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Abstract: This contribution focuses on the utilization of very-high-resolution (VHR) images to identify
construction areas and their temporal changes aiming to estimate the investment in construction as a
basis for economic forecasts. Triggered by the need to improve macroeconomic forecasts and reduce
their time intervals, the idea arose to use frequently available information derived from satellite
imagery. For the improvement of macroeconomic forecasts, the period to detect changes between two
points in time needs to be rather short because early identification of such investments is beneficial.
Therefore, in this study, it is of interest to identify and quantify new construction areas, which will
turn into build-up areas later. A multiresolution segmentation followed by a kNN classification is
applied to WorldView images from an area around the southern part of Berlin, Germany. Specific
material compositions of construction areas result in typical classification patterns different from
other land cover classes. A GIS-based analysis follows to extract specific temporal “patterns of
life” in construction areas. With the early identification of such patterns of life, it is possible to
predict construction areas that will turn into real estate later. This information serves as an input for
macroeconomic forecasts to support quicker forecasts in future.

Keywords: urban remote sensing; WorldView; construction areas; macroeconomic forecasts; time
series analysis; change detection

1. Introduction

Macroeconomic forecasts are well-known instruments to quantify the economic de-
velopment for a country and for a certain time period. These forecasts are based on facts
or indicator variables (that indicate the macroeconomic activity) that stem from official
reports and statistics, which are published in certain intervals at specific fixed dates [1]. If
no amended information is published by these sources, one is not able to give an updated
forecast on the macroeconomic development for the following period in time. To reduce the
time lag between data analysis and the forecasting period, economists look for alternative
datasets. They are to provide innovative indicators that facilitate the needed forecasts in
even shorter time intervals. One indicator for those forecasts are investments in the con-
struction sector. Advantageously, buildings are objects that can be seen and mapped using
satellite images. Due to the high temporal revisit rate of earth observation satellites, it is
possible to detect changes at almost every location on Earth. Beyond identifying buildings
in satellite imagery, it is also possible to detect and precisely locate construction areas. For
this, the imagery needs to meet specific requirements regarding their temporal, spectral, or
spatial resolution. Little cloud cover is vital for an unimpeded view of all targets.

In urban remote sensing, many approaches exist to map cities and urban areas
(e.g., [2–7]), attaining high spatial precision and accuracy. For many applications, the
recognition of built-up structures is of major interest (e.g., [8,9]). Besides optical aerial
or satellite imagery, LiDAR images (e.g., [10–12]) are also used. Varol et al. [13] combine
LiDAR images and stereo KOMPSAT-3 data to detect illegal buildings in a part of Istanbul.
In addition to the versatile image acquisition, many change-detection approaches exist

Remote Sens. 2021, 13, 2618. https://doi.org/10.3390/rs13132618 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-2338-7987
https://doi.org/10.3390/rs13132618
https://doi.org/10.3390/rs13132618
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13132618
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13132618?type=check_update&version=2


Remote Sens. 2021, 13, 2618 2 of 12

with different case studies on urban areas based on a variety of image sources and using
various methodological approaches (e.g., [14–21]). An aspect that all of these studies have
in common is a long time interval between two image acquisition dates—for the majority,
in fact, some years. For macroeconomic forecasts, this is too long to show the growth of an
urban area by a change detection analysis. For that purpose, images need to be acquired
at high revisit rates. It allows tracking changes within a year or even shorter periods.
Considering this, the approach presented here is an innovative topic for urban remote
sensing analysis.

Due to the nature of forecasts, the simple detection of ready-to-use buildings is not
the target of interest, but the detection of construction sites. Construction sites represent an
even earlier indicator of real estate investments. Therefore, this study focusses on the early
detection of construction activities in satellite imagery.

