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Abstract: The detection of arbitrary-oriented and multi-scale objects in satellite optical imagery
is an important task in remote sensing and computer vision. Despite significant research efforts,
such detection remains largely unsolved due to the diversity of patterns in orientation, scale, aspect
ratio, and visual appearance; the dense distribution of objects; and extreme imbalances in categories.
In this paper, we propose an adaptive dynamic refined single-stage transformer detector to address
the aforementioned challenges, aiming to achieve high recall and speed. Our detector realizes
rotated object detection with RetinaNet as the baseline. Firstly, we propose a feature pyramid
transformer (FPT) to enhance feature extraction of the rotated object detection framework through a
feature interaction mechanism. This is beneficial for the detection of objects with diverse patterns
in terms of scale, aspect ratio, visual appearance, and dense distributions. Secondly, we design
two special post-processing steps for rotated objects with arbitrary orientations, large aspect ratios
and dense distributions. The output features of FPT are fed into post-processing steps. In the first
step, it performs the preliminary regression of locations and angle anchors for the refinement step.
In the refinement step, it performs adaptive feature refinement first and then gives the final object
detection result precisely. The main architecture of the refinement step is dynamic feature refinement
(DFR), which is proposed to adaptively adjust the feature map and reconstruct a new feature map for
arbitrary-oriented object detection to alleviate the mismatches between rotated bounding boxes and
axis-aligned receptive fields. Thirdly, the focus loss is adopted to deal with the category imbalance
problem. Experiments on two challenging satellite optical imagery public datasets, DOTA and
HRSC2016, demonstrate that the proposed ADT-Det detector achieves a state-of-the-art detection
accuracy (79.95% mAP for DOTA and 93.47% mAP for HRSC2016) while running very fast (14.6 fps
with a 600× 600 input image size).

Keywords: arbitrary-oriented object detection in satellite optical imagery; adaptive dynamic refined
single-stage transformer detector; feature pyramid transformer; dynamic feature refinement

1. Introduction

In the past few decades, Earth observation satellites have been monitoring changes
in the Earth’s surface and the amount and resolution of satellite optical images have been
greatly improved. The task of object detection in satellite optical images is to localize
interest objects (such as vehicles, ships, aircraft, buildings, airports, ports) and identify
their categories. This has numerous practical applications in satellite remote sensing and
computer vision, warning of natural disasters, Earth surveying and mapping, and surveil-
lance and traffic planning. Much progress in general-purpose horizontal detectors has been
achieved by advances in deep convolutional neural networks (DCNNs) and the emergence
of large datasets [1]. However, unlike natural images that are usually taken from horizontal
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perspectives, satellite optical images are taken with a bird’s eye view, which often leads to
the arbitrary orientation of objects in satellite images [2], as shown in Figure 1. Moreover,
as mentioned in [2–4], the following significant challenges further increase the difficulty of
object detection in satellite optical images:

• Large-scale difference. Objects in satellite images vary in size hugely [5]. There
are small objects such as cars, ships, aircraft, and small houses in satellite images,
as well as large objects such as ports, airports, ground track fields, bridges, and large
buildings. In addition, the size of objects within the same category (such as large
aircraft and small aircraft) in the same image also varies greatly.

• Dense distribution. There are many densely distributed objects in satellite optical
images, such as cars and ships [5].

• Large aspect ratio. There are lots of objects with large aspect ratios, such as large
vehicles, ships, harbors, and bridges in satellite optical images. The mismatch between
the ground truth bounding box and the predicted bounding box of these objects is
very sensitive to the rotation angle of objects [4].

• Category imbalance. Satellite optical imagery datasets are long-tailed, and the number
of instances in each category varies greatly. For example, the amount of small vehicles
is about 105 times larger than that of soccer ball fields in satellite optical imagery.

Figure 1. Examples of objects with various orientations in satellite optical imagery.

Recent research [6–9] has focused on the design of rotation detectors, which apply
rotated regions of interest (RRoI) instead of horizontal regions of interest (HRoI). To meet
the above challenges, a framework for rotated object detection consisting of a rotation
learning stage and a feature refinement stage is proposed to improve the detection accuracy.
Despite the fact that some newly developed rotated object detection methods [10–14] have
made some progress in this area, their performance still falls considerably below that
required for real-world applications. A main reason for their low detection performance is
improper feature extraction for instances with arbitrary orientations, large aspect ratios,
and dense distributions. As shown in Figure 2a, the general receptive field of deep neural
network-based detectors is axis-aligned and square, representing a mismatch with the
actual shape of the instances, and this usually produces false detections. Thus, our goal is to
design a special feature pyramid transformer and feature refinement module which can be
adjusted adaptively according to the angle and scale of the instance, as shown in Figure 2b.
Then, we introduce the above methods into the rotated object detection framework to help
extract more accurate features.
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(a) (b)

Figure 2. Comparison of receptive fields between (a) an axis-aligned neuron and (b) an adaptive
neuron. The green rectangle represents the boundary of the instance, and the gray rectangle represents
the boundary of the receptive field.

