in Section 4.2, which aims to express the jamming strategy mathematically;

(2) After jamming strategy parameterization, the jamming strategy can be expressed in a
neural network consisting of a series of parameters. As is shown later, the number of
parameters of this neural network is large, which will lead to a heavy computational
burden. Thus, a jamming parameter perturbation method is provided in Section 4.3
to alleviate this problem.

The final robust radar antijamming strategy design method is described in Section 4
and incorporates jamming strategy parameterization and jamming parameter perturbation
into WR2L.
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4.2. Jamming Strategy Parameterization

Dynamic parameters can be easily acquired from a gym environment and perturbed
to determine the worst-case scenarios to design a robust RL strategy [20]. Intuitively,
the jamming strategy was perturbed in this way in [20]. However, how to characterize
or describe the jamming strategy remains unsolved. To this end, a method of imitation
learning-based jamming strategy parameterization was proposed to express jamming
strategies in a neural network that consists of a series of parameters.

To realize the target mentioned above, a basic assumption about the jammer was made
and can be stated as follows.

Assumption: During the interaction between the radar and the jammer, the jam-
mer is also an agent described by MDP M’ = (S, A/, P/, R’,+') with an optimal policy
7'(].*, meaning that its action at every time step is optimal and maximizes its long-term
expected reward.

It should be emphasized that M’ is different from the M mentioned in Section 3,
and a superscript is used to distinguish between them. Note that M’ may not exist in
practice; however, this assumption is indeed reasonable because there is always an internal
motivation for the jammer’s decisions, which it views as optimal. As a consequence,
the jammer can be regarded as an expert whose actions are optimal, and we can learn
its implicit policy 71]* from the expert trajectories using a series of parameters, which is
referred to as jamming strategy parameterization in this paper.

Jamming strategy parameterization can be segmented into two phases: gathering
expert trajectories and deriving a policy from these expert data [33]. The first phase is easy
to implement. Given a predefined jamming strategy, the trajectories dg = {d1,d>, ..., dn, }
can be collected through the interaction between the radar and the jammer, as shown
in Figure 4, with N denoting the number of trajectories to be collected. Note that this
predefined jamming strategy cannot be expressed mathematically and thus can be regarded
as a given rule that instructs the jammer how to choose actions to jam the radar. The
trajectory d; can be expressed as d; = {s{, a(, s}, a},...s_,,a_;}, where s; € §" and
a; € A’ are the states and actions of the jammer, respectively.

As shown in Figure 4, gathering the expert trajectories can be achieved based on M of
the radar antijamming strategy design. At time step f, the jammer action 4; is actually the
observation o; in M, and the state s} can be obtained from f (s;), with the input being the
state in M. Here, f(-) is a function that maps from s; to s} and is designed to extract useful
features for the jammer. Once the trajectories are obtained, imitation learning methods can
be used to derive its policy.

_________ -
|jammer action(ag) state(s; 1)}
Expert mrj Agent
Jammer FA radar
1 7'y radar action(a) I |

O]
state(st)f=> state(sy)
Figure 4. Trajectory collection of the given jamming strategy.

The derivation of the policy 777" can be regarded as an IRL problem based on the
aforementioned assumption, which can be described as a unified objective function:

IRL¢ (7‘[;) = I?,I.'Egﬂg}jj, {4)(1{’ (S’, a’))‘i‘]Enj* [R’ (5/, a/)] o
- max (H () + B [R5, )}

where R'(s',a’) is the implicit reward function of M’, (-) is a convex cost function
regularizer to avoid overfitting, I'T is the set of all stationary stochastic policies, and H(7t")
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is the entropy of the policy. Note that (9) looks slightly different from the function given
in [25]; the difference is that, here, the agent is assumed to maximize the long-term reward
rather than minimize it.

As shown in (9), IRL aims to find a reward function that assigns high reward to the
expert policy 71;k and low reward to other policies. If IRL methods, such as [24,34], are
used to derive the jamming strategy, two steps are needed: recovering the reward function
and finding the optimal policy under that obtained reward function. Let the recovered
implicit reward function be R’ and its corresponding optimal policy be 7%, which can be
considered the derived jamming strategy.

