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Abstract: Precise assessments of forest species’ composition help analyze biodiversity patterns,
estimate wood stocks, and improve carbon stock estimates. Therefore, the objective of this work was
to evaluate the use of high-resolution images obtained from Unmanned Aerial Vehicle (UAV) for
the identification of forest species in areas of forest regeneration in the Amazon. For this purpose,
convolutional neural networks (CNN) were trained using the Keras-Tensorflow package with the
faster_rcnn_inception_v2_pets model. Samples of six forest species were used to train CNN. From
these, attempts were made with the number of thresholds, which is the cutoff value of the function;
any value below this output is considered 0, and values above are treated as an output 1; that is,
values above the value stipulated in the Threshold are considered as identified species. The results
showed that the reduction in the threshold decreases the accuracy of identification, as well as the
overlap of the polygons of species identification. However, in comparison with the data collected
in the field, it was observed that there exists a high correlation between the trees identified by the
CNN and those observed in the plots. The statistical metrics used to validate the classification
results showed that CNN are able to identify species with accuracy above 90%. Based on our results,
which demonstrate good accuracy and precision in the identification of species, we conclude that
convolutional neural networks are an effective tool in classifying objects from UAV images.

Keywords: deep learning; drone; forest identification; unmanned aerial vehicles

1. Introduction

Optical sensors coupled with Unmanned Aerial Vehicles (UAVs; also referred to as
drones) are commonly used to acquire geometric characteristics of forests, such as canopy
height and diameter. In addition to quantitative information, these sensors can generate
qualitative attributes about forest environments, enhancing the possibility of characterizing
forest species. However, for such a characterization, solely depending on traditional image
processing tools might not be an effective strategy at all times [1,2]. Therefore, additional
statistical tests, programming tools, and implementation workflows are deemed necessary
for processing these images. In this context, Convolutional Neural Networks (CNN) have
been widely used in detecting diverse objects [3-7], especially while characterizing forest
environments [8-14].

CNN are artificial intelligence algorithms based on multilayer (feed-forward) neural
networks, typically with up to 20 or 30 layers, and are distinguished from other neural
networks due to their superior performance with object classification, detection, and
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segmentation [15,16]. They have three main types of layers, which are: convolutional layer,
pooling layer, and fully-connected layer. Their main characteristic is that they represent
the objects in the images and have a high generalization ability, thereby being suitable to
classify new examples with reduced data input in the training set accurately [16-19]. CNN
are considered as mathematical models of classification inspired by the biological system of
visual data processing. In the literature [20-24], these algorithms have satisfactory results
for many issues involving images, including plant classification, features extraction and
determination of nutrients in plants. These classifications generally rely on morphological
descriptors such as leaves, stems, fruits, and flowers [25-29].

Inventories with remote sensors and forest species’ composition using an image plat-
form instead of field surveys lead to a reduction in overall cost and acquisition time. More-
over, it favors the analysis of species’ composition in large territorial extensions [30-33].
Accurate assessments of forest species’ composition promote gains in research and manage-
ment of these areas since this knowledge is used to analyze biodiversity patterns, estimate
wood stocks, and improve stored carbon survey. Various authors [23,34-37] have high-
lighted the lack of (1) high resolution spatial and spectral images; (2) sensitive machine
learning classifiers sophisticated enough to identify lighting, shape, size, and pattern of
trees, tops, and leaves, as well as a spectral mix in the tops themselves; and (3) accurate
spatial data to train classifiers. However, these difficulties are gradually being solved with
new technologies, such as high spatial resolution images obtained through UAVs [38].

UAV images have adequate resolution for the analysis and characterization of forest
areas (planted or native). They have been widely used because of their versatility and
ease in acquiring data of large areas. In addition, these images are also used as a support
for the monitoring and visual analysis of vegetation, especially in areas of native forests
and other parts undergoing regeneration in the legal Amazon. In this context, remote
sensing is continually improved, nonetheless, new classification tools are needed to bridge
the gap between sensor characteristics, remotely sensed high-resolution images and “big
data” type information about forests. Therefore, the objective of this study was to test
the performance of the application of machine learning algorithms on high-resolution
images obtained using UAV for identifying forest species in areas of forest regeneration in
the Amazon.