In this paper, we propose an adaptive dynamic refined single-stage transformer
detector to address the aforementioned challenges, aiming to achieve a high recall and
speed. Our detector realizes rotated object detection with RetinaNet as the baseline. Firstly,
the feature pyramid transformer (FPT) is introduced into the traditional feature pyramid
network (FPN) to enhance feature extraction through a feature interaction mechanism.
This is beneficial for the detection of multi-scale objects and densely distributed objects.
Secondly, the output features of FPT are fed into two post-processing steps. In the first
step, the preliminary regression of locations and angle anchors for the refinement step is
performed. In the refinement step, adaptive feature refinement is performed first and then
the final object detection result is given precisely. The main architecture of the refinement
step is the dynamic feature refinement (DFR), which is proposed to adaptively adjust the
feature map and reconstruct a new feature map for arbitrary-oriented object detection
to alleviate the mismatches between rotated bounding boxes and axis-aligned receptive
fields. Experiments are carried out on two challenging satellite optical imagery public
datasets, DOTA and HRSC2016, to demonstrate that our method outperforms previous
state-of-the-art methods while running very fast.

The contributions of this work are three-fold:
(1) We propose a feature pyramid transformer for the feature extraction of the rotated

object detection framework. This is beneficial for detecting objects with diverse patterns in
terms of scale, aspect ratio, and visual appearance, and helps with the handling of challeng-
ing scenes with densely distributed instances through a feature interaction mechanism.

(2) We propose a dynamic feature refinement method for rotated objects with arbitrary
orientations, large aspect ratios, and dense distributions. This can help to alleviate the
bounding box mismatch problem.

(3) The proposed ADT-Det detector outperforms previous state-of-the-art detectors in
terms of accuracy while running very fast.

2. Related Studies

Along with the wide application of satellite remote sensing and unmanned aerial
vehicles, the amount of satellite optical imagery is increasing tremendously and object
detection in satellite optical imagery has received increasing attention in the computer
vision and remote sensing communities. Researchers have introduced DCNN-based
detectors for object detection in satellite optical imagery, and oriented bounding boxes
have been used instead of horizontal bounding boxes to reduce the mismatch between
the predicted bounding box and corresponding objects. DCNN-based detectors are now
reported as state-of-the-art.

In this section, we briefly review some previous well-known object detection methods
in satellite or aerial optical images. In Section 2.1, we review the current mainstream
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detectors used for satellite optical image detection. In Section 2.2, we summarize some
classical designs of DCNN-based detectors that can improve the detection performance.

2.1. The Mainstream Detectors for Object Detection in Satellite Optical Imagery

The current mainstream detectors for satellite optical image detection are rotation
detectors. Existing rotation detectors are mostly employed as alternatives to horizontal
bounding boxes. Generally, these detectors can be organized into two main categories:
multi-stage detectors and single-stage detectors.

The framework of multi-stage detectors includes a pre-processing stage for region
proposal and one or more post-processing stages to regress the bounding box of an object
and identify its category. In the pre-processing stage, classification-independent region
proposals are generated from an input image. Then, CNNs with a special architecture are
used to subsequently extract features from these regions, and regression and classification
are performed over the next several stages [3,4]. In the last stage, the final detection results
are generated by non-maximum suppression (NMS) or other methods. To the best of our
knowledge, RoI-Transformer [2] and SCRDet [15] are state-of-the-art multi-stage rotated
objects detectors. The RoI-Transformer is a two-stage rotated object detector. Its first stage
is a RRoI Learner that generates a transformation from a horizontal bounding box to an
oriented bounding box by learning from the annotated data. One important task in the
second stage is RoI alignment, which extracts rotation-invariant features from the oriented
RoI for subsequent object regression and classification. SCRDet introduced SF-Net [16]
and MDA-Net into Faster-RCNN [17] to detect small and densely distributed objects.
By introducing the Intersection over Union (IoU) factor into the traditional smooth L1
loss function, the IoU-Smooth L1 Loss enables the angle regression to be more concise.
Generally, the numerous redundant region proposals make multi-stage detectors more
accurate than anchor-free detectors. However, they rely on a more complicated structure,
which greatly reduces their speed.

Single-stage object detectors drop the complex and redundant region proposal net-
work, directly regress the bounding box, and identify the category of objects. YOLO [18–20]
treats object detection as a regression task. Image pixels are regressed to spatially separate
bounding boxes and associate them with class probabilities using the GoogLeNet network.
Its improved versions are YOLOv2 and YOLO9000, in which GoogLeNet is replaced by a
simpler Dark-Net19 and some special strategies (e.g., batch normalization) are introduced.
Liu et al. [21] proposed SSD to preserve the real-time speed while keeping the detection
accuracy as high as possible. Just like YOLO, a fixed number of bounding boxes and scores
are predicted for the presence of object category in these boxes, followed by a NMS [22]
step to generate the final detection result. As observed in [5], the detection performance
of general single-stage methods is considerably lower than that of multistage methods.
Recently, R3Det [4] and R4Det [3] demonstrated high performance in detecting rotated
objects in satellite optical images. R3Det adopts RetinaNet [23] for the baseline and adds
refinement to the network. The focal loss alleviates any imbalance between positive and
negative samples. R4Det proposed a single-stage object detection framework by intro-
ducing the recursive feature pyramid (RFP) into RetinaNet to integrate feature maps of
different levels.

2.2. General Designs for DCNN-Based Object Detection in Satellite Optical Imagery
2.2.1. Feature Pyramid Networks (FPN)

In many DCNN-based object detection frameworks, FPN is a basic component used
to extract multi-level features for detecting objects at different scales. Low-level features
represent less semantic information but the resolution is higher; on the contrary, high-level
features represent more semantic information but the resolution is lower. In order to
make full use of low-level features and high-level features at the same time, Lin et al. [24]
proposed a generic FPN approach to fuse a multi-scale feature pyramid with a top-down
pathway and lateral connections. This has become the benchmark and performs well in
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feature extraction. Using a feature pyramid transformer [25] is an effective way to perform
feature interaction between different scales and spaces. The transformed feature pyramid
has a richer context than the original pyramid while maintaining the same size. In this
paper, we introduce an FPT to enhance feature interaction in the feature fusion step.