2. Materials and Methods
2.1. Satellite Image Data

In a case study [1], an area from the southern part of the German capital Berlin was
selected to test the suitability of VHR earth observation data for the identification and
quantification of construction activities. It appeared suitable due to the high level of
construction activity during the past years. Images of a time period between 2015 and
2020 were used to determine the reliability of the new robust extraction workflow to be
developed. The determination of new construction areas turns out to be especially difficult,
since one can hardly recognize the development of a building before its completion.

In this project, ortho-rectified pan-sharpened VHR WorldView satellite imagery is used
(Table 1) with four bands (red-green-blue-infrared) and a geometric resolution of 0.3–0.5 m.

Table 1. WorldView scenes used (DigitalGlobe Inc., a Maxar company [22]).

25 April 2015 20 November 2016 29 May 2017 29 April 2018 30 October 2019 8 August 2020

Satellite WV-3 WV-3 WV-4 WV-3 WV-2 WV-2
Resolution 0.3 m 0.3 m 0.3 m 0.3 m 0.5 m 0.4 m

2.2. Classification for Construction Area Detection

A simple and efficient way to identify construction activities in satellite imagery
lies in mono-temporal land cover classification approaches that are based upon spectral
values. Such a classification approach assumes that construction areas differ spectrally
from other land cover types. Possible misclassifications might occur if other surfaces are
spectrally similar to construction areas. Here, each scene is classified using object-based
image analysis (OBIA) and a machine learning classifier (k-nearest neighbours), both
implemented in eCognition 9.4.

During the training of the classifier, samples are collected in each scene individually
to gather representative surface information for each land cover category (Table 2). By
sampling areas and filling these with points in a 4 m grid, approximately 38,000 samples per
scene are generated. eCognition’s multiresolution segmentation creates nearly homogenous
objects of spectrally similar pixels. Here, it takes into account all spectral bands and is set
to scale = 42, shape = 0.1, compactness = 0.5. The objects derived are classified afterwards
using a kNN (k-nearest neighbors) classifier that gets trained on the image features listed
in Table 3. Basically, the mono-temporal classification results for all individual scenes are
used to refine the result by a GIS-based analysis.

2.2.1. Mono-Temporal Classification Patterns

In this approach, a construction site is described as an area with a unique classification
pattern resulting from a typical material composition. This is based on the observation
that construction sites are comprised of many small objects like construction equipment,
flattened ground, as well as completed or uncompleted building elements (Figure 1).
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It is envisaged to analyze whether construction areas can be distinguished from rather
homogeneous types of settlements, such as residential or industrial areas. Furthermore,
the aim was to examine if different types of construction sites can be identified (e.g., for
residential or industrial buildings).

Table 2. Classification nomenclature.

Color Class Group *
Bare soil

unsealedVegetation
Construction

Industry
sealedResidential

Other Artificial
Water

* used in the multi-temporal post-classification approaches.

Table 3. Overview of the image features that were used for the classification.

Feature Group Band/Attribute Based on . . .

Spectral

Blue
Means,

standard deviations,
maximum differences

Green
Red

Infrared

Indices NDVI

HSI-Transformation Saturation, intensity Red, green, blue
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Figure 1. Construction area in a WorldView-2 Scene from the 8 August 2020. It consists of buildings
in different stages of construction, different surface types, machinery, and other very small elements
that lead to many different class assignments. Source: WorldView Image ©2021, DigitalGlobe Inc., a
Maxar company [22].
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2.2.2. Multi-Temporal Approaches for Construction Area Detection

For this exploratory study, six VHR images of different dates and seasons are used. For
the further exploitation of the individual mono-temporal classification results, a strategy
was developed to follow the “pattern of life” of construction sites. The basic idea is
the detection of frequent temporal changes within certain land-cover classes. Typical
construction areas stem from one “regular” land cover, then turn into a construction area
for a certain period of time and finally end up with some type of real estate. With the search
for such temporal land cover patterns, three successive classification results are compared
to find characteristic patterns of Type A and B (Table 4). For the comparison, the classified
objects are analyzed in their temporal behavior. Once the pattern of Type A or B is detected
in a set of three successive images, it gets categorized as such.

