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Abstract: Local and Regional Authorities require indicators at the intra-urban scale to design ade-
quate policies to foster the achievement of the objectives of Sustainable Development Goal (SDG)
11. Updated high-resolution population density and settlement maps are the basic input products
for such indicators and their sub-indicators. When provided at the intra-urban scale, these essential
variables can facilitate the extraction of population flows, including both local and regular migrant
components. This paper discusses a modification of the dasymetric method implemented in our
previous work, aimed at improving the population density estimation. The novelties of our paper
include the introduction of building height information and site-specific weight values for population
density correction. Based on the proposed improvements, selected indicators/sub-indicators of four
SDG 11 targets were updated or newly implemented. The output density map error values are
provided in terms of the mean absolute error, root mean square error and mean absolute percentage
indicators. The values obtained (i.e., 2.3 and 4.1 people, and 8.6%, respectively) were lower than those
of the previous dasymetric method. The findings suggest that the new methodology can provide
updated information about population fluxes and processes occurring over the period 2011–2020 in
the study site—Bari city in southern Italy.

Keywords: EO data; LiDAR; fine-grid population map; regular migrant population; SDG 11 indica-
tors; inclusion policy; Sentinel-2 imagery; urban resilience; New Urban Agenda

1. Introduction

Updated high-resolution population density maps of urban settlements have been
recognized as essential variables for the calculating of Sustainable Development Goal
(SDG) 11 indicators (i.e., Make cities and human settlements inclusive, safe, resilient, and
sustainable) [1] in the framework of the United Nations 2030 Agenda [2]. In order to
monitor the achievements of such goals, Local and Regional Authorities (LRAs) play a key
role in pursuing SDGs [3]. In this regard, the New Urban Agenda (NUA) adopted by [4],
suggests actively involving LRAs in a bottom-up strategy of SDG 11 process acceleration;
however, LRAs require products at a fine intra-urban scale, whereas the current literature
provides only national or global scale indicators [5–9].

In our previous work [10], a vector-based dasymetric method was implemented
to generate a population density and distribution map on a grid (100 m × 100 m), by
combining census data with an updated settlement map obtained from Sentinel-2 data.
The study area was the municipality of Bari, southern Italy, interested in migration
fluxes monitoring.

In this study, a new version of the vector-based dasymetric method is proposed to
provide both updated and more reliable population density maps at the intra-urban scale
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for the same urban area. The area has been exposed to increasing migration processes and
fluxes of the local and migrant population, which deserve attention, considering cohesion
and inclusion issues. Thus, a map was produced for both the total urban population and
its regular migrant component, for each continent of origin.

The main innovation of the presented work is related to the introduction of building
height information in the dasymetric formula. According to recent research efforts, the
use of building height for building volume estimation production seems to provide more
reliable output population density maps, thus reducing population density uncertainties.
At the global scale, [11] suggested the use of a Digital Elevation Model (DEM). They
found a composite of the 1-arcsec Shuttle Radar Topography Mission (SRTM30) and the
Advanced Land Observing Satellite (ALOS) World 3D–30 m to be a reliable DEM source for
estimating the vertical component of built-up areas. At the national scale, [12] combined
Sentinel-1A/B and Sentinel-2A/B time-series to map building heights using a machine
learning regression model. The authors found that good performance can be achieved with
frequency-weighted RMSE values ranging from 2.9 m to 3.5 m. However, the model used
in their study had to be trained and validated with highly accurate building height data
from several 3D building models to obtain reliable values. At the local scale, [13] suggested
estimating building height and building footprint area from Synthetic Aperture Radar
(SAR)PALSAR-2 (onboard ALOS-2), which has a very high spatial resolution. They found
that the use of SAR data can: (1) Enable automated delineation of built-up areas at a spatial
resolution of 5 m, with an accuracy of 85% when using globally available low-resolution
training data; (2) assess the density of building height class with a root mean square error
of 0.25, 0.034 and 0.032 for the low, mid and high-rise building density classes, respectively;
(3) deal with the scattering components of buildings at different orientation angles by
combining data from both ascending and descending orbits; however, the authors did not
apply the proposed technique to demographic studies.

At the intra-urban scale, in [14], the results of different dasymetric methods were
compared to introduce volume information into population density evaluation. From
LiDAR data, the authors first extracted building footprint areas through threshold values
of building heights. Then, they estimated the building volume as a product between
25 square meters cells (including buildings) and their height values. Additionally, the
authors used the Urban Atlas (UA) [15], which provides pan-European comparable land
cover and land use data for functional urban areas (FUA) to extract building uses. Such in-
formation served as an additional input when running the dasymetric method. The reason
for this choice was that the geometric accuracy of the Urban Atlas product is greater than
that of CORINE Land Cover (CLC): the minimum mapping unit (MMU) ranges from 0.25 to
1 ha in the former product, while it is 25 ha in the latter. From the Urban Atlas, the au-
thors identified buildings with residential use and applied the dasymetric method to such
buildings. By using LiDAR data for volume estimation and the Copernicus Urban Atlas
the authors obtained better performance, in terms of both mean absolute percentage error
(MAPE) and root mean square error (RMSE), with respect to two-dimensional dasymetric
methods [14]. Furthermore, the study found that only high-resolution vector information,
such as cadastral information, can provide the final best performance; however, cadastral
data may either not be regularly updated, such as in Italy or Southern Europe, or is costly.

In this study, to improve the previously implemented dasymetric method [10], accord-
ing to the findings and suggestions from the mentioned studies, we introduce the following
novelties in the dasymetric method at the intra-urban scale: (a) Building height information
from LiDAR data, (b) building use information from Copernicus UA layers dated 2012
and 2018, and (c) site-specific weight values for population density correction; such values,
instead of the fixed ones used in [10,16], are derived by the ratio of the average population
density in non-residential areas to the estimated density in predominantly residential areas.
According to the recent literature, the proposed method belongs to the class of hybrid
Statistical–Dasymetric Models [17]. While traditional dasymetric models can produce
fine-resolution population density estimates through relationships between population
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distribution and ancillary geographic layers, such as land cover maps [18], an increasing
number of hybrid approaches have recently been introduced in the literature [17]. These
methods explicitly combine the traditional concept of dasymetric mapping with statistical
analytical tools to determine the population allocation weights. The regression of either
population counts or densities against various types of predictive variables (e.g., those
derived from ancillary layers) was mentioned in the review work of [17]. Such hybrid
Statistical–Dasymetric models could ensure both the standardization of the dasymetric
procedure and its reproducibility in other study areas.

Based on the proposed improvements, all of the indicators implemented in [10] were
updated. These include (a) SDG 11.1.1—“Proportion of urban population living in slums,
informal settlements, or inadequate housing” and its sub-indicators (1) and (2), considering
inadequate housing for both their structural features and hazardous location; and (b) SDG
11.3.1—“Ratio of land consumption rate to population growth rate”. The following addi-
tional indicators/sub-indicators were implemented: SDG 11.1.1 sub-indicator (3) related to
building crowding; SDG 11.2.1—“Proportion of population that has convenient access to
public transport” in the migrant and total populations; SDG 11.6.2—”Annual mean levels
of fine particulate matter (e.g., PM2.5 and PM10) in cities (population-weighted)”.

In the Bari study area, all the indicators listed above as well as their changes (2011–
2020) were quantified for both the total population and the regular migrant population
components, with distinctions drawn between nationalities of origin.

To the best of our knowledge, in the current literature, not many studies have im-
plemented SDG 11 indicators to provide high-resolution maps that describe the spatial
variation of the processes analysed at an intra-urban scale. The studies [19,20] have pro-
vided methodologies to estimate SDG 11.1.1 indicators from Earth Observation data at a
local level, underlining how uncertainties still affect reporting on SDG indicator 11.1.1,
as well as other SDG indicators, such as 11.3.1, which require robust information on
population estimates.

2. Materials and Methods
2.1. Study Area

The study area (Figure 1) covers about 260 km2, including the city of Bari in the Apulia
region, southern Italy. Other nearby municipalities were not included due to the lack of
both open data and common formats useful for our purpose.
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Figure 1. Study area in the green frame. Bari municipality boundaries are indicated in blue. Back-
ground source: Sentinel-2 image, 10 m spatial resolution, acquired on 27 October 2018.