2.2.2. Spatial Transformer Network

Atrous convolution [26] is an initial spatial transformer network. It increases the
reception field by injecting holes into the standard convolution. Many improvements in
dilated convolution have been proposed in recent years. Atrous spatial pyramid pooling
(ASPP) [27] and denseASPP [28] obtained better results by cascading convolutions with dif-
ferent dilated rates in various forms. The Deformable Convolutional Network (DCN) [29]
provides new ideas for spatial transformer networks. DCN can adjust the convolution
kernels to make the receptive field more suitable for the feature map. General convolution
is mostly horizontal and square. DCN can dynamically adjust according to the feature
shape. We expect that it can improve the detection performance by introducing DCN into
the feature extraction for rotated object detection.

2.2.3. Refined Object Detectiors

The research in [30] indicates that a low IoU threshold usually produces noisy de-
tections. However, due to the mismatch between the optimal IoU of the detector and the
IoU of the input hypothesis, detection performance tends to degrade as the IoU thresh-
olds increase. To address these problems, Cascade RCNN [30] uses multiple stages with
sequentially increasing IoU thresholds to train detectors. The main idea of RefineDet [31]
is to coarsely adjust the locations and sizes of anchors using an anchor refinement module
first. This is then followed by a regression branch to obtain more precise box information.
Unlike two-stage detectors, the currently single-stage detector with a refinement stage is
not well resolved in this respect. Feature misalignment is still one of the main reasons for
the poor performance of refined single-stage detectors.

In this paper, we propose an adaptive dynamic refined single-stage transformer detec-
tor to address the aforementioned challenges, aiming to achieve a high recall and speed.
Our detector realizes rotated object detection with RetinaNet as the baseline to achieve the
detection of multi-scale objects and densely distributed objects. Firstly, the feature pyramid
transformer (FPT) is introduced into the traditional feature pyramid network (FPN) to
enhance feature extraction through a feature interaction mechanism. Secondly, the output
features of FPT are fed into two post-processing steps considering the mismatch between
the rotated bounding box and the general axis-aligned receptive fields of CNN. Dynamic
Feature Refinement (DFR) is introduced to the refinement step. The key idea of DFR is to
adaptively adjust the feature map and reconstruct a new feature map for arbitrary-oriented
object detection to alleviate the mismatches between the rotated bounding box and the
axis-aligned receptive fields. Extensive experiments and ablation studies show that our
method can achieve state-of-the-art results in the task of object detection.

3. Methodology

In this section, we first describe our network architecture for arbitrary rotated object
detection in Section 3.1. We then propose the feature pyramid transformer and dynamic
feature refinement, which are our main contributions, in Sections 3.2 and 3.3, respectively.
Finally, we show the details of our RetinaNet-based rotation detection method and the loss
function in Section 3.4.

3.1. Network Architecture

The overall architecture of the proposed ADT-Det detector is sketched in Figure 3.
Our pipeline improves upon RetinaNet and consists of a backbone network and two post-
processing steps. The FPN network is utilized as the backbone and a feature pyramid
transformer is proposed to enhance feature extraction for densely distributed instances.
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Then, the backbone is attached in the post-processing steps. These consist of two sub-
steps: first, a sub-step and a refinement sub-step, which will be described in detail in
Sections 3.3 and 3.4. In the first sub-step, the preliminary regression of locations and angle
anchors for the refinement sub-step is performed. In the refinement sub-step, adaptive
feature refinement is performed first and then the final object detection result is given
precisely. The main architecture of the refinement sub-step is the dynamic feature refine-
ment (DFR), which is proposed to adaptively adjust the feature map and reconstruct a
new feature map for rotated object detection (the detailed architecture of DFR is shown in
Section 3.3). In the refinement sub-step, the feature fusion module (FFM) is considered as
an important step to dynamically counteract the mismatch between the rotating object and
the axis-aligned receptive fields of neurons. The overall framework is end-to-end trainable
with a high efficiency.

Refined substep

First substep decode

decode

decode

(b) Feature Pyramid Transformer(a) Feature Pyramid Network (FPN) (c) Post-processing steps

First substep

First substep

Refined substep

Refined substep

Figure 3. The framework of the proposed ADT-Det detector. Our pipeline consists of a backbone network and two
post-processing steps. An FPN network is used as backbone network and a feature pyramid transformer is proposed to
enhance the feature extraction. Then, the backbone is attached in the post-processing steps, which consist of two sub-steps:
first, a sub-step and a refinement step. In the first sub-step, the preliminary regression of locations and angles for the
refinement sub-step is performed. In the refinement sub-step, adaptive feature refinement is performed first and then the
final object detection result is given precisely.

3.2. Feature Pyramid Transformer

We introduce a feature pyramid transformer (FPT) and add it between the backbone
FPN network and the post-processing network to produce features with stronger semantic
information. Its architecture is shown in Figure 4. Firstly, the features from FPN are
transformed and re-arranged. Then, the output features are concatenated with the original
feature map to obtain the concatenated features. Finally, the Conv3×3 operation is carried
out to reduce the channel and obtain the transformed feature pyramid.