In this paper, we applied an alternative method called GAIL, which stems from the
basic concept of IRL in (9), but the step of recovering the reward function is not necessary.
More specifically, it can be proven that the final policy 7%, mentioned above can be obtained
directly by solving 7’ in (10) [25].

min  max Elog(D(s',a"))] + E+[log(1 — D(s’,a’))] — pH(7') (10)
I DG(O,l)S/XA, ]

In (10), D(s',a’) is a discriminative classifier that maps the input {s’,a’} to a real
number ranging from 0 to 1, and p > 0 is a real number controlling the entropy regularizer.

The policy 7" and the classifier D(s, a) can be parameterized with ¢ and w, where the
solution to (10) 71, is the derived jamming strategy, and ¢ is its corresponding jamming
parameters. In fact, (10) satisfies the definition of the GAN [35], where the policy 7’ can be
regarded as the generator and the classifier D is the discriminator.

Algorithm 1 is the overall algorithm of jamming strategy parameterization. Before the
algorithm starts, a predefined jamming strategy and a mapping function f(-) are needed.
Note that f(-) was specifically designed for this given jamming strategy. The predefined
radar policy 7ty is used in the expert trajectory collection phase, which can be a random
policy. The first phase is gathering the expert trajectories. In the second phase, a fixed
number of trajectories of 71(”) ; are first collected, and then, the gradient of the discriminator

can be estimated based on Monte Carlo estimation, which is given below.
Ed; Vo log(Dw(s’, “/))] + ]Ed); Ve 108(1 - Dw(s// “/)>] (11)

The update procedure of the generator can be achieved through any RL algorithms
with a reward function log(Dy(s’,a’)). Here, TRPO [36] was adopted. The termination
condition can be the convergence of the cumulative reward of the generator. Once the
termination condition is satisfied, the jamming strategy parameterization is complete.

4.3. Jamming Parameter Perturbation

Through jamming strategy parameterization, the reference jamming parameters ¢
and the jamming parameters ¢ that need to be optimized and perturbed can both be

expressed by neural networks. Let Wg € RP"*1" and W";O € RP"*1" be the weights of the

hth layer of ¢ and ¢y, respectively, with p* and ¢ denoting the input and output sizes of
this layer. If there are H layers in total, they can be denoted as ¢p = [Wg},, Wé, s ng | and
¢ = [W(},O, Wéo, ey Wg) |, respectively (here, we ignore the biases in ¢ and ¢).

As shown later, a frequent matrix inversion operation is needed during the procedure
of robust antijamming strategies, and the dimension of that matrix is related to the dimen-
sion of ¢. The dimension of ¢ may be high, and an example is described in the following.
For a three-layer neural network with p",¢" = 20 and h = 1,2, 3, the number of parameters
is 1200. For certain complicated jamming strategies, networks with more parameters are
always needed. As a result, there will be a heavy computational burden if the minimization
problem in (8) is solved directly.
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Algorithm 1: Jamming strategy parameterization.

Input: Predefined jamming strategy, mapping function f(-), the number of pulses
in one CPI T, the number of trajectories to be collected N, the initial
parameters of n(’l, and D,, as ¢°, w°, predefined radar policy 77,r., an empty

list dg

Output: The parameters of 7’ when GAIL is convergent

/* Gathering the expert trajectories */
1 forn=1,2,..,Ngdo
2 | Sample sy according to the given distribution py(sp)
3 fort=0,1,.., T —1do
4 Obtain s} based on f(+)
5 Radar takes actions a; according to 7. (at|st)
6 Jammer takes action aj according to the predefined jamming strategy
7 State transitions to sy 1
8 Store s; and a} in dg

/* Deriving the implicit policy from expert data x/

9 Set iteration index i to 0
10 while Termination condition not met do
1 Sample trajectories d’ according to 71(’,) ;

12 Update the discriminator parameters from w' to w'*! with the gradient in (11)

13 Update the generator parameters from ¢’ to ¢'*! using the RL algorithm
TRPO [36] with reward function log(D i1 (s’, a’))
1 i+ i+1