Over the last 20 years, the city of Bari has experienced an upward trend in its migrant
population, in contrast to the downward trend in the native population. In the last decade,
the overall migratory balance—evaluated with respect to the entire metropolitan area
population—has been continuously negative. The local population (especially young
people) tend to move towards Northern Italy or abroad for work and study [21,22]. The
total population of Bari city remained quite stable up to 2020 (see Table 1) with only an
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additional total increase of 2.18%, whereas the migrant population increased by about 100%
since 2011 (the date of the last ISTAT national survey of the population).

Table 1. Population data of Bari. Source: ISTAT.

Year
(31 December)

Total Resident
Population
(Number)

Total Resident
Population

Variation (%)

Migrant
Population
(Number)

Migrant over
Total Resident
Population (%)

Migrant
Percentual

Variation (%)

2001 316,278 - 2556 0.80% -
2011 315,408 −0.28% 6660 2.11% +160.56%
2019 322,316 +2.18% 13,298 4.13% +99.67%

2.2. Satellite-Derived Products

For the present study, we first updated the settlement map of the area under study up
to 2020 by using Sentinel-2 imagery. The data selected were multi-seasonal and cloud-free
Sentinel-2 images, freely downloaded from the United States Geological Survey (USGS)
EarthExplorer portal [23] as Level-2A surface reflectance products. The selected dataset
consisted of four images acquired on 25 January, 22 May, 28 July and 4 October 2020. For
each image, the four spectral bands at 10 m spatial resolution (i.e., B2, B3, B4 and B8) and
the six bands at 20 m (i.e., B5, B6, B7, B8a, B11 and B12) were analysed. The latter six bands
were resampled to 10 m spatial resolution using a bilinear function, while the Sentinel-2
spectral bands at 60 m spatial resolution were not used.

The map was obtained from the same pixel-based, data-driven, automatic classifica-
tion procedure that performed best in our previous work [10]. This approach was possible
given the availability of in-situ reference data for training a support vector machine (SVM)
classifier [24]. The 10 image spectral bands were used as input to the classifier along with
slope measurements obtained from the available digital elevation model (DEM). The DEM, at
8 m spatial resolution, was added as input for discriminating built-up objects from extrac-
tion sites. For the SVM classifier, a radial basis function (RBF) was adopted as the kernel
function and the training parameters were as follows: gamma = 0.024 and regularization
parameter (C) = 100. The Food and Agriculture Organization Land Cover Classification
System (FAO–LCCS) taxonomy was considered for class discrimination [25]. The classifier
was trained for a multi-class problem considering the following Land Cover (LC) classes:
B15/A1 (Artificial Structures/Built-Up); B15/A2A6 (Artificial Structures/Extraction sites);
(B27 or B28)/A1 (Artificial or Natural Water Bodies/Water); A11/(A1 or A2)A9 or A12/(A3
or A4)E1 (Cultivated Lands or Natural Vegetation/(Evergreen Trees or Shrubs); A11/(A1 or
A2)A10 or A12/(A3 or A4)E2 (Cultivated Lands or Natural Vegetation/(Deciduous Trees or
Shrubs); A12/A2 (Natural Vegetation/Herbaceous); A11/A3 (Cultivated Lands/Herbaceous).
The output LC map was produced by training the SVM classifier with 11,892 references
unchanged pixels. The final 2020 binary settlement map, with buildings only and at 10 m
spatial resolution, was validated using a set of 3403 reference pixels. Both training and vali-
dation reference pixels were selected according to a stratified random sampling to obtain a
sample population in which all the classes were neither over- nor under-represented [26].

2.3. Statistical Census Data

Population data per census area were used as the main input for generating the
population density map on a fine grid. At the intra-urban scale, all issues related to such
data collection and format harmonization were discussed in [10].

Every year, the Italian National Institute of Statistics (ISTAT) publishes data concerning
the total number of residents in each municipality classified by sex, nationality and age.
The latest updated data, specified per census zone, relate to the 2011 National Census
Collection. As of 2018, the ISTAT Permanent Population Census came into force. However,
to date, population data at intra-urban scales have not yet been published by ISTAT; the
last update was on 9 October 2011. Thus, at the local level, the acquisition of statistics
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data per census zone, updated on 1 January 2020, was obtained through interaction and
collaboration with the Demographic Service Office of Bari municipality.

The tabular data provided by ISTAT and the Demographic Service Office of Bari
were transposed onto maps represented in the Universal Transverse Mercator Coordinate
System (European Terrestrial Reference System 1989) and ingested in the open-source QGIS
environment (Figure 2).
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Figure 2. The total population per census zone of Bari in 2011 (a) and 2020 (b). Background source:
Bing Aerial.

2.4. Building Use Information

Dasymetric mapping is used as a tool to disaggregate census data at the landscape
level [10,16]. The basic principle of dasymetric mapping is to sub-divide source zones into
smaller spatial units possess greater internal consistency of the variable being mapped.
Boundaries represented on dasymetric maps reflect spatial distribution data of actual
population distribution, rather than the artificially imposed limits (e.g., administrative
boundaries) of areal units [10]. The method requires, as input, a built-up map weighting
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depending on the building use for each area. In our previous paper, weight values were
the same as those used in [16].

In this study, we propose a new version of the dasymetric method which, instead,
extracts building use information from the Copernicus UA service available for 2012 and
recently updated to 2018 [15]. The UA classes are aggregated according to the type of
building use, based on the associations shown in Table 2. The resultant maps are depicted
in Figure 3.

Table 2. Building use classes.

Building Use Urban Atlas Classes

Residential 1111; 11210; 11220; 11230; 11240; 13400
Rural 21000; 220000; 23000; 24000; 32000; 330000

Industrial, Commercial and Leisure 12100; 14100; 14200
Roads, Railways, Port and Airport 12210; 12220; 12230; 12300; 12400

Other All remaining classes

2.5. Dasymetric Mapping Method (Version 2.0)

According to [10], population data, at the census level, can be disaggregated and
reallocated to each cell of the output grid (100 m × 100 m).

The criteria proposed in the present work to define the weights of population redistri-
bution are described as follows:

• In residential areas, population allocation is proportional to building volumes.
• In non-residential areas, population allocation in a specific cell depends on building

use as well as volumes.

Such criteria were supported by the results of the statistical analysis described in
Section 3.1.2. Moreover, many authors [16,27–29] have endorsed the dependency be-
tween population density and land use maps informing on residential, rural and indus-
trial/commercial areas. In particular, [16] introduced a correction factor for the dasymetric
weights to be applied to non-residential areas.

To evaluate building volumes, first, building footprint areas were estimated from
the updated settlement map obtained from Sentinel-2 data. Then, building height values
were extracted from LiDAR data, which had been acquired by the Italian Ministry of the
Environment (new Ministry of Ecological Transition), within the “Extraordinary Remote
Sensing Plan,” and were based on surveys held in 2008.

The introduction of building height information can discriminate between residential
areas of greater or lesser density. This hypothesis was reinforced by the statistical analysis
conducted in Section 3.1.2. Based on building heights, built-up in historical areas, char-
acterized by buildings with a maximum of 3 floors, could be differentiated from modern
multi-floor buildings, and villas/independent houses with 1–2 floors.

In this study, the assumption was made that, in non-residential areas with predomi-
nantly industrial, commercial or other uses, population density is not related to building
volume. Therefore, a correction factor for the weights, according to the building use,
was determined by comparing the average density of non-residential areas with that of
predominantly residential areas. These coefficients were no longer fixed as in [10,16] but
were site-specific. The results obtained are reported in Section 3.1.2.

In Table 3, the list of all novelties in the new dasymetric method.
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Table 3. List of novelties introduced with respect to the previous version of the method.