The FPT is a light network that enhances features through feature interaction with
multiple scales and layers. It allows features of different levels to interact across space
and scale. The FPT consists of three transformer steps: a self-transformer, a grounding
transformer, and a rendering transformer. The self-transformer is introduced to capture
objects that appear simultaneously on the same feature map. The grounding transformer
is a up-bottom non-local interaction transformer that is used to enhance shallow features
with different levels of features. As shown in Figure 5a,b, the inputs of the self-transformer
and the grounding transformer are qi, k j, and vj, where qi = fq(Xi) represents the i-th
query; k j = fk(Xj) represents the j-th key; vj = fv(Xj) represents the j-th value; and fq(.),
fk(.), and fv(.) are used to perform queries, keys, and values operations on the feature
map, respectively. The self-transformer adopts dot products as similarity function Fsim
to capture co-occurring features in the same feature map. The output of Fsim is fed to the
normalization function Fnorm to generate weights w(i,j). Lastly, we multiply vj and w(i,j) to
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obtain the transformed feature X. Unlike the self-transformer, the grounding transformer
is a top-down non-local interaction that is used to strengthen shallow features with deep
features. It uses Euclidean distance to measure the similarity of deep features and shallow
features. The rendering transformer works with a bottom-up transformer to interact with
the entire feature map, presenting higher-level semantic features in lower-level features.
The transformation process is shown in Figure 5c. First, we calculate the weight w of
Q through global average pooling from the shallow feature K. Then, the weights of
Q (Qatt) and V are refined by Conv3×3 to reduce the size of the feature map. Finally,
the refined Qatt and down-sampled V (Vdown) are summed and processed by another
Conv3×3 for rendering.

(c) Transformed Feature Pyramid(a) Feature Pyramid 

Conv

Conv

Conv

Conv

Conv

Convvvv

(b) Feature Pyramid Transformer

Transformed features Re-arranged features Comcatenated features

Figure 4. Three transformer steps: (a) self-transformer, (b) grounding transformer, (c) rendering
transformer. qi = fq(Xi) represents the i-th query, kj = fk(Xj) represents the j-th key, and vj = fv(Xj)

represents the j-th value, where fq(.), fk(.), and fv(.) are used to perform queries, keys, and values
operations on the feature map, respectively.

𝑋௙

𝑋௖

V

Stride conv

GAP(K) Q

𝑋

𝑋
v௝

𝑘௝

𝑞௝
𝑋௙

𝑋௖
𝑘௝

v௝

(a) (b) (c)

Figure 5. Architecture of the proposed feature pyramid transformer: (a) self-transformer, (b) ground-
ing transformer, (c) rendering transformer. Firstly, the features from FPN are transformed and
re-arranged. Then, the output features are concatenated with the original feature map to obtain the
concatenated features. Finally, the Conv3×3 operation is carried out to reduce the channel and obtain
the transformed feature pyramid.

3.3. Dynamic Feature Refinement

When detecting instances with arbitrary orientations, large aspect ratios, and dense
distributions, the main reason for low detection performance is the feature misalignment
problem, which is caused by differences in the scale and rotation between the orientated



Remote Sens. 2021, 13, 2623 8 of 18

bounding box and the axis-aligned receptive fields. To alleviate the feature misalignment
problem, we introduce dynamic feature refinement (DFR) to obtain the refined accurate
bounding box. The architecture of DFR is shown in the bottom of Figure 6.

Y

X1 A1

X2 A2

X3 A3

Xc

X

3×3

1×3

3×1

Feature

Refinement

W×H

×256

W×H

×256

W×H

×256

W×H

×256

W×H

×5A

W×H

×CA

W×H

×256

W×H

×256

W×H

×256

W×H

×256

W×H

×5

W×H

×C

W×H

×256

Decoderθ, x, y, w, h

Figure 6. Architecture of the post-processing step. This consists of two sub-steps: the first sub-step
and the refinement sub-step. Top: the first sub-step, which performs the preliminary regression of
angle anchors for the refinement sub-step. Bottom: the refinement sub-step, which performs feature
fusion and adaptive feature refinement and then gives the final object detection result precisely.
On the left of the refinement sub-step is the feature fusion module, followed by the feature refinement
module. On the right are two subnetworks, which perform object classification and regression.

We adopt a feature fusion module (FFM) to counteract the mismatches between
arbitrary-orientation objects and axis-aligned receptive fields. This can dynamically and
adaptively aggregate the features extracted by various kernel sizes, shapes (aspect ratios),
and angles. The FFM takes the i-th stage feature map X ∈ RH×W×C as an input and
consists of two branches. In one branch, X ∈ RH×W×C is connected to the classification
and regression subnetworks to decode the location feature information. This is a normal
network introduced from RetinaNet. The task of this branch is to generate initial location
information and decode the angle feature information. In the other branch, we compress
X ∈ RH×W×C with a Conv1×1 layer and aggregate the improved information using
batch normalization and ReLU. In order to further deal with the mismatches between
rotated objects and axis-aligned receptive fields, we introduce the adaptive convolution
(AdaptConv) into our DFR.

The AdaptConv is inspired by [32], and the implementation details are illustrated in
Figure 7. Similar to DCN in [29], < denotes the regular grid receptive field and dilation.
For a 3 × 3 kernel, we have:

< = {(−1,−1), (−1, 0), ..., (0, 1), (1, 1)} (1)

The output of AdaptConv is:

Xi(p0) = ∑
pn∈<

w(pn) · Xc(p0 + pn + δpn) (2)

where pn represents the locations in <, w denotes the kernel weights, and δpn is the offset
field for each location pn. In our method, we redefine the offset field δpn so that DCN can
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be transformed into a regular convolution with angle information. The offset of AdaptConv
is defined as follows:

δpi = Mr(θ) · pi − pi (3)

where Mr(θ) ∈ RH×W×1 is the angle feature information that is split and resized from the
location feature information.

offset

rotation

matrix

θ

Figure 7. The overall process of AdaptConv. Decoded angle feature map θ is used to generate
the offset. The special offset causes the DCN to have a receptive field with regular shape and
angle information.