To alleviate the problem mentioned above, we propose an alternating procedure,
inspired by NoisyNet, to perturb the jamming parameters [37]. More specifically, ¢ can be
expressed by the combination of two terms, the reference jamming parameters ¢g and an
extra term A¢ that can be expressed as [Wl, w2, Wh . WH], W' € RF"*4" To reduce
the number of parameters that need to be perturbed, the elements in each column of W
were set to be the same, which means that only qh variables need to be perturbed. The
relationship between the hth element in ¢, the hth element in ¢y and the hth element in
A¢ is displayed in Figure 5, and the mathematical expression is as follows:

Wy = Wj, + W (12)

If the proposed perturbation method is adopted, only A¢ needs to be perturbed and
optimized in (8), and a new objective function can be obtained, as shown in (13).

mpx | minE g [R(7) : )

s.tE[W3(Pg(-|s, a), Pg,(:|s,a))] <€

where ¢ = ¢ + A¢. Clearly, the computational burden greatly decreases. With respect to
the example mentioned above, there are only 60 parameters in total.

WL o WLe'] ) (Wl wy[ad'] ) (W] WL’
: : = : : + : " :
Wﬁh‘:phll} W¢h‘:phlqhi| Wg[ph,l} Wg[phth} Wh[phll] Wh[ph’qh}
\ N J \ v J \ \ J
A W, w

Figure 5. Jamming parameter perturbation. In W, the elements in each column are the same, and
their background color is blue.
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4.4. WR?L-Based Robust Anti-Jamming Strategy Design

In the above subsections, the imitation learning-based jamming strategy parameter-
ization is first proposed, and its corresponding perturbation method is then presented.
Incorporating them into WR?L, the robust radar antijamming strategy design is presented
in this subsection.

As described above in (13), a “maxmin” objective function with respect to 8 and A¢
needs to be solved to design a robust strategy, which is slightly different from the original
objective function of WR?L. However, we can still use the method proposed in [20] to
solve it. More specifically, that problem can be solved through an alternating procedure
that interchangeably updates one variable while the other remains fixed. This procedure is
described briefly in the following.

Let the jamming parameters be ¢pUl = ¢o + Agll at the jth iteration. The policy
parameter 0 is updated to find the optimal policy as follows.

max Ehpgm o [R(7)] (14)

In fact, this is just an RL problem and can be solved by any type of RL algorithm. In
this paper, TRPO [36] was used to obtain the current policy, which can be denoted as 8+,
After that, the jamming parameter ¢ is updated to determine the worst case with respect
to 8U1], which is expressed as follows:

, (15)

where ¢ = ¢po + A¢p.

To solve this minimization problem with a constraint, first-order and second-order
Taylor expansions of the objective function and the constraint, respectively, are performed
to simplify the analysis. Consider a pair of parameters 8Ut1] and ¢. The result is given
below, and the detailed derivation can be found in [20].

T

Ag
o ’

i E R
HA%JHVA(P TNPZUH] (T)[ (7)]

s.t.%AngHOAgb <e

(16)

where ¢ = ¢ + A¢, Hy is the Hessian matrix of the constraint in (13) at ¢pg (A¢p = 0), and
its expression is given in (17).

Ho = V3, E[W3(Py(-ls, a), Ppy (-Is,a))] ‘¢:¢0 "

The closed-form solution to (16) given below can be easily obtained through the
Lagrange multiplier method [20]:

. 2¢€ .
Apitll = — [ == _pH-lgli+l] 18
¢ g[]+1]THO_1g[]+1] 0 8 ( )
where gl*1 is the gradient of the expected cumulative reward with respect to ¢ at ¢y, i.e.,
\Y A4’Er~p"’ (1) [R(7)] . Thus, the jamming parameters ¢!} can be expressed as
ol 1] $=o

¢U+” = ¢ + Aq)U‘H].
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The estimation of gU“} and Hy canbe achieyed via a zero-order optimization method [32,38].
According to the two propositions in [20], gUH] and Hy can be expressed as follows.