Comparison Terms Dasymetric Method (Old Version [10]) Dasymetric Method Version 2.0

Building use map from CLC (MMU 25 ha) from UA (MMU ranging from 0.25 to 1 ha)
Weights Based on building footprint areas Based on building volume

Weight’s correction factors Fixed, arbitrary Site-specific

The first step of the dasymetric method consists of a double intersection of the input
vector information layers: polygons of census areas; polygons of different building uses
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and the final output grid. The elements resulting from such double intersections are shown
in Figure 4. The colours represent the different building uses. The red strokes identify the
polygons of the census areas, while the blue strokes delimit the output grid cells.

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 36 
 

 

The first step of the dasymetric method consists of a double intersection of the input 
vector information layers: polygons of census areas; polygons of different building uses 
and the final output grid. The elements resulting from such double intersections are 
shown in Figure 4. The colours represent the different building uses. The red strokes iden-
tify the polygons of the census areas, while the blue strokes delimit the output grid cells. 

 
Figure 4. Double intersection of input vector layers. 

The following formula reflects the dasymetric computation method implemented in 
the QGIS environment 

𝑃௚௥௜ௗ = ෍ 𝑃௝,௖௘௡௦௨௦௠
௝ୀଵ

∑ 𝐵𝐹௦௨௕_௘௟௘௠ீோூ஽೔ ∗ 𝐻𝑚𝑒𝑎𝑛௦௨௕_௘௟௘௠ୋୖ୍ୈ೔ ∗ 𝐶𝑜𝑟𝑟௙௔௖௧௢௥௡௜ୀଵ∑ 𝐵𝐹௦௨௕_௘௟௘௠஼ாேௌ௎ௌ೗ ∗  𝐻𝑚𝑒𝑎𝑛௦௨௕_௘௟௘௠஼ாேௌ௎ௌ೗ ∗ 𝐶𝑜𝑟𝑟௙௔௖௧௢௥௞௟ୀଵ  (1)

where, 
• 𝐵𝐹௦௨௕೐೗೐೘಴ಶಿೄೆೄ೗ is the built-up footprint area in a generic sub-element 𝑙 of a census 

zone having different building use; 
• 𝑘 is the number of census zone sub-elements with different building use, derived 

from the intersection of vector layers census zones and building use; 
• 𝐵𝐹௦௨௕_௘௟௘௠ீோூ஽೔  is the built-up footprint area in a generic sub-element 𝑖 of a census 

zone, with different building use, included in the output cell considered; 
• 𝑛 is the number of census zones sub-elements, with different building uses, within a 

grid cell, derived from the double intersection; 
• 𝑃௝,௖௘௡௦௨௦ is the population of a generic census zone; 
• 𝑚 is the number of census zones in a cell; 
• 𝑃௚௥௜ௗ is the final population allocated to a cell of a regular grid; 
• 𝐻𝑚𝑒𝑎𝑛௦௨௕_௘௟௘௠ீோூ஽೔ is a mean value of building heights of sub-elements in a cell; 
• 𝐻𝑚𝑒𝑎𝑛௦௨௕_௘௟௘௠஼ாேௌ௎ௌ೗ is a mean value of building heights in census zones; 
• 𝐶𝑜𝑟𝑟௙௔௖௧௢௥ are correction factors based on building uses, as described in Section 3.1.2. 

Figure 4. Double intersection of input vector layers.

The following formula reflects the dasymetric computation method implemented in
the QGIS environment

Pgrid =
m

∑
j=1

Pj,census
∑n

i=1 BFsub_elemGRIDi
∗ Hmeansub_elemGRIDi

∗ Corr f actor

∑k
l=1 BFsub_elemCENSUSl

∗ Hmeansub_elemCENSUSl
∗ Corr f actor

(1)

where,

• BFsubelemCENSUSl
is the built-up footprint area in a generic sub-element l of a census zone

having different building use;
• k is the number of census zone sub-elements with different building use, derived from

the intersection of vector layers census zones and building use;
• BFsub_elemGRIDi

is the built-up footprint area in a generic sub-element i of a census
zone, with different building use, included in the output cell considered;

• n is the number of census zones sub-elements, with different building uses, within a
grid cell, derived from the double intersection;

• Pj,census is the population of a generic census zone;
• m is the number of census zones in a cell;
• Pgrid is the final population allocated to a cell of a regular grid;
• Hmeansub_elemGRIDi

is a mean value of building heights of sub-elements in a cell;
• Hmeansub_elemCENSUSl

is a mean value of building heights in census zones;
• Corr f actor are correction factors based on building uses, as described in Section 3.1.2.

The choice of evaluating heights as an average in the LiDAR set (dated 2008) is a crite-
rion that is useful to overcome the issue of missing information for buildings constructed
after 2008. Such an approximation is justified by the existence of municipal regulations [30]
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that prevent the construction of new buildings with height values differing from those
prevailing in the urban context.

The block diagram of the software implementation in the QGIS environment (compat-
ible with versions based on Python 3.7) is shown in Figure 5.
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2.6. Quantifiable Derivatives of SDG 11 Indicators and Required Ancillary Data

A complete list of SDG 11 indicators developed for the case study, along with the
metrics, derivatives and ancillary data used for measuring them is provided in Table 4. The
ancillary data required as input were from local providers. However, the data were not
up-to-date or in the same format. This may require time-consuming data pre-processing or
have impacts on final accuracy values.

The fine-grid population density map was used as an input for all the indicators in
Table 4, while the settlement map, which can be updated from satellite data, was used as
an input for SDGs 11.1.1 and 11.3.1 only. Except for the indicator SDG 11.3.1, all the others
required ancillary data as input.

In Table 4, we denote the newly implemented indicators with bold characters.

2.7. SDG 11.1.1 Indicator

For the implementation of the indicator SDG 11.1.1 “Proportion of urban population
living in slums, informal settlements or inadequate housing” several calculation methods
were developed depending on the meaning of “inadequate”:

• sub-indicator (1) the “proportion of households with non-durable housing”;
• sub-indicator (2) the “proportion of households living in housing residing on or near

hazardous areas”;
• sub-indicator (3) “proportion of households with insufficient living space”.

In the absence of local information layers to be used as ground truth and very high-
resolution EO data, in this work, we considered all buildings, without distinguishing the
slums from the houses.

To quantify sub-indicators (1) and (2), the procedures remained unchanged from those
presented in [10,31]. Unlike the previous work, the analysis concerned the total population,
instead of only the regular migrant component. Furthermore, the population grid was used
as input to calculate the cumulative number of people potentially living in “inadequate
housing”. This value can be used to compare results obtained at the intra-urban spatial
disaggregation level with outcomes achieved at an urban scale.
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Table 4. List of ancillary data needed to evaluate SDG 11 indicators at intra-urban scale. bold format is used to identify the
new indicators implemented.

SDG Target SDG 11 Indicators Quantifiable Derivatives
(Sub-Indicators) Ancillary Data

Target 11.1:Safe and
affordable housing

11.1.1. Proportion of urban
population living in slums,

informal settlements or
inadequate housing.

1. Proportion of households
with non-durable housing

• Building use layer from open
data “civilario comunale”
provided by Bari Municipality
for 2017.

2. Proportion of households
living in housing residing on
or near hazardous areas

• Flooding hazard map for 2019,
provided by “Autorità di
bacino distrettuale
dell’Appennino Meridionale”

3. Proportion of households
with insufficient living space

• Building layer from open
data “civilario comunale”
provided by Bari
Municipality for 2017;

• Local urban layer of 2011
provided by Apulian
Regional Authority

• LiDAR data provided by
“Ministero dell’Ambiente
della Tutela del Territorio e
del Mare”

Target 11.2:
Affordable and

sustainable transport
systems

11.2.1. Proportion of
population that has
convenient access to

public transport by sex,
age and persons with

disabilities

1. Proportion of population that
has convenient access to public
transport

• Street network layer from
open data “civilario
comunale” provided by Bari
Municipality;

• Bus stop geographical
coordinate open data
provided by Bari
municipality. Source:
AMTAB

Target 11.3: Inclusive
and sustainable

urbanization

11.3.1. Ratio of land
consumption rate to

population growth rate

1. Ratio of land consumption rate to
population growth rate (LCRPGR)

Target 11.6: Reduce
the environmental

impacts of cities

11.6.2. Annual mean
levels of fine particulate
matter (e.g., PM2.5 and

PM10) in cities
(population-weighted)

1. Annual average exposure to
PM2.5
(population-weighted)

• Annual mean levels of fine
particulate matter map PM2.5
provided by the Regional
Agency of Environmental
Protection (2019)

2. Annual average exposure to
PM10
(population-weighted)

• Annual mean levels of fine
particulate matter map PM10
provided by the Regional
Agency of Environmental
Protection (2019)

As in [10], the ancillary building use layer, provided by Bari municipality in the “civi-
lario comunale” dataset (2017), provided useful information on the number and position of
inadequate housing with structural deficiencies as an input for sub-indicator (1).