As shown in the bottom of Figure 6, in order to cope with objects with large aspect
ratios, we use a three-split AdaptConv with 3 × 3, 1 × 3, and 3 × 1 kernels, which are

denoted as Xi ∈ RH×W×C
′
(i ∈ {1, 2, 3}), to extract multiple features from Xc ∈ RH×W×C

′
.

In order to cause the receptive fields of neurons to adjust features dynamically, we adopt
an attention mechanism to integrate features from the above three-split process. Let the
attention map be Ai ∈ RH×W×1(i ∈ 1, 2, 3) and the computation be as follows:

Firstly, Xi is fed into the attention block, which is composed of Conv1×1 and the
batch normalization operation. Secondly, Ai(i = 1, 2, 3) is sent to SoftMax to obtain the
normalized selection weight A

′
i:

A
′
i = So f tMax([A1, A2, A3]) (4)

Here, the SoftMax can be described as follows. Suppose v is a vector and vi represents the
i-th element in v. In this case, the SoftMax value of this element is formulated by:

p =
evi

∑j=1 evj (5)

where the calculation result is between 0 and 1 and the sum of the SoftMax values of all
elements is 1.

Thirdly, the feature map Y is obtained by implementing a ReLU operation on:

Y = ∑
i

A
′
i · Xi, (6)

where Y ∈ RH×W×C is the output feature.
The adjusted feature map Y is then sent to the feature refinement module (as shown in

the middle of Figure 6) to reconstruct the features and achieve feature alignment. The fea-
ture alignment details are illustrated in Figure 8. For each feature map, the aligned feature
vectors are obtained through interpolation, according to the five coordinates (orange points)
of the refined bounding box. Following the method described in [4], we use feature bilinear
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interpolation to generate more accurate feature vectors and replace the original feature
vectors, as illustrated in Figure 8b. The bilinear interpolation is formulated as follows:

val = vallt × arearb + valrt × arealb

+ valrb × arealt + vallb × areart,
(7)

where val denotes the result of bilinear interpolation. vallt, valrt, valrb, and vallb denote the
values of the top-left, top-right, bottom-right, and bottom-left pixel, respectively. arealt,
areart, arearb, and arealb denote the area of the top-left, top-right, bottom-right, and bottom-
left rectangles, respectively. vallt (32, 90)valrt (32, 91)vallb (33, 90) valrb (33, 91)arealtarealb arearbareart(32.75, 90.67))

(a) (b)

Figure 8. Feature refinement. (a) Refine the bounding box with aligned features. (b) Feature
bilinear interpolation.

3.4. RetinaNet-Based Rotation Detection and Loss Function

We achieve rotated bounding box detection by using the oriented rectangle repre-
sentation method proposed in [4]. For the completeness of the content, let us introduce
the method briefly. We use a vector with five parameters (x, y, w, h, θ) to represent an
arbitrarily oriented bounding box, where (x, y) denotes the coordinates of the bounding
box center, w and h denote the width and height of the bounding box, and θ denotes the
rotation angle of the bounding box relative to the horizontal direction. Compared to the
horizontal bounding box, an additional angular offset must be predicted in the regression
subnet, for which the rotation bounding box is described as follows:

tx = (x− xa)/ωa, ty = (y− ya)/ha

tω = log(ω/ωa), th = log(h/ha), tθ = (θ − θa)
(8)

t
′
x = (x− xa)/ωa, t

′
y = (y

′ − ya)/ha

t
′
ω = log(ω

′
/ωa), t

′
h = log(h

′
/ha), t

′
θ = (θ

′ − θa)
(9)

where (x, xa, x′) correspond to the ground-truth box, the anchor box, and the predicted
box, respectively (likewise for y, w, h, θ).

The definition of the multi-task loss function is as follows:

L =
λ1

N

N

∑
n=1

t
′
n ∑

j∈{x,y,w,h,θ}

Lreg

(
v
′
nj, vnj

)
∣∣∣Lreg

(
v′nj, vnj

)∣∣∣ |− log(IoU)|

+
λ2

h× w

h

∑
i

w

∑
j

Latt

(
u
′
nj, unj

)
+

λ3

N

N

∑
n=1

Lcls(pn, tn)

(10)
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where N denotes the anchor number and t′n denotes a binary value (t′n = 1 for the fore-
ground and t′n = 0 for the background). v′nj denotes the predicted offset vectors, and vnj
denotes the vector of the ground truth, tn denotes the instance label, and pn denotes the
probability of the categories calculated by the sigmoid function. The hyperparameters λ1,
λ2, and λ3 control the trade-off and are set to 1 by default. The classification loss Lcls is
implemented using focal loss. In [23], the authors noticed that the imbalance of instances
categories results in a low accuracy for a single-stage detector compared with that of a
two-stage detector. They proposed focal loss to address this problem. Thus, we use focal
loss to optimize our classification loss, whereby our detector maintains single-stage speed
while improving the detection accuracy.

Equation (11) shows the cross-entropy loss function that produces focal loss:

CE(pt, y) = − log(pt), pt =

{
p i f y = 1

1− p otherwise
(11)

where y ∈ {±1} specifies the ground-truth class and pt ∈ [0, 1] is the model’s estimated
probability for the class with the label y = 1.

Furthermore, a weighting factor αt ∈ [0, 1] and a modulating factor (1− pt)γ (γ ≥ 0)
are introduced (as shown in Equation (12)) to control the weights of positive and negative
instances, meaning that the training is relatively more focused on positive samples.