Table 4. Multi-temporal approaches for construction area identification.

A

Construction Area on Previously Unsealed Surfaces with Subsequent Sealing

2015 2016 2017 2018 2019 2020

unsealed construction sealed
unsealed construction sealed

unsealed construction sealed
unsealed construction sealed

B

Biennial Construction Areas with Subsequent Sealing

2015 2016 2017 2018 2019 2020

construction sealed
construction sealed

construction sealed
construction sealed

unsealed corresponds to the classes Bare soil and Vegetation (Table 2); sealed corresponds to the classes Industry, Residential and Other
artificial (Table 2).

The first approach, shown in Table 4 (Type A), detects construction areas in three
different stages: In the first image, the area appears unsealed and represents one of the
natural land covers. In the successive image, the construction area appears. It gets verified
in the third image, which shows its completion.

The second approach in Table 4 (Type B) identifies construction areas in two consecu-
tive images. They end up in a completed construction site in the third image. This type
refers to construction areas with multi-year activities.

3. Results

The classification of VHR WorldView images revealed great potential to identify
construction areas. Based on a selection of available ortho-rectified scenes for an area in
Berlin, Germany, one could test the suitability of those images as well as an appropriate
classification strategy.

3.1. Mono-Temporal Classification Results

Basically, the material composition of construction areas can be discriminated from other
land cover classes quite well even using the applied mono-temporal classification approach
with limited spectral resolution. Figure 2 depicts many active construction areas. On this
basis, the acreage can be calculated and summed up for every class (Figure 3 and Table 5).

In all the VHR scenes used, one can identify different kinds of sealed areas, such as
industrial areas or residential areas. Some potential confusion between residential areas
and other sealed surfaces remains due to the spectral similarity of construction materials.

One challenge is the recognition of water, which often gets classified as a sealed surface.
This probably occurs due to the limited number of water samples present in the scenes.
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Figure 2. Detailed view of the classification results from the 29 April 2018. Source: WorldView Image ©2021, DigitalGlobe
Inc., a Maxar company [22].
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Figure 3. Classification results of the study area based on the WorldView images.

Table 5. Numeric classification result of the WorldView images (km2).

km2 25 April 2015 20 November 2016 29 May 2017 29 April 2018 30 October 2019 8 August 2020
Bare Soil 1.40 7.19 4.14 3.16 2.68 7.82

Vegetation 20.18 15.57 17.44 18.12 17.28 13.17
Construction 0.27 0.39 0.76 1.06 0.14 1.29

Industry 1.54 1.33 1.40 1.03 0.86 0.77
Residential 2.50 0.78 3.11 1.85 4.61 3.43

Other Artificial 3.74 4.37 2.78 4.38 4.06 3.14
Water 0.02 0.02 0.02 0.04 0.02 0.02
Sum 29.64 29.64 29.64 29.64 29.64 29.64
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For the mono-temporal classification pattern approach, eight examples of the following
types are compared: Residential areas, industrial areas, and construction sites (Figure 4).
The aim is to discriminate those types by their class composition. The class compositions
reveal that construction areas appear significantly different from residential or industrial
areas. However, it is not possible to work out distinct discrimination between different
types of construction sites. In Figure 5, one can see the result for the 29 April 2018.
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classification of the WV-3 scene from the 29 April 2018 was extracted. Source: WorldView Image
©2021, DigitalGlobe Inc., a Maxar company [22].
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Figure 5. Material/Land cover composition pattern of all extracted areas from Figure 4 (29 April 2018). The color of the soil
class was adjusted for better visibility. R indicates construction sites for residential buildings and I indicates construction
sites for industry buildings.
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Construction sites are characterized by a composition of approximately 47% con-
struction and approximately 43% sealed surfaces with a slight tendency towards industry
and other artificial surfaces. It is impossible to identify significant differences between
construction sites for residential (R) or industrial buildings (I). That is because of the similar
material appearance of construction sites. It is hardly possible to recognize the envisaged
use of buildings.