The map of areas subjected to flood hazard, Figure 6, was updated in November 2019
from the “Autorità di bacino distrettuale dell’Appennino Meridionale,” which was used as
input for sub-indicator (2).
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the buildings. The volume could also have been overestimated mainly in the central areas 
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distrettuale dell’Appennino Meridionale”. Background source: Bing Aerial.

Sub-indicator (3) was introduced, in this work, as an additional criterion to define
inadequate housing. To quantify the proportion of households with insufficient living space,
building crowding degree maps were produced. The method to generate such maps consisted
of calculating the housing per capita volume as a ratio between building volume and the
number of resident people estimated in a cell. The analysis was performed using the 2020
and 2011 population grid maps and input data in Table 4. As depicted in Figure 7, LiDAR
height data were combined with building layers to obtain a representative 3-dimensional
model of buildings of the city. Thus, the volume was computed by multiplying the
footprint areas with the mean value of heights for each building. The “civilario comunale”
dataset (2017) was adopted as the latest update of the building layer. The settlement map
from EO data was, instead, used as additional input to model the urban area in newly
built neighbourhoods.
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Figure 7. Close-up from Bari municipality of: (a) building layer and (b) 3D model obtained by combining LiDAR and
building layers.

As an inherent limitation of the methodology, the useful volume per inhabitant
appeared to be overestimated, as it included floor thicknesses, walls and technical rooms of
the buildings. The volume could also have been overestimated mainly in the central areas
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of the city, where buildings included many commercial spaces. The final classification of
housing volume per capita was clustered into 3 categories of increasing degree of crowding:
low, medium and high. This was carried out based on the results obtained. In addition,
for a more detailed analysis of critical crowding values, a per capita volume threshold
of 60 m3 was selected. As the useful height of a floor was approximately 3 m and the
useful per capita volume was slightly overestimated, this threshold corresponded to less
than 20 available square meters per capita. This threshold value conformed to the current
legislation in Italy, according to which the limit criterion of habitability was about 14 square
meters per inhabitant [32].

2.8. SDG 11.2.1 Indicator

The SDG 11.2.1 indicator “Proportion of the population that has convenient access
to public transport disaggregated by age group, sex and persons with disabilities” is, in
this work, implemented for both the total and migrant populations. The methodology for
calculating the indicator has been reported previously [33]. As main inputs, an inventory
of public transport stops in the city and a network street graph were required. In this work,
these layers were acquired from the open-data portal of Bari Municipality. A close-up bus
stop map in Bari is depicted in Figure 8.
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The metadata of indicators [33] suggested quantifying the proportion of the population
that does not have convenient access to public transport by those who must walk more than
500 m to reach the nearest stop in the city. In this work, the fine-grid population density map
was adopted as an input to evaluate indicators at both intra-urban and urban scales.

The processing chain, developed for this study, uses the PyQGIS libraries, designed for
the analysis of network street graphs. The main steps of the implemented procedure are:

1. The population grid is filtered by extracting those elements that do not contain one or
more bus stops within;
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2. Each cell of the grid population density map is represented by its centroid;
3. The centroids are projected onto the nearest point on the network street map which

are denoted as starting points;
4. Bus stops are also projected onto the nearest point on the grid which will be referred

to as endpoints (Figure 9 provides a graphical representation of this step);
5. For each starting point, an algorithm “graph tracker” searches for the nearest ending

point, calculating the distance to travel necessary to reach it on the network;
6. Those cells obtaining a distance greater than 500 m between starting and ending

points are selected and highlighted.

Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 35 
 

 

The processing chain, developed for this study, uses the PyQGIS libraries, designed 
for the analysis of network street graphs. The main steps of the implemented procedure 
are: 
1. The population grid is filtered by extracting those elements that do not contain one 

or more bus stops within; 
2. Each cell of the grid population density map is represented by its centroid; 
3. The centroids are projected onto the nearest point on the network street map which 

are denoted as starting points; 
4. Bus stops are also projected onto the nearest point on the grid which will be referred 

to as endpoints (Figure 9 provides a graphical representation of this step); 
5. For each starting point, an algorithm “graph tracker” searches for the nearest ending 

point, calculating the distance to travel necessary to reach it on the network; 
6. Those cells obtaining a distance greater than 500 m between starting and ending 

points are selected and highlighted. 
The evaluation of indicators at the intra-urban scale consists of spatial overlapping 

of both total and migrant population density map with a spatial distribution map of the 
previously mentioned cells. The sum of the total population (including migrant compo-
nent) living in these cells is an essential input to calculate the indicator at the urban scale. 

 
Figure 9. Graphical representation of SDG 11.2.1. computation step 4. The walkable paths from start-
ing to ending points are shown in blue. 

2.9. SDG 11.3.1 Indicator 
The formulas and procedures, for computing the SDG 11.3.1 indicator, have been 

described in [10]. The indicator was estimated according to its metadata description [34] 
already implemented in [10]. The related formula is based on the ratio between the Rate 
of Land Consumption (LCR) and the Population Growth rate (PGR) as follows 𝐿𝐶𝑅𝑃𝐺𝑅 =  𝐿𝑎𝑛𝑑 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐺𝑟𝑜𝑤𝑡ℎ 𝑅𝑎𝑡𝑒  (2)

The only inputs required are the population data and settlement maps in two years). 
The former maps were obtained by applying the dasymetric method to population census 
data (dated 9 October 2011, and 1 January 2020, in this study). The latter map was obtained 
by downloading the European Settlement Map dated 2012 [35] and from the classification 
of 2019–2020 Sentinel-2 images. The ESM was based on satellite data acquired during 2011 

Figure 9. Graphical representation of SDG 11.2.1. computation step 4. The walkable paths from starting to ending points
are shown in blue.

The evaluation of indicators at the intra-urban scale consists of spatial overlapping
of both total and migrant population density map with a spatial distribution map of the
previously mentioned cells. The sum of the total population (including migrant component)
living in these cells is an essential input to calculate the indicator at the urban scale.

2.9. SDG 11.3.1 Indicator

The formulas and procedures, for computing the SDG 11.3.1 indicator, have been
described in [10]. The indicator was estimated according to its metadata description [34]
already implemented in [10]. The related formula is based on the ratio between the Rate of
Land Consumption (LCR) and the Population Growth rate (PGR) as follows

LCRPGR =
Land Consumption Rate
Population Growth Rate

(2)

The only inputs required are the population data and settlement maps in two years).
The former maps were obtained by applying the dasymetric method to population census
data (dated 9 October 2011, and 1 January 2020, in this study). The latter map was obtained
by downloading the European Settlement Map dated 2012 [35] and from the classification
of 2019–2020 Sentinel-2 images. The ESM was based on satellite data acquired during 2011
and 2012. The temporal interval between the two considered epochs amounted to around
eight years.
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2.10. SDG 11.6.2 Indicator

According to the reference metadata [36], SDG indicator 11.6.2. “Annual mean levels
of fine particulate matter (e.g., PM2.5 and PM10) in cities (population-weighted)” was
implemented through spatially overlaying a population grid map (1 January 2020) with
maps of the annual mean levels (2019) of atmospheric pollution from particulate matter
(see input in Table 4). The latter data had a lower spatial resolution (4 km × 4 km) than the
fine-grid population density map (100 m × 100 m). Thus, as suggested in [26], the indicator
was aggregated at the urban scale using the formula

Ccity =
∑n

i=1 C 4 km×4 km ∗ ∑m
j=1 PGRID_j

Pcity
(3)

where

• Ccity is the city estimate;
• C4 km×4 km is the particulate matter concentration in a 4 km × 4 km cell;
• PGRID_j is population density value per cell 100 m × 100 m;
• m is the number of cells of fine-grid population map included in a cell of atmospheric

pollution map (4 km × 4 km);
• n is the number of cells of atmospheric pollution map covering Bari territory;
• Pcity is the total population of Bari.