FL(pt) = −αt(1− pt)
γ log(pt) (12)

In the rotated object detection task, the loss is very large due to the periodicity of the
angle. Therefore, the model has to be regressed in other complex forms, increasing the
difficulty of regression. Yang [15] proposed a loss function by introducing the IoU constant
factor in the traditional smooth L1 loss. The smooth L1 loss is expressed by:

SmoothL1(x) =
{

0.5x2 |x| < 1
|x| − 0.5 x < 1 or x > 1

(13)

The new regression loss can be divided into two parts, as shown in Equation (10),

where
Lreg

(
v′nj ,vnj

)
∣∣∣Lreg

(
v′nj ,vnj

)∣∣∣ determines the direction of gradient propagation and |− log(IoU)|

determines the magnitude of the gradient.

4. Experiments and Analysis
4.1. Benchmark Datasets

Extensive experiments and ablation studies were conducted. We compared our detec-
tor with 8 other well-known detectors through experiments on two challenging satellite
optical image benchmarks: DOTA [5] and HRSC2016 [33].

DOTA is the largest and most challenging dataset with both horizontal and oriented
bounding box annotations for object detection in satellite or aerial optical images. It contains
2806 satellite images, whose sizes range from 800 × 800 to 4000 × 4000. DOTA contains
objects with a wide variety of scales, orientations, and appearances. These images have
been annotated by experts using 15 common object categories. The object categories include
plane (PL), ship (SP), large vehicle (LV), small vehicle (SV), helicopter (HC), tennis court
(TC), bridge (BR), ground track field (GTF), basketball court (BC), baseball diamond (BD),
soccer field (SBF), storage tank (ST), roundabout (RA), harbor (HA), and swimming pool
(SP). Among them, there are huge numbers of densely distributed objects, such as small
vehicles, large vehicles, ships, and planes. There are many object categories with large
aspect ratios, such as large vehicles, ships, harbors, and bridges. Two detection tasks with
horizontal bounding boxes and orientated bounding boxes can be performed on DOTA. In
our experiment, we chose the task of detecting objects with an orientated bounding box.
An official website (https://captain-whu.github.io/DOTA/dataset.html (accessed on 1

https://captain-whu.github.io/DOTA/dataset.html
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January 2018) is provided for the submission of the results. DOTA contains 1403 training
images, 468 verification images, and 935 testing images, which are randomly selected from
the original images.

HRSC2016 [33] is a challenging satellite optical imagery dataset for ship detection.
It contains 1061 images collected from Google Earth and over 20 categories of ship instances
with different shapes, orientations, sizes, and backgrounds. The images with the scenario
of ships close to the shore in HRSC2016 were collected from six famous harbors, while
the other images show the scenario of ships on the sea. The image size ranges between
300 × 300 and 1500 × 900. HRSC2016 contains 436 training images, 181 validation images,
and 444 testing images. During the training and testing, we resized the images to 800× 800.
In our experiment, we chose the task of detecting ships with an orientated bounding box.

4.2. Implementation Details

We adopted ResNet101 FPN as the backbone of the experiment. The hyperparameters
of the multi-task loss function were set to λ1 = 4, λ2 = 1, and λ3 = 2. The hyperparameters
of the focal loss were set to α = 0.25 and γ = 2.0. SGD [34] was adopted as an optimizer.
The initial learning rate was set at 0.04 and the learning rate was divided by 10 at each
decay step. The momentum and weight decay were set to 0.9 and 0.0001. The learning rate
warmup was set to 500 iterations. We adopted mmdetections [35] as training schedules
and trained all the models in 12 epochs for DOTA and 36 epochs for HRSC2016. We used a
sever with 4 NVIDIA TITAN Xp GPUs and 4 GPUs with a total batch size of 8 for training
and a single GPU for inference.

4.3. Ablation Study

In order to evaluate the impact of DFR, FPT, and data augmentation on our detector,
we conducted some ablation studies on the DOTA and HRSC2016. ResNet-50 pretrained on
ImageNet was used as a backbone in the experiments. The weight decay and momentum
were set to 0.0001 and 0.9, respectively. Detectors were trained using 4 GPUs with a total of
8 images per mini batch (two images per GPU).

4.3.1. Ablation Study for DFR

In this subsection, we present the ablation study results for the original feature refine-
ment module (FRM) and the proposed DFR. As shown in Table 1, RetinaNet has a 62.22%
accuracy. By introducing FRM, R3Det (RetinaNet with refinement) obtained a 71.69% accu-
racy under ResNet101-FPN as a backbone with no multi-scale. FRM improved the accuracy
by 9.47%. In this study, we introduced DFR to achieve feature misalignment instead of
FRM. The accuracy with DFR was 73.10%, which is 1.41% higher then the accuracy with
FRM. As shown in Table 2, the accuracy for some hard instance categories, such as BR, SV,
LV, SH, and RA, increased by 2.06%, 7.71%, 2.8%, 9.42%, and 2.84%, respectively. We can
see that the proposed DFR has a significant effect on improving the performance.

Table 1. Ablation study of DFR, FPT, and data augmentation.

Methods mAP FRM DFR FPT Data Aug.

RetinaNet [23] 62.22 × - - -
R3Det [4] 71.69

√
- - -

73.10 -
√ × ×

ADT-Det (ours) 73.77 -
√ √ ×

76.89 -
√ √ √

Table 2. Ablation study of FRM and the proposed DFR, where FRM is the original feature refinement module proposed
by R3Det.