2. Materials and Methods
2.1. Study Area

This study was carried out in a region of the Amazon Forest located in Rondénia,
Brazil, between the meridians 62°44’05” and 63°16/54”, and parallels 9°00'00” and 9°30'00”,
South latitude, as shown in Figure 1. We analyzed areas of forest restoration plantations
with plots that are continuously monitored to assess tree increments, new species’ natural
regeneration, and carbon stock monitoring (Figure 1). In these plots, measurements are
conducted on a regular basis to characterize and geolocate individual trees. This informa-
tion was used as a subsidy to evaluate the results from automated processes related to
UAV images.



Remote Sens. 2021, 13, 2627

30f15

gg‘)ﬁ
1
" Rondénia state

* Project area
® Plots
‘ Trees located in the field

‘ UAV images

Figure 1. Study area location.

2.2. Image Acquisition and Pre-Processing

The images were acquired by a UAV DJI Phantom 4 Pro, using a RGB camera; the main
characteristics are listed in Table 1. Images were obtained in November 2017, 2018, and
2019, always from 8 am to 3 pm, taking advantage of solar lighting and reduced shading
in images.

Table 1. Characteristics of images obtained from the UAV DJI PHANTOM 4 PRO.

Characteristics Type
Width 5.472 pixels
Height 3.648 pixels
Camera FC6310

Exposure time 1/400s

Aperture value 4.7EV (£/5,6)

Speed rate (ISO) 100

Image type jpeg

Focal distance 8.8 mm

Pixel resolution 2.2 cm

We processed images in the Pix4D mapper software to make the orthomosaic of the
areas. No tonal corrections or contrasts were made on the raw images or final mosaics.

The species were chosen according to the number of individuals available for sample
acquisition, and samples were selected only from plots where forest inventories were
conducted in the field, in order to select the species from the UAV images correctly.

The major tree species considered are as follows: Cecropia juranyiana C.Mart (Ur-
ticaceae) is a pioneer species widely found in forest areas that have been anthropized
and in secondary forests. It has an average height of 15 m, and foliolate leaves with
up to 14 leaflets [39]. Hymenaea courbaril L. (Fabaceae) is a semicaducifolia tree, up to
35 m in height and 80 cm in diameter, with compound leaves with 2 leaflets and a broad
crown [40,41]. Bauhinia acreana Harms (Fabaceae) is a species with a broad crown with
bilobed leaves and pod dehiscent fruit [42]. Anacardium occidentale L. (Anacardiaceae)
is a tree up to 10 m tall and 40 cm in diameter, with a wide crown and simple petio-
late leaves, which can change their coloration according to the time of year, with pink
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younger leaves and green for mature leaves [43,44]. Handroanthus serratifolius (Vahl) S.
Grooe (Bignoneaceae) is a tree up to 30 m tall, 80 cm in diameter, with palmate leaves,
with 5-7 lobed and a serrated margin. In the flowering months, the species remains only
with flowers [44,45]. Anadenanthera sp. Speg (Fabaceae) reaches about 25 m in height, with
compound leaves [44,46]

2.3. Convolutional Neural Networks Training

A total of 683 trees (samples) were inserted in the Labellmg software [47], and this
made it possible to select the region of interest using polygons with rectangular and square
shapes (subsamples). We obtained 2437 subsamples (Table 2). It was necessary to select
subsamples from the same tree, and hence, in a single tree, the largest possible number of
samples was selected, depending on canopy size. (Figure 2).

Table 2. Forest species and number of samples for training convolutional networks.

Samples Subsamples
Species
Trees Test (30%) Training (70%)
Cecropia juranyiana 157 158 369
Hymenaea courbaril 102 126 294
Bauhinia acreana 96 108 252
Anacardium occidentale 90 80 186
Handroanthus serratifolius 106 116 270
Anadenanthera sp. 132 144 336
Total 683 731 1706

Figure 2. Representation of sample selection in an individual image. The red polygon represents tree
canopy (H. serratifolius), and the yellow rectangles represent subsamples obtained for this species.