3. Results

The results of the analysis consist of two parts. The former reports the results obtained
for the input data for implementing SDG 11 indicators. The latter reports the 11 SDG
indicators’ evaluation outcomes.

3.1. Input Data for Indicators’ Implementation

The first part of the results includes the classification map of a multi-temporal Sentinel-
2 data set (Section 3.1.1), the weights adjustment factors for the new dasymetric method
(Section 3.1.2), and the updated maps of total and regular migrant populations for both
2011 and 2020 (Section 3.1.3).

3.1.1. Settlement Map Updating and Land Consumption Rate

The updated settlement map (buildings only) was produced for 2020 from Sentinel-2
data. The map, shown in Figure 10, was obtained with an Overall Accuracy (OA) of
99.00% ± 0.33%.

For both the new settlement map (2020) and the reference ESM (2012), the building
footprint area for each cell of the regular grid (100 m × 100 m) was estimated.

According to the methodology in [10], from these two maps, the Land Consumption
Rate (LCR) component of SDG indicator 11.3.1 was extracted. The resulting output LCR
map is shown in Figure 11. Values close to zero are representative of a stable state over time;
positive values indicate an increase in artificial surfaces, and negative values represent a
decrease in such surfaces. In most cases, as has been verified in [10], negative values are
due to an overestimation of the artificial areas in the map of 2012 produced by [35].
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3.1.2. Weights and Adjustment Factors of the New Dasymetric Method

To evaluate the impact of building heights (and, thus, volumes) in the redistribution
weights of the dasymetric method, a statistical analysis was carried out. Specifically, a
linear regression of population density, first considering the footprint building area and,
then, building volumes, was performed for about 600 census cells characterized mainly by
residential building use (>90%), according to the UA layer (2018). The findings revealed
that the correlation values between population and building footprint areas (R2 = 0.45) in
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Figure 12 were lower than those between population and volumes, reported in Figure 13
(R2 = 0.61).

Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 35 
 

 

3.1.2. Weights and Adjustment Factors of the New Dasymetric Method 
To evaluate the impact of building heights (and, thus, volumes) in the redistribution 

weights of the dasymetric method, a statistical analysis was carried out. Specifically, a 
linear regression of population density, first considering the footprint building area and, 
then, building volumes, was performed for about 600 census cells characterized mainly 
by residential building use (>90%), according to the UA layer (2018). The findings revealed 
that the correlation values between population and building footprint areas (R2 = 0.45) in 
Figure 12 were lower than those between population and volumes, reported in Figure 13 
(R2 = 0.61). 

 
Figure 12. Linear regression of Population against Building Footprint Area. 

 
Figure 13. Linear regression of Population against Building Volume. 

In the case of census areas mainly used for industrial, commercial or other purposes, 
the population appeared not to be related to the volume of buildings. Industrial ware-
houses occupy large areas and are generally higher than a common floor of a residential 
building, even though they are not inhabited. Therefore, by comparing the average pop-
ulation density in non-residential areas (i.e., industrial, commercial, rural or others) with 
that in predominantly residential areas, correction factors for the weights were selected 
according to the building use. Consequently, these coefficients were, in this work, not 
fixed (like those used in [10,16]), but were site-specific. Table 5 reports the correction factor 
values per building use adopted in this study. 

  

Figure 12. Linear regression of Population against Building Footprint Area.

Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 35 
 

 

3.1.2. Weights and Adjustment Factors of the New Dasymetric Method 
To evaluate the impact of building heights (and, thus, volumes) in the redistribution 

weights of the dasymetric method, a statistical analysis was carried out. Specifically, a 
linear regression of population density, first considering the footprint building area and, 
then, building volumes, was performed for about 600 census cells characterized mainly 
by residential building use (>90%), according to the UA layer (2018). The findings revealed 
that the correlation values between population and building footprint areas (R2 = 0.45) in 
Figure 12 were lower than those between population and volumes, reported in Figure 13 
(R2 = 0.61). 

 
Figure 12. Linear regression of Population against Building Footprint Area. 

 
Figure 13. Linear regression of Population against Building Volume. 

In the case of census areas mainly used for industrial, commercial or other purposes, 
the population appeared not to be related to the volume of buildings. Industrial ware-
houses occupy large areas and are generally higher than a common floor of a residential 
building, even though they are not inhabited. Therefore, by comparing the average pop-
ulation density in non-residential areas (i.e., industrial, commercial, rural or others) with 
that in predominantly residential areas, correction factors for the weights were selected 
according to the building use. Consequently, these coefficients were, in this work, not 
fixed (like those used in [10,16]), but were site-specific. Table 5 reports the correction factor 
values per building use adopted in this study. 

  

Figure 13. Linear regression of Population against Building Volume.

In the case of census areas mainly used for industrial, commercial or other purposes,
the population appeared not to be related to the volume of buildings. Industrial warehouses
occupy large areas and are generally higher than a common floor of a residential building,
even though they are not inhabited. Therefore, by comparing the average population
density in non-residential areas (i.e., industrial, commercial, rural or others) with that in
predominantly residential areas, correction factors for the weights were selected according
to the building use. Consequently, these coefficients were, in this work, not fixed (like
those used in [10,16]), but were site-specific. Table 5 reports the correction factor values per
building use adopted in this study.

Table 5. Correction factors per building use.

Building Use Corrfactor

Residential 1
Rural 0.7

Industrial, Commercial and Leisure 0.1
Roads, Railways, Port and Airport 0.01

Other 0
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3.1.3. Regular Population Map Updating and Population Growth Rate

To obtain the fine-grid population map (100 m × 100 m), the building use data
(Section 2.4), the settlement map (Figure 10) and the height-based weights from LiDAR
sources were used as input to apply the dasymetric method to the population data by
census zones (Section 2.3). The output maps for the total population and the regular
migrant population are shown in Figures 14 and 15, respectively.
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Figure 15. Grid population map for migrant population component in 2011 (a) and 2020 (b).

For comparison, the classes in the choropleth representation [37] are the same in all
images shown.

For accuracy evaluation, both the mean absolute error (MAE) and total absolute error
(TAE) were used [10,27,38]. MAE and TAE values were used to verify that the aggregation
of output cell data reproduced the total values associated with the original census areas [1].
The MAE value obtained over the 1291 census areas was 7 × 10−4, while the TAE value
was 0.9 (number of people counted). This means that the final count of total persons after
the application of the dasymetric method was close to the initial total number of persons.
Compared to the migrant map, the errors obtained were on the same order of magnitude.
As discussed in [27], the MAE was favoured as the main indicator of model performance,
as opposed to the root mean square error (RMSE), because it appears more robust for a
skewed distribution, as in the case of population density [38]; however, the RMSE was also
computed to obtain a value around 10−3.

From the population density maps (Figures 14 and 15), the Population Growth Rate
(PGR) component of Indicator SDG 11.3.1 was extracted for both total and regular migrant
populations. The output PGR maps obtained are shown in Figure 16.
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Figure 16. Population Growth Rate from October 2011–January 2020, with respect to: (a) The total
population; (b) the migrant population.

As depicted in Figure 16, the total and migrant populations had different patterns of
expansion with a tendency for the migrant population to concentrate in the central area
of Bari city. The native population, instead, seemed to prefer peri-urban areas where new
residential districts had been built, such as the new south-eastern suburbs of the city. This
finding confirms the results obtained in [10].

To provide information on both the spatial distribution of migrants, according to their
continent of origin, and to identify the most significant elements contributing to population
growth, the PGR indicator component was assessed by accomplishing disaggregation
criteria for both local and migrant populations by continent. First, for each cell, the
maximum PGR value (either positive or negative) was extracted and associated with the
specific population category. Then, only positive maximum PGR values were filtered from
the initial vectorial map to produce a new map (Figure 17). This map provides the spatial
distribution of different population categories, as well as an indication of which categories
had grown the most and where they had come from. In Figure 17, different colours are
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used to distinguish the different population components. The magnitude of the growth
rate is represented with circles of increasing diameter.
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Figure 17. Highest Population Growth Rate (positive increase).