Methods PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

FRM 89.54 81.99 48.46 62.52 70.48 74.29 77.54 90.80 81.39 83.54 61.79 59.82 65.44 67.46 60.05 71.69
DFR 88.99 79.42 50.52 68.62 78.19 77.09 86.96 90.85 79.82 85.45 58.99 62.66 66.01 67.56 55.45 73.10
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4.3.2. Ablation Study on FPT

As shown in Table 1, the accuracy was 73.10% without FPT and 73.77% with FPT.
It can be seen that the proposed FPT has a slight effect on improving the performance.

4.3.3. Ablation Study for Data Augmentation

A previous study showed that data augmentation is a very effective way to improve
detection performance by enriching training datasets. In this subsection, we study the
impact of data augmentation on the detection accuracy of our detector. The data augmen-
tation methods used in the experiment includes horizontal and vertical flipping, random
graying, multi-scales, and random rotation. As shown in Table 1, the detection accuracy
was improved from 73.77% to 76.89% by data augmentation.

4.4. Comparison to State of the Art
4.4.1. Results on DOTA

We compared our proposed detector with some state-of-the-art detectors using the
DOTA dataset. The results reported here were obtained by submitting our detection re-
sults to the official DOTA evaluation server. All the detectors involved in this experiment
can be divided into three groups: multi-stage, anchor-free, and single-stage detectors.
As shown in Table 3, the latest multi-stage detectors, such as SCRDet [15], Gliding Ver-
tex [10], and APE [36], achieved values of 69.56%, 72.61%, 75.02%, and 75.75% mAP,
respectively. The anchor-free method DRN [32] achieved a 73.23% mAP. The single-stage
detectors R3Det and R4Det with ResNet-152 had 73.73% and 75.84% accuracies. Our ADT-
Det with ResNet-152 achieved the highest accuracy of 77.43%, which is 1.59% higher than
the previous best result.

The research of R4Det [3] showed that feature recursion is a good method to im-
prove the detection accuracy. We also adopted feature recursion in our pipeline, and it
outperformed state-of-art methods and achieved a 79.95% accuracy.

The visualization of some of the detection results of our detector is shown in Figure 9.
The results demonstrate that our detector can accurately detect most objects with arbitrary
orientations, large aspect ratios, huge scale differences, and dense distributions.

PL

BD

BR

SV

LV

SH

TC

BC

ST

SBF

RA

HA

SP

HC

GTF

Figure 9. Visualization of some detection results on DOTA. Different colored bounding boxes represent instances of different
categories (best viewed in color).
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Table 3. Detection accuracy on different objects (AP) and overall performance (mAP) evaluation on DOTA.

Methods PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

Two-stage methods

R-FCN [12] 37.80 38.21 3.64 37.26 6.74 2.60 5.59 22.85 46.93 66.04 33.37 47.15 10.60 25.19 17.96 26.79
FR-H [5] 47.16 61.00 9.80 51.74 14.87 12.80 6.88 56.26 59.97 57.32 47.83 48.70 8.23 37.25 23.05 32.29
FR-O [5] 79.09 69.12 17.17 63.49 34.20 37.16 36.20 89.19 69.60 58.96 49.40 52.52 46.69 44.80 46.30 52.93

IE-Net [37] 80.20 64.54 39.82 32.07 49.71 65.01 52.58 81.45 44.66 78.51 46.54 56.73 64.40 64.24 36.75 57.14
R2CNN [11] 80.94 65.67 35.34 67.44 59.92 50.91 55.81 90.67 66.92 72.39 55.06 52.23 55.14 53.35 48.22 60.67

RoI-Transformer [2] 88.64 78.54 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56
SCRDet [15] 89.98 80.65 52.09 68.36 68.83 60.36 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61

RSDet [4] 90.10 82.00 53.80 68.5 70.20 78.7 73.6 91.2 87.1 84.7 64.31 68.2 66.1 69.3 63.7 74.1
Gliding Vertex [10] 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02

FFA [38] 90.10 82.70 54.20 75.20 71.00 79.90 83.50 90.70 83.90 84.60 61.20 68.0 70.70 76.00 63.70 75.00
APE [36] 89.96 83.64 53.42 76.03 74.01 77.16 79.45 90.83 87.15 84.51 67.72 60.33 74.61 71.84 65.55 75.75

Anchor-free methods

DRN [32] 89.71 82.34 47.22 64.10 76.22 74.43 85.84 90.57 86.18 84.89 57.65 61.93 69.30 69.63 58.48 73.23

Single-stage methods

SSD [21] 39.57 9.09 0.64 13.18 0.26 0.39 1.11 16.24 27.57 9.23 27.16 9.09 3.03 1.05 1.01 10.59
YOLO v2 [19] 39.49 20.29 36.58 23.42 8.85 2.09 4.82 44.34 38.35 34.65 16.02 37.62 47.23 25.5 7.45 21.39

R3Det [4]-ResNet152 89.49 81.17 5.53 66.10 70.92 78.66 78.21 90.81 85.26 84.23 61.81 63.77 68.16 68.83 67.17 73.73
R4Det [3]-ResNet152 88.96 85.42 52.91 73.84 74.86 81.52 80.29 90.79 86.95 85.25 64.05 60.93 69.00 70.55 67.76 75.84