The samples here can change size, but the CNN makes the same adjustment for all the
inserted images, even if they are of different sizes; the neural network makes the identifi-
cation using all the parameters referring to the selected samples, texture, contrast, color
intensity, brightness, patterns of brightness and darkness, and numbers and arrangements
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of brightness and darkness are minimized in the internal layers of the neural network; that
is, the samples are standardized internally aiming at mitigating these factors. Regardless
of the sample size, the transformations that the CNN make internally are presented in
Figure 3. From the characteristics presented (shape, texture, brightness, contrast, etc.), it is
possible to distinguish between the species under study in the network.

Figure 3. Representation of transformations that CNN make internally for Cecropia juranyiana C.Mart (Urticaceae).

At the end of the sample selection process, the software provides a file in .csv format,
containing filename, height, width, class, xmin, xmax, ymin, and ymax [47]. From the
Labelimg .csv file, it was possible to create two sets of samples randomly: Training (70%;
1706 samples) and Test (30%; 731 samples); these samples formed from the Training and
Test images were fed into the CNN as input parameters. For validation, 487 images were
separated from the training samples to be applied in the validation, guaranteeing that the
model did not present overfitting (Table 2).

We used the Python computational language to implement the convolutional neural
networks with the Keras-TensorFlow package. This open-source system from Google uses and
implements deep learning algorithms of neural networks. The faster_rcnn_inception_v2_pets
model was utilized from this package, which was modified to train target species samples.

The neural network learns the patterns from the input data by reading the input data
set and applying different computations to it. However, the neural network does not just
do this once; it learns repeatedly using the input data set and also the results of previous
tests. Each step in learning from the input data set is called an epoch. That is, an epoch
refers to one cycle in the entire training data set [48,49]. Initially, CNN were trained with
a large number of epochs or steps (iterations) to ensure that the smallest loss would be
within that step range. After the first training, we determined an ideal number of steps
to obtain the least loss to optimize the analyses and repetitions that would be performed;
this test served fundamentally to know how many epochs would be necessary for the final
model fit; this step was essential because an excessive number of epochs leads the model
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to overfitting, i.e., in this case, it will present results with very good statistical metrics, but
with erroneous identification of species.

Therefore, tests were performed by reducing or increasing thresholds that are functions
that limit the results of the CNN output. Values equal to 1 suggest maximum identification
in the model outputs, which can lead to the identification of species that are not recognized
in the field, and values of 0 suggest no identification of any species, so manual adjustment
of the Threshold is essential for fine-tuning the model output; this will help prevent outputs
from presenting results that will be considered false-positive. After initial training, we
observed that modifying the threshold resulted in non-recognition of some species or false
recognition. This led to a training model with variation in the number of species and
thresholds. All results were compared with field data to obtain a model that best reflected
real conditions of the studied area. Herein, thresholds modify the output according
to input limits. The network receives inputs, then applies a linear combination, and,
if that combination is greater or less than the specified limit value, it will produce an
output of 1 or 0, respectively. Therefore, results with low probabilities would be rejected.
Equation 1 represents the threshold function, where Sigma (}_) is the sum of input (x) and
weight (w) pairs.

0se); wix; < Threshold
output =
{ 1seY; w;x; > Threshold

)

2.4. Classification Validation

Validation of the classifications was performed on the dataset for the test. For this,
statistical metrics were used to evaluate and test the performance of the adjusted CNN.
The metrics are specified in Table 3, of which are calculated according to the results of
the classifications. The Kappa index is a measure of agreement used in nominal scales
that gives us an idea of how far the observations deviate from those expected, at random,
thus indicating to us how legitimate the interpretations are. It measures the percentage
of the data values on the main diagonal of the table and then adjusts these values for the
amount of agreement that might be expected [50]. Accuracy is an index that reflects the
rate at which individuals are correctly classified into the category containing their true
score. Ranking accuracy is usually attributed to the appropriateness and validity of your
decisions based on the obtained score. A large value for the index indicates a high hit rate
of individuals in the correct categories, and a low value indicates a lower rate of correct
classification of individuals [51].

Table 3. Statistical indexes used to verify classification results.

Statistical Index

Kappa

Accuracy

Adjusted F-score

Equation Description Reference
Ranges from 1 to —1, where
K  ACCuverall — RACCoveral 1 indicates a perfect rating and [50]
appa = 1 — RACCoveran —1 represents an
unreliable rating
Number of correct
ACC = % classificajciqns of all [51]
predictions
Use all confusion matrix
AGF = elemints and pr?Vicl}e1 more -
weights to samples that are
PPV x TPR 2 NPV x TNR s
\/ [5 X @ x PPV)+ TPR] X {(1 +0.5%) x (052 x NPV)+ TNR correctly classified in the

lowest class.
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Table 3. Cont.