Migrants from the Asian continent appeared to be dominant in the central area of the
city. The most represented countries included Pakistan, Afghanistan, Bangladesh, Georgia
and Iraq. Asiatic communities from China and the Philippines represented minorities in
the southeast city residential areas. Although less numerous, African communities, mainly
from Ghana, Somalia, Nigeria, Senegal, Gambia, Mali and Eritrea, overlapped with Asian
groups. The non-Italian Europeans came mainly from Albania, Romania and Bosnia.

3.2. SDG 11 Indicators Evaluations

This sub-section includes the results obtained from the implementation of SDG 11
indicators: SDG 11.1.1 (Section 3.2.1); SDG 11.2.1. (Section 3.2.2); SDG 11.3.1 (Section 3.2.3);
SDG 11.6.2 (Section 3.2.4). An additional Section 3.2.5 reports a summary of all proposed
indicators at the urban scale. Section 3.2.6 is devoted to the uncertainty estimation.

3.2.1. SDG 11.1.1 Indicator

For indicator SDG 11.1.1, the population maps obtained with the new version of the
dasymetric method were used as input to update sub-indicators (1) and (2) and to calculate
the new sub-indicator (3), which was introduced in Section 2.8.

The map of sub-indicator (1) for SDG 11.1.1, updated for the total population in
2020, is shown in Figure 18. The total number of people living in areas with one or more
inadequate buildings was 6151, of which 130 were migrants, even though only 596 people
could potentially reside in such buildings. The latter number was based on both the
proportion of inadequate buildings (from “civilario comunale” of Bari, 2017) to the total
built-up area (settlement map updated to 2020) and the assumption that the population
was uniformly distributed in the buildings. Many of these buildings are in central areas
of the city, where there are positive growth rates of the regular migrant population from
different continents. Unfortunately, it was impossible to verify whether people were living
in the ruined buildings or in the adjacent ones (as each cell may contain both types of
buildings). Such cases should, however, be highlighted to local authorities, as they are
relevant to social inclusion issues.
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Figure 18. SDG 11.1.1 sub-indicator (1) Proportion of households with non-durable housing.

The classes in the legend of Figure 18 define the percentage of people from a given
cell potentially living in buildings with structural deficiencies.

The update of SDG 11.1.1 indicator (2) is shown in Figure 19. The total number of
people living in the flood hazard areas in 2020 was approximately 3176 (or 1% of the total
population); the estimated number of migrants was 133, or approximately 4% of the people
living in the flood hazard area.
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Figure 19. SDG 11.1.1 sub-indicator (2) Proportion of households living in housing residing on or
near hazardous areas.

As in Figure 18, the legend of Figure 19 provides the percentage of people potentially
exposed to risk in each cell.

For the new SDG 11.1.1 sub-indicator (3), the housing volume per capita was estimated
by multiplying the building areas by the heights from LiDAR data, then dividing the result
by the number of people in each cell. The obtained map is shown in Figure 20.



Remote Sens. 2021, 13, 2835 22 of 34

Remote Sens. 2021, 13, x FOR PEER REVIEW 22 of 35 
 

 

For the new SDG 11.1.1 sub-indicator (3), the housing volume per capita was esti-
mated by multiplying the building areas by the heights from LiDAR data, then dividing 
the result by the number of people in each cell. The obtained map is shown in Figure 20. 

 
Figure 20. SDG 11.1.1 sub-indicator (3). The proportion of households with insufficient living space 
from crowding degree map in (a) 2011, and (b) 2020. 

It was observed that critical situations persisted in only a few elements of the regular 
grid. Thus, the intra-urban scale adopted for the calculation of the indicator appears to be 
an effective tool for identifying which urban neighbourhoods are most crowded, which 
grid elements are persistently overcrowded and which are those where the population is 
growing/declining. 

For example, the San Paolo neighbourhood in the western suburbs of the city—which 
is already known for its state of urban and social decay—revealed increasing rates of the 
native population and a high degree of building occupancy. In the specific case examined 
(Figure 21), the per capita living area result was less than 8 square meters (below the reg-
ulatory limits [32]). 

(a) 

(b) 

Figure 20. SDG 11.1.1 sub-indicator (3). The proportion of households with insufficient living space
from crowding degree map in (a) 2011, and (b) 2020.

It was observed that critical situations persisted in only a few elements of the regular
grid. Thus, the intra-urban scale adopted for the calculation of the indicator appears to be
an effective tool for identifying which urban neighbourhoods are most crowded, which
grid elements are persistently overcrowded and which are those where the population is
growing/declining.

For example, the San Paolo neighbourhood in the western suburbs of the city—which
is already known for its state of urban and social decay—revealed increasing rates of the
native population and a high degree of building occupancy. In the specific case examined
(Figure 21), the per capita living area result was less than 8 square meters (below the
regulatory limits [32]).
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Figure 21. Close-up of overcrowding degree map in St. Paolo District in: (a) 2011 and (b) 2020;
specific building data (bottom).

As an example of the increasing number of migrants settling in the central areas of the
city, Figure 22 shows buildings occupied by migrants of predominantly Asian origin, from
Pakistan, Afghanistan and Bangladesh.
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Figure 22. Close-up of Bari central area: increasing crowding degree in some cells with highest migrant PGR.

As shown in Figure 23, some residential areas (e.g., Japigia district) appeared to be
suffering from depopulation. These areas were close to a dismissed industrial area used as
an asbestos fiber processing site in the past.
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Figure 23. Close-up of Bari residential areas close to old industrial abandoned areas, showing decreasing crowding degree
between: (a) 2011 and (b) 2020.

3.2.2. SDG 11.2.1 Indicator

The SDG 11.2.1 indicator map is depicted in Figure 24 (total population) and Figure 25
(the migrant population component). The areas with orange colour were those where
the population did not have easy access to public transportation, as they were more than
500 m away from the nearest bus stop. The estimated total was 10,135 people (about 3% of
the total population); of these, only 226 people were estimated to be migrants. In general,
from the maps, it appeared that access to services such as public transport results in a
discriminating factor in the choice of settlements by migrant communities.
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3.2.3. SDG 11.3.1 Indicator

The indicator 11.3.1 “Ratio of Land Consumption Rate to Population Growth Rate”
(LCRPGR) is known as “land use efficiency,” as it allows determination of where land
consumption is justified by huge population growth and where, instead, it is due to external
reasons such as industrial, commercial and tertiary expansion. As a novelty, in this paper,
the PGR was evaluated for the total population (Figure 16a). The output product is shown
in Figure 26.
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Based on the ratio between LCR (Figure 10) and PGR (Figure 16a), very low positive
values (violet tones) occurred in two cases:
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• Very low LCR. This happened in consolidated urban areas such as the old town
districts and other neighbourhoods (e.g., Murat);

• PGR was greater than LCR, such as in the central areas subjected to incoming
migration flows.

Negative values mean that LCR or PGR was negative. Negative values of LCR were
unrealistic scenarios, generally due to local errors in either the ESM (2011–2012) or the final
(2020) settlement maps. As in [10], the ESM was found to have non-built areas erroneously
labelled as buildings; as such, negative PGR values were due to internal population flows
from some areas of the city to other areas. These flows may be due to environmental or
economic factors, such as changes in the costs of apartments that were abandoned by the
original resident population in those areas, as well as new religious facilities developed
after 2011, such as a new mosque.

High values (orange-yellow colour) are dominant where LCR exceeded PGR; this
suggests the presence of large areas subject to commercial, tertiary and industrial expansion.

3.2.4. SDG 11.6.2 Indicator

The SDG 11.6.2 indicator at intra-urban scale is depicted in Figure 27, showing a spatial
overlay of grid population density map with air pollution information on the annual mean
of particulate matter PM 10 and PM 2.5 maps.