ADT-Det (no Multi-Scale Training) 88.99 79.42 50.52 68.62 78.19 77.09 86.96 90.85 79.82 85.45 58.99 62.66 66.01 67.56 55.45 73.10
ADT-Det-ResNet50 89.28 83.97 51.44 79.12 78.31 82.18 87.79 90.82 84.84 87.46 65.47 64.23 71.87 71.40 65.08 76.89
ADT-Det-ResNet101 89.62 84.70 51.88 77.43 77.88 80.54 88.22 90.85 84.18 86.68 66.30 69.17 76.34 70.91 63.01 77.18
ADT-Det-ResNet152 89.61 84.59 53.18 81.05 78.31 80.86 88.22 90.82 84.80 86.89 69.97 66.78 76.18 72.10 60.03 77.43

ADT-Det (with Feature Recursion) 89.71 84.71 59.63 80.94 80.30 83.53 88.94 90.86 87.06 87.81 70.72 70.92 78.66 79.40 65.99 79.95
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4.4.2. Result on HRSC2016

HRSC2016 contains many ship instances with large aspect ratios and arbitrary orienta-
tions. RRPN was originally developed for orientation scene text detection. RoI-Transformer
and R3Det are advanced satellite optical imagery detection methods. We performed com-
parative experiments with these methods, and the results are shown in Table 4. We can
see that the scene text detection methods have competitive results for satellite optical im-
agery datasets; RRPN [13] achieved a 79.08% mAP. Under the PASCAL VOC2007 metrics,
the famous multi-stage rotated object detector RoI-Transformer [2] could achieve an 86.20%
accuracy. The state-of-art single-stage methods, R3Det [4] and R4Det [3], could achieve
89.26% and 89.56% accuracies, respectively. Meanwhile, the proposed ADT-Det detector
achieved the best detection performance, with an accuracy of 89.75%. This accuracy is
close to the accuracy for ship detection in the DOTA experiment (88.94%), which further
proves the advantage of using DFR to reduce the mismatch between arbitrarily oriented
objects and axis-aligned receptive fields. Evaluated under the PASCAL VOC2012 metrics,
the anchor-free method DRN achieved a 92.7% accuracy, while the proposed ADT-Det
detector (with ResNet-152) achieved the best detection result, with an accuracy of 93.47%.

4.4.3. Speed Comparison

Comparison experiments for detection speed and accuracy were carried out on
HRSC2016. In the experiment, our ADT-Det detector was compared with eight other
well-known methods. The detailed results are illustrated in Table 4 and the overall com-
parison results are also visualized in Figure 10. It can be seen that the multi-stage detector
RoI-Transformer could achieve an 86.2% accuracy and a 6 fps speed when using ResNet101
as the backbone and when the input image size was 512 × 800. The single-stage R3Det
detector could achieve a 89.26% accuracy and a 10 fps speed. The existing state-of-art
single-stage R4Det could achieve an 89.5% accuracy, but the detection speed was slower
than that of R3Det. Our ADT-Det detector could achieve an 89.75% accuracy when evalu-
ated under the PASCAL VOC2007 metrics and a 12 fps speed when the input image size
was 800 × 800. Furthermore, we could achieve a 14.6 fps speed when the input image size
was 600 × 600. The results demonstrate that our ADT-Det detector can achieve the highest
accuracy of all the investigated detectors while running very fast.

Table 4. Evaluation results with the accuracy and speed of some well-known detectors on HRSC2016. All models were
evaluated under ResNet-152. * indicates that the result was evaluated under the PASCAL VOC2012 metrics.

Methods RC1&RC2 [39] RRPN [13] RRD [40] RoI-Trans. [2] DRN [32] CenterMap-
Net [41] R3Det [4] R4Det [3] ADT-Det

Input size 300 × 300 800 × 800 384 × 384 512 × 800 768 × 768 768 × 768 800 × 800 800 × 800 600 × 600 80 0× 800
AP 75.7 79.08 84.3 86.20 92.7 * 92.8 * 89.26 89.56 88.96 89.75/93.47 *

Speed Slow(<1 fps) 3.5fps Slow(<1 fps) 6 fps - - 10 fps 6.5 fps 14.6 fps 12 fps
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Methods

Figure 10. Detection performance (mAP) and speed comparison of our ADT-Det detector and 5 other
famous detectors on HRSC2016. Our ADT-Det detector achieved the highest accuracy of all the
investigated detectors while running very fast. Detailed results are listed in Table 4.

5. Conclusions

In this work, we identify inappropriate feature extraction as the primary obstacle
preventing the high-performance detection of instances with arbitrary directions, large
aspect ratios, and dense distributions. To address this, we proposed the use of an adaptive
dynamic refined single-stage transformer detector to address the aforementioned chal-
lenges, aiming to achieve a high recall and speed. Our detector realizes rotated object
detection with RetinaNet as the baseline to achieve the detection of multi-scale objects and
densely distributed objects. Firstly, the feature pyramid transformer (FPT) was introduced
into the traditional feature pyramid network (FPN) to enhance feature extraction through
a feature interaction mechanism. Secondly, the output features of FPT were fed into two
post-processing steps, considering the mismatch between the rotated bounding box and
the general axis-aligned receptive fields of CNN. Dynamic Feature Refinement (DFR) was
introduced in the refinement step. The key idea of DFR was to adaptively adjust the feature
map and reconstruct a new feature map for arbitrary-oriented object detection to alleviate
the mismatches between the rotated bounding box and the axis-aligned receptive fields.
Extensive experiments and ablation studies were carried out to test the proposed detector
based on two challenging satellite optical imagery public datasets, DOTA and HRSC2016.
The proposed detector could achieve a 79.95% mAP accuracy for DOTA and 93.47% mAP
for HRSC2016, and the running speed was 14.6 fps with an 600× 600 input image size.
The results show that our method achieved state-of-the-art results in the task of object
detection in these optical imagery datasets.
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