In industrial areas, the corresponding class occurs most frequently by an average of
49%. Large buildings with white flat roofs stand out due to their spectral characteristics.
They are easy to classify. Other artificial surfaces also play an important role by a share
of 25%. They cover large, paved areas around the buildings as well as roads. The higher
proportion of the vegetation class compared to that for construction sites represents lawns
and roadside vegetation.

In residential areas, the average proportion of green space (38%) is nearly as large as the
proportion of total sealed area (46%). The residential building class, as expected, plays only a
minor role due to the smaller houses compared to industrial structures. That is also evident
with the districts on the southern edge of Berlin that mainly consist of single-family homes.

Open soils appear evenly distributed over all areas at approximately 10%. Hence, they
are of little importance.

3.2. Multi-Temporal Approaches

Two multi-temporal approaches are tested (Table 4). Figure 6 shows areas of Type
A, that are unsealed in the first year of observation, classified as construction sites in the
second year and appear as sealed in the third year. Figure 7 shows few areas of Type B,
that are under construction for two years and sealed in the third year.
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Figure 6. Multi-temporal classification results of Type A, displayed on two WorldView scenes (24 May 2015 (left) and
8 August 2020 (right). One can identify areas that were not sealed in the first year of observation, were under construction
in the second year, and ended up as completed construction or sealed surfaces in the third year. Data source: WorldView
Image ©2021, DigitalGlobe Inc., a Maxar company [22].
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Figure 7. Multi-temporal classification results of Type B, displayed on two WorldView scenes (24 May 2015 (left) and
8 August 2020 (right). One can identify areas that were under construction in two years. Data source: WorldView Image
©2021, DigitalGlobe Inc., a Maxar company [22].

The change detection results get compared with the areal extent of successive new
buildings and their surrounding sealed area in order to be able to roughly calculate the
accuracy of construction area determination by the different approaches. Due to the
temporary or respectively transitory nature of construction areas, there is no independent
retrospective reference data source other than remote sensing. Consequently, it is not
possible to calculate true or false negatives. The accuracy of the tested approaches differs.
It is dependent on the season as well as on the type and size of the construction area. The
results are listed in Table 6.

Table 6. Verification results.

Approach Total True Positive

Mono-temporal Pattern 2015 266,821 m2 33,641 m2 12.6%
Mono-temporal Pattern 2016 389,695 m2 55,351 m2 14.2%
Mono-temporal Pattern 2017 757,578 m2 144,010 m2 19.0%
Mono-temporal Pattern 2018 1,061,411 m2 406,272 m2 38.2%
Mono-temporal Pattern 2019 141,134 m2 71,006 m2 50.3%

A

Multi-temporal 2015–2017 27,528 m2 26,821 m2 97.4%
Multi-temporal 2016–2018 49,107 m2 44,583 m2 90.7%
Multi-temporal 2017–2019 118,761 m2 112,293 m2 94.5%
Multi-temporal 2018–2020 11,994 m2 10,670 m2 88.9%

B

Biennial 2015 & 2016 458 m2 77 m2 16.8%
Biennial 2016 & 2017 10,083 m2 1364 m2 13.5%
Biennial 2017 & 2018 68,469 m2 28,340 m2 41.3%
Biennial 2018 & 2019 791 m2 620 m2 78.3%

4. Discussion

VHR satellite images can be used to identify construction areas via land cover classifi-
cation. The analysis of classification results reveals certain characteristics of construction
areas. These findings support a more timely generation of economic forecasts.
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Specific material compositions of construction areas result in typical classification
patterns. It is possible to separate construction areas from industrial and residential areas.
The areas classified differ from year to year, depending upon the construction activity. In
addition, the rate of true positives varies a lot, so it can be concluded that this identification
option based on individual scenes is not the most reliable.