According to the aggregation formula (2) at the urban scale (Section 2.10), the average
exposure values, weighted to the total population, were 22.1 µg/m3 for PM and 13.5 µg/m3

for PM 2.5. Similar values were obtained when the pollution values were weighted to the
migrant population component only. In both cases, the values were well below the legal limits
for protecting human health; that is, 40 µg/m3 for PM 10 and 25 µg/m3 for PM 2.5 [39].

3.2.5. Evaluation of Indicators at Urban Scale

The SDG 11 indicators that, in previous sub-sections, were calculated and displayed
as maps at the intra-urban scale are quantified in Table 6, as total/average values obtained.
In other words, Table 6 reports the measures of SDG 11 indicators at the urban scale for
Bari city.

Table 6. Values of SDG 11 indicators obtained at urban scale for Bari city, for the total and migrant populations.

SDG 11 Indicators Quantifiable Derivatives Value at City Scale Temporal Reference
(Population Data)

11.1.1. Proportion of urban
population living in slums,

informal settlements or
inadequate housing.

1. Proportion of households
with non-durable housing

0.2%
(596 people) 2020

2. Proportion of households
living in housing residing on or

near hazardous areas

1%
(3043 native people,
133 migrant people)

2020

3. Proportion of households
with insufficient living space

1.8% (5876 people) 2011
0.88% (2848 people) 2020

11.2.1. Proportion of population
that has convenient access to

public transport by sex, age and
persons with disabilities

1. Proportion of population that
has convenient access to public

transport

3%
(10,135 people) 2020

11.3.1. Ratio of land
consumption rate to population

growth rate
1. LCRPGR 0.40

(Average value)
Interval between 2011

and 2020

11.6.2. Annual mean levels of
fine particulate matter (e.g.,
PM2.5 and PM10) in cities

(population-weighted)

1. Annual average exposure to
PM2.5 13.5 µg/m3 2020

2. Annual average exposure to
PM10 22.1 µg/m3 2020
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Figure 27. SDG 11.6.2 Indicator: Annual mean levels of fine particulate matter weighted to total
population of Bar city: (a) PM 10 and (b) PM 2.5.

Such a table can be useful for comparative studies monitoring the progress toward
the 2030 Agenda and New Urban Agenda across various cities.

However, in this study, the urban scale level was used to assess the primacy of the
intra-urban scale in monitoring and informing about ongoing flows and processes, which
were otherwise invisible when using a single value (Section 4.2.2).
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3.2.6. Uncertainty Estimation

When assessing the uncertainties associated with the indicators, we assumed that
they essentially depend on the uncertainty of the population density map produced by the
dasymetric method. Such a map is the essential variable for indicator estimation.

The MAE, root mean square error (RMSE) and mean absolute percentage error (MAPE)
were estimated at the output grid cell scale (100 m × 100 m).

A validation data set was created using the number of resident people, in the registry
offices for each address. This data set was partly obtained automatically through geocoding
tools in QGIS. However, some addresses were processed manually, due to the lack of a
standardized toponymy data format.

A further difficulty arose in matching house numbers (punctual data) to the corre-
sponding buildings on the map, as the footprint area of the buildings could extend into
more than one cell. The cells with the best match were selected for photo interpretation
(see Figure 28). Validation samples sometimes considered a group of cells (Figure 28b),
rather than just one cell (Figure 28a). In Figure 28 we denote the street numbers where
we found resident people as “assigned addresses,” and those addresses where we did not
find anyone as “not assigned addresses”. The uncertainty was estimated by comparing the
number of residents registered at the addresses in the validation data sample (Pgrid) with
the population data assigned to the cell by the dasymetric method ( ˆPgrid).
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The validation dataset was composed of 75 cells out of a total of 4821 (1.6%) non-zero
cells. These cells were spatially well distributed and selected in order to ensure good spatial
coverage with all indicator maps. The validation dataset was also used to evaluate the
errors in the Pgrid estimation obtained by applying the previous areal method [10], on the
same population input data (2020). The achieved results are summarized in Table 7 and
confirm the greater accuracy of the volume-based method implemented in this work.

Table 7. Uncertainty estimations for the previous dasymetric mapping method [10] and the new improved method.

Uncertainty Estimation Dasymetric Version 1.0
(Based on Building Footprint Area)

Dasymetric Version 2.0
(Based on Building Volume)

MAE = 1
N

N
∑
n

∣∣∣Pn,grid ˆ−Pn,grid

∣∣∣ 6.2 (population count) 2.3 (population count)

RMSE =

√
1
N

N
∑
n
(Pn,grid ˆ−Pn,grid)

2 16.0 (population count) 4.1 (population count)

MAPE = 100
N

N
∑
n

∣∣∣∣ Pn,grid ˆ−Pn,grid
Pn,grid

∣∣∣∣ 23.0% 8.6%

The ancillary input data (Section 2.6, Table 4, last column), used for calculating the
indicators, were official products, issued by institutional authorities following long pro-
cesses of verification and validation and after quality checking of the data. Therefore, we
assumed that the usage of such data introduced negligible uncertainties. The methodolo-
gies implemented for calculating the indicators were the official methods included in the
metadata [31,33,34,36].

4. Discussion

The present sub-section is articulated into two Sections 4.1 and 4.2 focusing on the
results obtained in Sections 3.1 and 3.2, respectively.

4.1. Fine-Grid Population Map from EO and LiDAR Data

The allocation-of-population method presented in this paper belongs to hybrid Statistical–
Dasymetric Modelling approaches [17]. The approach was dasymetric as, under its classical
meaning, redistribution weights were defined based on information extracted from ancillary
data. In this work, the building use maps derived from Urban Atlas and LiDAR-derived
building height were used as new ancillary data compared to the previous method [10].
The approach was also statistical, as linear regression analysis (Section 3.1.2) was conducted
preliminarily to identify and refine the redistribution weights.

As the main novelty of this study, the introduction of building height into the redis-
tribution weights improved the population distribution depending on whether people
resided in historical areas with buildings of up to three floors, in modern multi-floor build-
ings or villas/independent houses with 1–2 floors. Although [13] discussed the usefulness
of building heights in demographic studies, and they implemented building volume esti-
mation (from SAR data) as input for further applications, they did not apply such input to
provide any output population density maps.

As a further innovation element for refining redistribution weights, the introduction
of site-specific correction factors can lead to method standardization and reproducibility
characteristics. These factors represent parameters for calibrating and adapting the method
to the specific study area. Based on these two innovation elements, a high accuracy
performance was achieved for the population density map with low TAE (0.9 number of
people) and MAE (7 × 10−4 number of people) values (Section 3.1.3). The RMSE value
obtained was about 10−3. The MAE and TAE values achieved by applying the previous
version of the dasymetric method (based on building footprint area instead of volume [10])
were equally low but not negligible (the values obtained were 0.03 and around 40.81 number
of people for MAE and TAE, respectively). This means that the final population count, after
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applying the previous dasymetric method, resulted in a deviation of around 41 units from
the initial value. The RMSE value obtained was about 10−3 (number of people). This value
was lower than the RMSE obtained from different LiDAR-based methods implemented
and tested in [14], ranging from 0.25 to 0.75 (number of people). This difference may be
because, in our paper, we derived the footprint area of the buildings, which are needed for
volume evaluation, from the settlement map updated by EO satellite data (Sentinel-2) at
10 m resolution. Such updating can account for changes related to newly built areas,
whereas the latest available Copernicus layer—namely, the European Settlement Map
(ESM) Layer, 10 m resolution—was published in 2019, even though it was extracted from
2015 satellite data; however, the time lag that exists between satellite imagery acquisition
and product validation/delivery cannot satisfy the rapid monitoring requirements of
population flows (both migrant and native).

Concerning output population map validation, uncertainty evaluation is especially
important for decision making applied to various fields, as discussed previously in [27–29,40].
However, data for such evaluation are rarely available and, even when available, they
may exist at different periods or may interfere with confidentiality rules [17]. Based on
the interaction with the local government and land management actors, the output maps
obtained (2011 and 2020) seemed to be able to describe prior knowledge about trends
in population and settlement transformation that had occurred in the city. A possible
approach was presented in Section 3.2.6 and is discussed, hereafter, in Section 4.2.1.