Statistical Index

Equation Description Reference

Mathews Correlation
Coefficient

Similarity

Correlation coefficient of
observed and predicted
binary classifications, where:

MCC = TP x TN — FP x EN Negligible—<0.3 [53]

" /(TP+EP) x (TP + EN) x (IN + FP) x (TN + FN) Poor—0.3-0.5
Moderate—0.5-0.7
Strong—0.7-0.9
Very strong—>0.9
It ranges from 0 to 1, where:
oInd =1 — \/ (1*TNR)22+(1*TPR)2 0—no correct ratings [54]
1—perfect classification

Where, ACCoverall: relative compliance observed between classifiers; RACCoverall: hypothetical probability compliance using the
observed data to calculate the probabilities of each classifier to identify each category randomly; TP: true positive; TN: true negative; FP: false
positive; EN: false negative; PPV: positive predictive value; TPR: true positive rate; NPV: negative predictive value; TNR: true negative rate.

The adjusted F-score is an index that groups all elements of the original confusion ma-
trix and gives more weight to correctly classified patterns in correctly classified classes [52].
The Matthews Correlation Coefficient has a range from —1 to 1, and when it has a value
of —1, it indicates a completely wrong binary classifier, while 1 indicates a completely
correct binary classifier. This index allows you to evaluate the performance of your classifi-
cation model [53], whereas similarity is a metric ranging from 0 (wrong classification) to 1
(perfect classification) calculated from the averages of the classifications of the classes of
interest [54].

3. Results

From initial tests using the CNN, the training with six species and a varying threshold,
we observed that an increase or reduction in threshold parameter interfered in species’
characterization accuracy. In this sense, with this parameter equal to 0.9, the accuracy
of species’ recognition rates was higher; however, in this case, only two species were
identified. When the same value was reduced to 0.8, the network identified three species;
the same happened for 0.7 and 0.6 as well (Figure 4). Decreasing threshold reduced
identification accuracy, as well as the overlap of species’ identification polygons. However,
when comparing the results obtained by the neural network and field data, we observed a
relationship between the trees identified by CNN and those observed in the field. Moreover,
we observed more classification uncertainty in the areas with more shadows or overlapping
of the canopies compared to species with higher canopies and without shade.

Figure 5 shows the loss in insertion of the species, where 1 Specie: C. juranyiana;
2 Species: C. juranyiana + H. courbaril; 3 Species: C. juranyiana + H. courbaril + B. acreana;
4 Species: C. juranyiana + H. courbaril + B. acreana + A. occidentale; 5 Species: C. juranyiana +
H. courbaril + B. acreana + A. occidentale +H. serratifolius; 6 Species: C. juranyiana + H. courbaril
+ B. acreana + A. occidentale + H. serratifolius + Anadenanthera sp. At the beginning of the
training, the loss was high and decreased at each epoch until it reached the lowest value.
From this point, the loss began to increase, showing adjustments with little accuracy in
species recognition (Figure 5). From this first training, we observed that recognition of
only one species, two species, three species, four species, five species, and six species
required 494, 541, 892, 976, 993, and 1042 epochs, respectively. Additionally, on changing
the threshold, and including more species (characteristics), the network training time was
relatively increased, making this process more time-consuming.
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Figure 4. Model application including six species in the training. (A)—Threshold = 0.9, (B)—Threshold = 0.8, (C)—Threshold = 0.7,
(D)—Threshold = 0.6.
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Figure 5. Variation of loss concerning epoch and number of species used in training for convolutional neural networks.
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Figure 6 shows loss variation in the validation of the adjusted model using all species.
This model eventually converged to its lowest loss value with 439 epochs, demonstrating
that with this amount, it is possible to identify the six species used for training in the
UAV images.

A
w
(=]
(=]
=
[}
g 3
- =]
o
3
o
s 100 200 300 400 500
Epoch

Figure 6. Loss variation of the adjusted convolutional neural networks with 6 Species.