VA.E R(t =
Agp TNPZUH] ( )¢:¢0 19)
19
1
2Bextoen € [ PR OR@r
T
Ho = A5y o | e BV Pl Pt )
o2 ¢~N(0,021) o2 0 %o
(20)

—E{w%(P¢o<-|s,a>,P¢o+g<-|s,a>>}1]

As shown in (19) and (20), a random variable ¢ with the same size as ¢ is sampled
from the given Gaussian distribution (0, o?1) to perturb ¢y.

The procedure mentioned above can be repeated until the maximum number of
iterations is reached.

5. Simulation Results

In this section, the performance of jamming strategy parameterization and the robust
antijamming strategy design is verified. The basic parameters of the FA radar and the main
lobe jammer are given in Table 1.

Table 1. Parameters of the FA radar and the jammer.

Parameter Value
radar transmitter power Pr 30 kW
radar transmit antenna gain Gt 30dB
radar initial frequency fj 3 GHz
bandwidth of each subpulse B 2 MHz
the number of subpulses in a single pulse 3
the number of frequencies available for the radar 3
the number of pulses in one CPI 32
distance between the radar and the jammer R, 100 km
false alarm rate py 1x1074
the length of the target along the radar boresight / 10 m
jammer transmitter power Pj 1w
jammer transmit antenna gain G; 0dB

Given the length of the target along the radar boresight /, the frequency step AF

required to decorrelate the target can be calculated by AF = 5 = 32>§<11%8 = 15 MHz.
Therefore, the frequency step size Af needs to be larger than AF. In addition, if Af is just
comparable to AF, then the power density of barrage jamming may still be high because
its power is distributed over a narrow bandwidth. Thus, the frequency step size Af was
set to 100 MHz, which was large enough to decorrelate the target and reduce the power
density of barrage jamming. It was assumed that the radar cross-section (RCS) of the
target does not fluctuate at the same frequency, but the RCS may differ among different
frequencies. Without loss of generality, the RCS with respect to these three frequencies was
set to ogcs = [3 m?2, 3 m?, 3 m?].

If the jammer adopts spot jamming, it was assumed that its jamming power would
be distributed over a frequency band whose bandwidth is Bsjot = 2B, which is wider
than B. If the jammer adopts barrage jamming, its jamming power was assumed to be
distributed over a frequency band whose bandwidth is By,, = 500 MHz to cover all
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possible frequencies of the FA radar. The last k = 3 observations and actions were used to
approximate the history H;. In addition, 1, u1, and u; in (3) were predefined and set to
[0,1,1] or [0.2,0.9,0.9], depending on whether the deception subpulse was transmitted.
According to the radar equation [29], the SINR used to calculate the probability
of detection in (A2) and (A3) can be easily calculated based on these basic simulation
parameters. More specifically, the received power P, scattered by the target with respect

to different RCSs, the received jamming power PZ, and the noise power can be calculated
as follows:

P — PTG%/\ZO’RCS
" (4m)R?
Pj(B/Bspot)GjGrA?
(47m)2R2
P](B/Bbur)GjGT/\z
(47)2R3

. for spot jamming  ’ 1)
Pl =
for barrage jamming

where A = J% is the wavelength. The power of the thermal noise in the radar receiver can be

calculated by Py = kTsB;;, where k = 1.38 X 10723 J/K is Boltzmann’s constant, T; = 290 K
is the system noise temperature, and B, ~ B is the noise bandwidth. With all parameters
of the radar and the jammer given, the received power P,, the noise power Py, and the

received jamming power P/ can be obtained; therefore, the SNR (when the radar is not
jammed) and the SINRs (when the radar is jammed) can be easily calculated.