As has already been highlighted in [10], the advantage of vector-based dasymetric
methods, compared to raster ones, is that they can preserve all of the categories specified
in the original database in the output database (i.e., age groups, gender and nationality).
Such information can be used to easily monitor population flows and movements through
space [41]. Considering the international scene, growing research activities focusing on
complex interactions between human settlements and the environment have favoured the
dissemination of methods and maps in a raster format, at a global scale [42,43]. These maps
can support both the visualization of population rarefaction and concentration areas as
well as providing counts of the total population residing in a specific study area; however,
raster methods cannot provide information on the specific components (attributes) of
a population.

4.2. Disaggregated SDG 11 Indicators

To the best of our knowledge, few studies have dealt with the implementation of SDG
11 indicators at the intra-urban scale. Thus, the discussion is articulated into two parts: The
first deals with the still open research problem regarding the estimation of uncertainties
associated with indicators; the second discusses the advantages of using the intra-urban
scale to support decisions and government actions of local policy makers.

4.2.1. Uncertainty Analysis

To assess the uncertainties associated with the calculation of the indicators, in addition
to considering the accuracy of the method at the level of census areas (Section 3.1.3), these
were also addressed at the level of the elements of the grid (Section 3.2.6). This was because
the indicators, on an intra-urban scale, were calculated at the resolution of the population
grid (100 m × 100 m) and were also weighted to the population.

It is worth noting that the Pgrid error value, based on reference in-situ data, was lower
than that obtained through the old version of the dasymetric method (Section 3.2.6, Table 7).
Nevertheless, as is well known, the collection of reference data for validation purposes
is hampered by uncertainty and difficulties (Section 3.2.6). One of these difficulties is
that not all statistical offices provide population and toponymy data in standard formats.
Automatic tools are available in support of the geocoding of addresses, whose performance
depends on the quality of the input data. When the data are available in the right format,
the validation methodology can be easily reproduced.
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As has been affirmed by [19,20], there are inherent uncertainties in population es-
timates which are difficult to eliminate. For example, the SDG 11.1.1 indicator aims to
quantify people living in inadequate houses due to structural or sanitary deficiencies,
overcrowding, or proximity to areas subject to natural hazards. However, such persons, in
many cases, are not registered in the official population data statistics. Referring to the case
of Bari, for example, homeless people as well as numerous irregular migrants were not
included in the data used by this study. These people may improperly occupy abandoned
or decaying buildings present in large numbers in historic districts. However, to date, no
statistical data support this type of analysis. This has a direct impact on the estimation of
the SDG 11.1.1 indicator and, indirectly, affects estimates of all indicators. The population
living in urban areas, for these reasons, is inevitably underestimated [19,20].

The estimate of the error associated with the SDG 11.3.1, as it has been formulated,
depends on the uncertainty of PGR estimate (at the scale of the grid population density
maps) and that relating to the term LCR (obtained from the satellite-derived settlement
maps). The nature of this latter uncertainty is twofold: On the one hand, the uncertainties
depend on the performance of the automatic method (machine learning) to obtain the
maps of settlements; on the other hand, the accuracy relates to the difficulty in obtaining a
consistent semantic definition of built-up class in the implementation of the indicator [6].

In future developments, we intend to investigate uncertainty estimation issues, fo-
cusing on the implementation of automatic/semi-automatic procedures to expand the
validation dataset.

4.2.2. Supporting SDG and NUA Policy Frameworks

The aim of the present work is to evaluate the impact of the proposed intra-urban scale
implementation of indicators as innovation against the urban scale one. Based on the results
obtained in the Section 3.2.5, such a large scale seems inadequate for implementing resilience
policies, according to the SDG 11 framework and the NUA [4], in support of LRAs. For
example, the average value of the SDG 11.3.1 indicator obtained (Table 6) indicated that the
average land consumption rate, compared to demographic data, is increasing but remains
lower than 1. When investigating at the intra-urban scale (Section 3.2.3), the land consumption
rate value exceeded the unit in some grid cells (the yellow values in Figure 26) located, mainly,
in the city peripheral areas. Thus, at the intra-urban scale, the indicator can identify the
critical areas to be monitored due to excessive land consumption.

Based on such experience, the combined analysis of the results obtained at the intra-
urban scale (Sections 3.2.1–3.2.4), along with the evaluations at the urban scale (Section 3.2.5),
can highlight ongoing processes and flows. Based on source [22], the total population of
the study area has grown little over the last 20 years (about 2%), whereas the migrant
population has increased (currently over 4% of the total) over the same period. Our analysis
of the PGR indicator at the intra-urban scale carried out for both native and regular migrant
components of the total population provided evidence that the two population groups are
settling, according to different logics, in the existing urban fabric. The proximity to central
areas where schools, hospitals and other services are present, as well as easier access to
public transport (SDG 11.2.1 indicator), appears to favour the growth of migrant communi-
ties. In these central areas, the presence of poorly preserved buildings or building types
with ground floors and attics that are improperly used for residential use is well-known
to the local authorities (SDG 11.1.1 sub-indicator 1). In addition, deeper investigation of
migrant’s PGR by continent revealed a tendency of people sharing a common language,
culture and religion to aggregate in the same urban district. Native residents, instead,
appear to have moved to the newly built residential areas of the suburbs.

Concerning the SDG 11.1.1 sub-indicator (3), in the central areas, based on threshold
values used in this study (Section 3.2.1), there are currently no critical crowding values. In
these areas, high PGR values of the regular resident migrant population were observed,
e.g., in a cell of Figure 22, the number of people increased from 24 in 2011 to 512 in 2020.
As evidenced in Section 3.2.1, the presence of commercial spaces in such areas could lead
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to an overestimation of the volume per capita and, thus, to an underestimation of the
degree of crowding. Nevertheless, crowding could be higher due to the contribution
of irregular migrants for whom no data are available. The results on SDG 11.1.1 sub-
indicator (3) suggest focusing on densely populated areas in the western suburbs of the city,
characterized by urban and social decay conditions experienced by the local population. In
this suburb of the city, densely populated public popular houses are concentrated, but are
not yet accessible to the migrant population.

The results for the indicator SDG 11.6.2 showed that the urban area affected by the
highest air pollution by particulate matter was the industrial/commercial area in the
southwestern suburbs of the city; however, there were no critical situations in the whole
municipality [43].

5. Conclusions

The population density and distribution map on a 100 m × 100 m grid served as the
fundamental input for constructing SDG 11 indicators. This paper provided a modification
of the dasymetric method for the implementation of indicators at the intra-urban scale to
support the choices of local policymakers and planners for the implementation of the goals
of the 2030 Agenda and the New Urban Agenda.

The auxiliary input data used for Bari represent only one example of the types of
data that need to be acquired for the implementation of indicators at the intra-urban
scale. The diffusion of open databases serves as a promising prelude to the acquisition
of data with the same information content, although in different formats, for other cities
or geographical realities. The local dimension of the survey as well as the needs of the
users cannot displace the necessity of acquiring these inputs by turning to local providers.
The proposed modifications of the dasymetric technique can monitor flows of migrant
and native populations over time, thus supporting the evaluation of their impacts on the
progress of SDG 11 indicators. In addition, such knowledge about fluxes and processes can
support the design and development of new policies and services aimed at fostering urban
resilience and social inclusion. This is particularly true at a time when migration policies
are being redefined at international level, as discussed in [44–46].

The methods can be implemented in different areas of interest. The authors, as future
work, plan to apply the proposed approach to a different city: Reggio Calabria, southern
Italy. Based on the preliminary work carried out, it is worth noting that the challenges
related to the method implementation in a different area appear to mainly be related to a
lack of input census data in standardized formats, the availability of updated LiDAR data
and the availability of validation data (as well as the related confidentiality constrains). No
additional issues can hamper the application of the proposed modified dasymetric method
to other cities.

In future, work, to facilitate the exploitability, interoperability between models and
reproducibility of the results, the dasymetric mapping module will be published using the
Virtual Earth Laboratory (VLab) framework [47,48].
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