The GIS-based multi-year analysis focuses on the life cycle of construction areas be-
tween successive years and considers more than one classification result. It is possible to
distinguish between single-year and biennial construction areas. The verification is per-
formed with subsequent images. For realistic support of economic forecasts, this last step of
verification by completed construction sites would be too late (after the forecast). One seeks
to gain a time benefit by early integration of image-based construction area information.

The multi-temporal patterns of life reveal that most construction areas exist for about
a year (Type A) and only a few for two years (Type B). Consequently, construction areas
of Type A dominate the areal statistics. Type B construction areas complement Type A
construction areas. The reliability of Type A is very high according to the true positives. It is
likely that the temporal pattern of Type B is much harder to catch with the available images.

One should overlay the results of different analysis steps to see where the result
appears to be most reliable. That helps to make sure that the identification of construction
sites is robust and correct so far. It should happen even in the early stages of construction
despite all difficulties of mono-temporal classification approaches. In Figure 8, the two
multi-temporal approaches are overlaid on the full scene of 29 April 2018. One can clearly
see their complementary nature.
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In spring and early summer scenes, construction sites get classified as such without the
need to evaluate later imagery. However, in winter scenes or under drought-like conditions,
the corresponding classes (especially construction and open soil) become more congruent,
and the number of misclassifications rises.

Due to the different seasons and the resulting appearance of the landscape, one has to
experiment with more images and additional methodological approaches to come to better
results. As a result of this study, a first step has been taken, but it needs to be complemented
by more in-depth studies.

Independent from the imagery used, areas with tall vegetation suffer from the effect
of tree crowns shielding the area underneath. This might influence the area statistics
between vegetated and non-vegetated scenes because areas underneath the crowns cannot
be classified.

Another challenge in this urban investigation area is view direction distortion of high
buildings in non-nadir scenes (Figure 9). Vertical facades become visible and hide the
actual land cover, leading to seemingly overlapping areas that are not congruent in reality.
In the worst case, facades hide green areas such as gardens, which then get classified as
areas with an increasing degree of sealing. In the case of another viewing direction of the
satellite for a follow-up mage, this phenomenon could lead to errors in the area statistic,
since other areas are then hidden by the same building but in another direction.
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Another matter for discussion is the availability of cloud-free scenes. In case of
unfavorable weather conditions images might suffer from high cloud cover and thus
be useless. That can affect the detection of construction areas. One could even miss a
construction stage because of too little available cloud-free or slightly cloudy images. For
such conditions one could augment the experiment with SAR-data.

The next step after gaining the site-specific knowledge of construction areas will be the
proper integration of the spatial information into the economic model domain. Here, robust
structures are needed to be able to consider even weak spatial results. Further research
can find out how spatial incompleteness or spatial incorrectness affects these economic
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forecasts. In other words, from which scenario or input data do these models benefit and
under what conditions can additional information be considered useless or even harmful.
Hopefully, this gets considered in a follow-up project.

5. Conclusions

VHR satellite images have been successfully utilized to discriminate construction areas
from other land cover classes by image classification. Despite rather systematic problems
(like radial distortion), the results are promising. The characteristic “pattern-of-life” assists
in the detection of frequent temporal changes of land-cover and land-use. This study reveals
that it is possible to analyze the land cover composition for specified areas. Areas with a
high percentage of sealed surfaces and construction areas and almost no vegetation cover
are very likely areas with new buildings at a later stage, when construction has finished.
With the early identification of such “patterns-of-life”, one can forecast construction areas
that will turn into buildings later. This information serves as an input for macroeconomic
forecasts to support timelier forecasts in the future.

Despite these promising results, there is a lot of potential for improvement regarding
other image sources and other classification approaches. Hopefully, satellite images will
enhance macroeconomic forecasts in the future on a routine basis.
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