Figure 6 shows three different jamming strategies that were used to verify the effec-
tiveness of the proposed method. Jamming Strategy 1 selects Choice 2, while Jamming
Strategies 2 and 3 select Choices 1 and 3 simultaneously. To simplify the analysis, it was
assumed that the duration of look-through and jamming signal transmission was an integer
multiple of the duration of each subpulse, as shown in Figure 6. These three different
jamming strategies are described as follows.

Jamming Strategy 1: The duration of look-through for Jamming Strategy 1 is short,
and the jammer transmits spot jamming once the radar signal is intercepted. The central
frequency of spot jamming is the same as the subcarrier of the intercepted radar signal,
meaning that the jammer will be misled if the deception subpulse is transmitted.

Jamming Strategy 2: For Jamming Strategy 2, the jammer performs the look-through
operation for the first pulse to intercept the whole pulse. For the next pulse, the jammer
only transmits the jamming signal. The jammer will ignore the deception subpulse and jam
the regular subpulses. If there are two different subcarriers in this intercepted pulse, the
jammer will adopt barrage jamming. If not, the jammer will adopt spot jamming, whose
central frequency is the same as that of the intercepted subpulse.

Jamming Strategy 3: Jamming Strategy 3 is similar to Jamming Strategy 2. The only
difference is that the jammer will jam the next two pulses based on the last intercepted pulse.

«
—% H—>
jamming strategy 1 |eL-dje—T—> |leLde—T—> |eLHe—T—]
jamming strategy 2 j¢——L—» |je——T—>» |je——L—]
jamming strategy 3 [¢——L—» |j——T—> le——T—]
L: Time for look-through. T: Time for transmitting jamming signal.

Figure 6. Three different jamming strategies.

5.1. Performance of Jamming Strategy Parameterization

In this subsection, the performance of jamming strategy parameterization is tested.
Some details are first provided.



Remote Sens. 2021, 13, 3043

15 of 24

As mentioned above, a mapping function f(-) is needed when the expert trajectories
are collected. For the three different jamming strategies, different mapping functions were
designed to enhance learning performance.

With respect to Jamming Strategies 1 and 2, f(-) can be expressed as follows.

f(st) = si: for, ap-1,00-1,...,45_§) = a1 (22)

The state s; of Jamming Strategies 1 and 2 at time step ¢ only extracts the most recent
action of the radar since this information is sufficient for GAIL to derive the strategy of the
jammer. With respect to Jamming Strategy 3, f(-) can be expressed as in (23):

f(st) —s;: f(or,ai-1,0i1,...,4i_x) — {a;_1,t mod 3, 14} (23)

where mod is the operation for calculating the remainder and 1y, _y, is an indicator function
that equals one if the subcarriers f; and f; in a;_; are the same. The state s} of Jamming
Strategy 3 not only contains the most recent action of the radar, but also includes the time
and frequency information about the radar.

Fully connected neural networks with four layers and thirty-two hidden units in each
layer were used to parameterize the generator and the discriminator in GAIL. Ng = 100
expert trajectories were generated to train GAIL to parameterize the jamming strategy. The
parameterization performance with respect to three jamming strategies is given in Figure 7.
The Wasserstein distance was used to evaluate how close the distance was between the
derived jamming strategies nﬁpo and the predefined jamming strategies, and the y-axis in
Figure 7 denotes their Wasserstein distance after each training epoch. As shown in Figure 7,
their Wasserstein distance converged to zero. This means that the predefined jamming
strategy can be expressed by the derived jamming strategy, which consists of a series of
parameters ¢y.

For a better understanding, Figure 8 presents the learning results of the derived
jamming strategy for Jamming Strategy 1 in multiple phases. Here, the radar adopted a
random strategy to select subcarriers. The derived jamming strategies were used to jam
the random radar when their Wasserstein distance was 0.17, 0.025, and 0. The actions of
the jammer induced by the derived jamming strategies and predefined Jamming Strategy 1
are plotted in Figure 8, which are denoted as “parameterization” and “ground truth”,
respectively. It can be seen that the difference between the actions induced by the derived
jamming strategies and predefined Jamming Strategy 1 became smaller as the Wasserstein
distance decreased.