Figure 7 shows the tree location in the plots and the model’s functionality in locating
trees. We observed that trees with larger canopies are more easily detected when compared
with the smaller ones. False recognition is associated with overlapping crowns or similar-
ities between leaf characteristics. In genus identification by the model, the results were
more accurate for trees with a smaller canopy circumference. The model did not identify
or erroneously classify species whose canopies were of less dense foliage. Canopies with
leaves with higher contrast (brightness, color) than the others were identified with greater
accuracy. However, we observed some trees with discrepancies concerning the foliage or
canopy of the same genre, which had a higher error rate in the classification.

We observed that the training with a threshold of 0.7 provided satisfactory results
concerning processing time and species recognition. Therefore, the same value was utilized
to calculate the confusion matrix—with all the six species. The overall accuracy achieved
was 91.80%. Nevertheless, there occurred false recognition of the characteristics in all
species; the biggest classification error (false positive) was found among C. juranyiana and
H. serratifolius with B. acreana, in which there was a false characterization in 26 occasions
(Table 4).

Table 4. Confusion matrix with the insertion of six species in a convolutional neural network with threshold = 0.7.

Cecropia  Hymenaea Bauhinia Anacardium Handroanthus Anadenanthera Total User
Cecropia 356 0 26 4 0 0 386 92.23%
Hymenaea 0 281 0 0 5 12 298 94.30%
Bauhinia 4 12 201 4 5 5 235 87.01%
Anacardium 4 0 8 171 0 1 184 92.93%
Handroanthus 0 1 12 7 240 9 269 89.22%
Anadenanthera 5 0 5 0 11 318 335 93.81%
Total 369 294 252 186 261 345 1707 -
Producerg¢ 4go,  9558%  79.76% 91.94% 91.95% 92.17% - 1567
accuracy
Global 91.80% k g

accuracy
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Trees located
by CNN

Trees in the
Field

Figure 7. Location of trees from field data and species recognition model.

Within the confusion matrix, the lowest values were observed in the species B. acreana
with 79.76% and 87.01% for producer and user accuracy, respectively. The highest values
observed for producer accuracy were for C. juranyiana (96.48%) and H. courbaril (95.58%),
and in terms of user accuracy, H. courbaril (94.30%) and Anadenanthera sp. (93.81%) had the
best values.

Table 5 shows all the statistical indexes used to validate classifications. The Kappa
index obtained was 0.9006, which indicates an adequate classification. We verified results
close to this one in Accuracy, adjusted F-score, and Similarity. However, with respect to
Matthews’ correlation, the species B. acreana and H. serratifolius obtained a strong classifica-
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tion, while for the other species, this index was very strong, just as in Sensitivity the same
species obtained results below 0.9.

Table 5. Statistics obtained in the training data set classification process.

Index Cecropia Hymenaea Bauhinia Anacardium Handroanthus Anadenanthera
Kappa 0.9006
Accuracy 0.9748 0.9824 0.9525 0.9836 0.9707 0.9718
Adjusted F-score 0.9706 0.9667 0.9135 0.9587 0.9594 0.9589
Matthews 0.9272! 0.9387 ! 0.8057 2 0.9151 ! 0.8884 2 091231
correlation
Sensitivity 0.9222 0.9429 0.8701 0.9293 0.8921 0.938

1—Very strong e 2—S’crong.

4. Discussion

The recognition of forest species in the field or using remote sensing techniques is
a major challenge for forestry researchers. In our study, particularities related to species’
canopy and leaf structure (dendrometric characteristics) were found decisive for achieving
satisfiable accuracy of predictive models. The results found in this study demonstrate
good accuracy in identifying species using UAV imagery in this regard. All species studied
obtained promising results in their identification.

The species Cecropia and Bauhinia have the smallest canopy perimeters of the species
under study. However, statistical indexes showed results above 0.9. This is because their
canopy has unevenness concerning branches and leaves, and, as reported in [55], the
canopy characteristics directly influence the classifier. H. courbaril and Anadenanthera sp.
have smaller leaves and larger canopies, standing out among the others. A. occidentale and
H. serratifolius have more leaves and canopies that stand out in the forest, and, for this
reason, the classifier was efficiently able to distinguish them from the others.

Compared to experiments conducted in environments with fewer tree species, such
as in [56], the classification metrics were higher (97.80%—Global accuracy) in this study
(91.80%—Global accuracy), as there was less chance of confusion in species’ characteristics.
Only limited studies have reported their experiences in object detection concerning the
selection of the threshold. Freudenberg et al. (2019) [57] used this parameter with a value
of 0.5 to detect palm trees, resulting in an F-score ranging from 0.875 to 0.957; these values
are close to those observed in our study. In this context, Xiong et al. (2020) [58] compared
sensor height with threshold variation in predicting dendrometry variables. The authors
concluded that with an increase in sensor distance to the target object, it was necessary to
retrain the CNN with an increasing threshold, thus obtaining better results in accuracy and
error. In Wang et al. (year) [59], the authors reported that there is no predetermined value
of this threshold and argued that the most appropriate value is dependent directly on the
database and computational method used.

When analyzing the classifications with different thresholds, our results showed an
overlap of CNN detection polygons similar to those obtained by Sarabia et al. (year) [60]
and Xiong et al. (2020) [61]. In these studies, the authors reported issues with the interpre-
tation of edges of trees to neighbors; a reduction in threshold value was found crucial to
notice this uncertainty. However, this factor did not influence correct species identification;
it only changed the visualization of the identification polygon and reduced the value
related to the probability of species characterization. Regarding the number of epochs,
previous studies suggest that this value is proportional to the number of characteristics
inserted in the model [3,25,31,32].

The statistical metrics used to determine model accuracy showed very strong correla-
tions for species detections. However, the results of B. acreana demonstrate that the existence
of few samples of a given species results in lower values of Accuracy, Adjusted F-score,
Matthews correlation, Sensitivity, and Similarity (Table 5). On the other hand, H. courbaril
had fewer samples than C. juranyiana and obtained better results, mainly related to reduced
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size of the canopies and leaves of C. juranyiana compared to other species. Because it had
long branches and leaves only at the tips, the canopies of neighboring trees intersected
in these branches, causing detection inaccuracy and false species characterization. This
characteristic was also reported by Wagner et al. (2019) [62], who reported accuracy results
similar to our study when comparing a consortium of species in the Atlantic Forest biome,
which have similar physiognomic characteristics to the Amazon biome.

Matthews’ Similarity and Correlation are classification metrics considered to be less
biased as they use multiple input variables; they incorporate both the set imbalance and the
amount of data referring to classes [34]. In this regard, the inclusion of species caused lower
values of those metrics in comparison to Accuracy and the F-score since they have bias
related to the number of characteristics, and, specifically, the F-score does not depend on
the true negatives (TN). The high similarity observed here demonstrates that the classifier
can identify true negatives, just as the high sensitivity indicates that the classifier was able
to identify true positives [35].

UAVs generally operate at low altitudes and can acquire images in better spatial reso-
lutions than satellite images, providing more detailed information not only about the forest
but also at the species level. However, the methodology presented here requires analysis,
processing, and model adjustment to classify the species. Regarding costs, operations
with UAVs are more feasible compared to traditional airborne imaging or high-resolution
acquisition of orbital sensors. Thus, it is possible to acquire images more frequently, fa-
voring periodic monitoring of the forest in the process of restoration and the study of its
dynamics [63].

5. Conclusions

Convolutional neural network training using the faster_rcnn_inception_v2_pets model
provided satisfactory results in identifying species characteristics. It proved to be an
effective tool in classifying objects in UAV images without the need to modify image
properties. In this sense, CNN training demonstrated good accuracy and precision in
identifying the species under study; however, species insertion made the training time-
consuming. Moreover, we noticed that there exists a higher classification error when species’
canopies overlap each other, along with shading in images. The quality of UAV images
was observed to be an essential component required for obtaining species’ characteristic
patterns and for network training. It also impacts the frequency for obtaining the images,
which expands the number of samples to be acquired. In our case, the number of samples
used in CNN training was found sufficient to recognize forest species’ characteristics and
intrinsic patterns.

The identification of individual trees provides subsidies for new information on forest
restoration ecosystems, and we hope our study encourages future researchers to develop
methodologies to obtain information regarding distinctions in forest characterization con-
cerning the seasons, vegetation phenology during the months of the year, atmospheric
conditions, and other sensors, adding more information to the models.
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