For jamming strategy parameterization, the number of expert trajectories is of critical
importance. For an imitation learning task, more expert trajectories mean that the agent
can collect more information about the expert, which will result in better performance.
For the problem considered here, as N increased, the performance of jamming strategy
parameterization improved.

In Figure 9, Jamming Strategy 1 is used as an example to show the influence of Ng
on the performance of jamming strategy parameterization. Three different cases were
considered, where Ng was set to 10, 100, and 200, respectively. As shown in Figure 9, when
Ng = 10, the performance of jamming strategy parameterization was the worst. It can be
seen in Figure 9 that the performance of jamming strategy parameterization was similar
when Np = 100 and Ng = 200. Therefore, Nr was set to 100 in this paper.

5.2. Performance of Robust Antijamming Strategy Design

Before presenting the results of the robust antijamming strategy design, we first
present the training performance against three different jamming strategies under the
perfect interception assumption. As shown in Figure 10, the performance obtained through
the RL algorithm (TRPO was used here) was compared with the performance of a random
strategy to show its effectiveness (random strategy means that the radar chooses actions
randomly at each pulse).
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Figure 10. The training performance against three different jamming strategies with the perfect

interception assumption. (a—c) presents the training performance against Jamming Strategy 1, 2 and

3, respectively.

As shown in Figure 8, the magnitude of the uncertainties in the jammer was equiv-

alent to the magnitude of the Wasserstein distance between a jamming strategy and its
corresponding reference jamming strategy. As a consequence, numerous random jamming
strategies were generated to test the robustness of the obtained antijamming strategies.
Note that the Wasserstein distance between these random jamming strategies and their
corresponding reference jamming strategies varied in a given range to model the mag-
nitude variation in uncertainties in the jammer. The three different jamming strategies
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described previously were regarded as the reference jamming strategies, and their parame-
ters, which can be parameterized by the proposed method, were the reference dynamic
parameters. Taking Jamming Strategy 1 as an example, the following describes how to
generate test samples.

Let the parameters of Jamming Strategy 1 be ¢. The proposed jamming parameter
perturbation method was used to perturb ¢ to generate test samples. More specifically, we
sampled a large number of A¢ independently, which followed a Gaussian distribution with
mean # and variance 9. According to jamming parameter perturbation, A¢p was added
to ¢ to generate the parameters of random jamming strategies. Then, the Wasserstein
distance between these random strategies and Jamming Strategy 1 was calculated, and
each random jamming strategy was labeled with its Wasserstein distance. We collected the
random jamming strategies whose Wasserstein distance varied from 0 to 0.2 and divide
them uniformly into ten groups. The Wasserstein distance between the random strategies
in the ith group and Jamming Strategy 1 was within [(i — 1) % 0.02,i % 0.02]. In this analysis,
there were 100 random jamming strategies in each group.

The performance of the robust antijamming strategies against three different jamming
strategies is given in Figure 11. With respect to each jamming strategy, the antijamming
strategy with € = 0, which was actually a nonrobust design, was compared with two other
robust antijamming strategies. It should be emphasized that € does not determine the exact
radius of the e-Wasserstein ball because there are some approximations of the objective
function and the constraint of WR?L.

For all three jamming strategies, the performance of nonrobust and robust antijjamming
strategies decreased as the uncertainty increased, which was caused by the mismatch
between the test and training jamming strategies. However, it can be seen in Figure 11 that
the robust antijamming strategies outperformed the nonrobust antijamming strategies if
the uncertainty reached a certain level. Here, “nonrobust” indicates that the antijamming
strategies were directly designed by TRPO [36] with the perfect interception assumption.
The training performance of nonrobust antijamming strategies is given in Figure 10.

Taking the performance of the robust antijamming strategies against Jamming Strategy 1
as an example, a detailed explanation of the simulation results in Figure 11a is provided
(the simulation results in Figure 11 are similar, so only one result is explained). To describe
the simulation results more clearly, the x-axis, which ranges from 0 to 0.2, was divided into
four stages, as shown in Figure 12, and each stage was analyzed.

In Stage 1, the performance of the nonrobust antijamming strategy was the best, and
the performance of the robust antijamming strategy with e = 0.3 was the worst. In this
stage, the mismatch between the training and test environments was so small that it could
be ignored. Therefore, the performance of the nonrobust antijamming strategy was the best.

In Stage 2, the performance of the robust antijamming strategy with e = 0.1 was the
best, and the performance of the robust antijamming strategy with € = 0.3 was the worst.
In this stage, although the mismatch could not be ignored, the nonrobust antijamming
strategy against Jamming Strategy 1 could still outperform the robust antijamming strategy
with e = 0.3.

In Stage 3, the performance of the robust antijamming strategy with e = 0.1 was still
the best, and the performance of the nonrobust antijamming strategy was the worst. The
mismatch in this stage was so large that the nonrobust antijamming strategy achieved the
worst performance.

In Stage 4, the performance of the robust antijamming strategy with e = 0.3 was
the best, and the performance of the nonrobust antijamming strategy was the worst.
Not surprisingly, the performance of the nonrobust antijamming strategy was still the
worst. The mismatch in this stage was large enough that it could not be covered by the
e-Wasserstein ball with € = 0.1, so the performance of the robust antijjamming strategy
with € = 0.1 was no longer the best.

In theory, the performance of nonrobust antijamming strategies was the best if the
Wasserstein distance between the test jamming strategies and the reference jamming strate-
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gies was zero. It should be emphasized that the tick label of the x-axis in Figure 11 actually
indicates that the Wasserstein distance varied in a given range. Therefore, it is possible
that the performance of nonrobust antijamming strategies was worse than that of robust
antijamming strategies when the tick label of the x-axis was zero, as shown in Figure 11c.
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Figure 11. The probability of detection for three different jamming strategies with respect to different
magnitudes of the Wasserstein distance. The x-axis is the Wasserstein distance between the test
jamming strategies and the reference jamming strategies, and the y-axis is the final probability of
detection. (a—c) presents the detection probability for Jamming Strategy 1, 2 and 3 respectively with
respect to different magnitudes of the Wasserstein distance.
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To test the robustness of the radar under adversarial circumstances, we assumed that
the jammer was capable of learning to design an adversarial jamming strategy to combat
the nonrobust antijamming strategy.

For a jammer with a predefined jamming strategy, a nonrobust antijamming strategy
could be obtained through RL algorithms such as TRPO. Therefore, three nonrobust
antijamming strategies with parameters Bnl, 631 ; and Bfll against Jamming Strategies 1, 2,
and 3 could be obtained, as shown in Figure 13. Given different radii € of the e-Wasserstein
ball, robust antijamming strategies against Jamming Strategies 1, 2 and 3 could also be
obtained through the proposed robust antijamming strategy design method in this paper.

As shown in Figure 13, the adversarial jamming strategy against each nonrobust
antijamming strategy could be obtained by solving (15), and the parameters of the resultant
adversarial jamming strategies are denoted by ¢¢ oL/ P 02,/ and ¢¢ 0 respectively.

Different e values in (15), which is referred to as the adversarial strategy radius, were
chosen to design adversarial jamming strategies. As shown in Figure 13, we let the nonrobust
and robust antijamming strategies combat their corresponding adversarial jamming strategies
with different adversarial strategy radii, and the results are given in Figure 14. Figure 14a—c
shows the results related to Jamming Strategies 1, 2 and 3, respectively.

As shown in Figure 14, a larger adversarial strategy radius would usually lead to worse
performance, and robust antijamming strategies outperformed nonrobust antijjamming
strategies in most instances. This can be easily explained by the fact that jamming is more
efficient in a larger e-Wasserstein ball.
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Figure 12. The probability of detection for Jamming Strategy 1 with respect to different magnitudes
of the Wasserstein distance. The four rectangles with dotted lines correspond to different stages.
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robust/nonrobust = . . strategy
antijamming <« é]ammmgl DRL | Radar [ = atntutamrglpg — radius Jamming
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Figure 13. The competition between the adversarial jamming strategies and the nonrobust/robust
antijamming strategies.
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Figure 14. The probability of detection for three different jamming strategies with respect to different
adversarial strategy radii. The x-axis is the radius of the e-Wasserstein ball when the adversarial
strategies were generated. (a—c) presents the detection probability for Jamming Strategy 1, 2 and 3
respectively with respect to different adversarial strategy radii.

6. Conclusions

In this paper, we proposed a robust antijamming strategy design method that was
designed to combat main lobe jamming for FA radar when uncertainties exist in the
environment. The proposed method incorporated jamming strategy parameterization and
jamming parameter perturbation into WR?L. We showed that, by regarding the jammer as
an expert and applying imitation learning, a given jamming strategy can be represented by



Remote Sens. 2021, 13, 3043

22 of 24

a series of parameters. Simulation results showed that the obtained jamming parameters
can replace the given jamming strategy with minor errors. It can be seen that jamming
parameter perturbation is capable of reducing the dimensions of the parameters and
generating random jamming strategies to test the proposed method. Most importantly,
the results showed that the robust antijamming strategies outperformed the nonrobust
antijamming strategies when the uncertainties in jamming strategies reached a certain level.
In addition, it should be pointed out that the proposed method can also be used in the
antijamming strategy design in the domain of communication [15,39].

It should be emphasized that the proposed method only addresses how to design
robust antijamming strategies against known jamming strategies. If the jamming strategy
is unknown, then the radar needs to perform jamming strategy parameterization in an
online fashion, and the collected expert trajectories are not accurate since uncertainties
exist in the jammer. As a result, the performance of the proposed method will worsen. This
problem will be investigated in the future.
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Appendix A. Calculation of the Probability of Detection

As mentioned previously, there are N available frequencies for the radar, which are de-
noted as fy, f1, ..., fN—1. Assume that n;,i € [0,1,..., N — 1] subpulses with subcarrier f; are
transmitted in one CPI. Let s, n and j be the coherent integration results of the target returns,
the noise signal, and the jamming signals for different subcarriers, respectively. Taking the
radar received signals of the subcarrier fj as an example, coherent integration results can
be obtained by collecting all received signals of fy and summing them directly [29]. The
overall coherent integration results can be expressed as ¥ = s + n + j. Let ¢;(f;) denote the
coherent integration results of subcarrier f;, and r is actually [co(fo), c1(f1), - N—1(fN—1)]-

In contrast to the conventional noncoherent integration, the SWD assigns different
weights to the received echoes according to their different SNRs [30]. Let SINR; be the
SINR of the received signal of subcarrier f;. According to the SWD, the test statistic can be
expressed as follows.

N-1
- SINR; a2

Under the hypothesis Hy (the target is absent), T(r) follows a weighted Chi-squared
distribution with weights po = [SINR( /(1 + SINRy), SINR; /(1 +SINR;), ..., SINRN_1 /(1 +
SINRy_1)] and degrees of freedom v = [2,2, ..., 2];x N, which is denoted as @;0 [30]. There-
fore, the false-alarm rate can be expressed as follows:

pr= Pr(G)Z() > Tthres) =1- Q(Tthresr 620)1 (AZ)

where Ty, is the decision threshold, Pr(-) is the probability operator, and Q(Tjjes, @;0)
is the cumulative distribution function (CDF) of the weighted Chi-squared distribution
variable @} .

Under the H; hypothesis (the target is present), T(r) also follows a weighted Chi-
squared distribution with weights p; = [SINR(, SINRy, ..., SINRy_1]| and degrees of free-
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doms v = [2,2,...,2]1xN, Which is denoted as @7’;] [30]. Similarly, the probability of
detection can be expressed as follows:

Pa = Pr(@ﬁl > Tthres) =1- Q(TthreS/ezl)- (A3)

Given py, the decision threshold Tjy,s can be obtained through (A2), and then, p; can
be obtained through (A3). The CDF of the weighted Chi-squared distribution in (A2) and
(A3) can be calculated through the method in [40].
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