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Abstract: Natural snow, one of the most important components of the cryosphere, is fundamentally
a layered medium. In forward simulation and retrieval, a single-layer effective microstructure
parameter is widely used to represent the emission of multiple-layer snowpacks. However, in most
cases, this parameter is fitted instead of calculated based on a physical theory. The uncertainty under
different frequencies, polarizations, and snow conditions is uncertain. In this study, we explored
different methods to reduce the layered snow properties to a set of single-layer values that can
reproduce the same brightness temperature (TB) signal. A validated microwave emission model
of layered snowpack (MEMLS) was used as the modelling tool. Multiple-layer snow TB from the
snow’s surface was compared with the bulk TB of single-layer snow. The methods were tested
using snow profile samples from the locally validated and global snow process model simulations,
which follow the natural snow’s characteristics. The results showed that there are two factors
that play critical roles in the stability of the bulk TB error, the single-layer effective microstructure
parameter, and the reflectivity at the air–snow and snow–soil boundaries. It is important to use the
same boundary reflectivity as the multiple-layer snow case calculated using the snow density at the
topmost and bottommost layers instead of the average density. Afterwards, a mass-weighted average
snow microstructure parameter can be used to calculate the volume scattering coefficient at 10.65 to
23.8 GHz. At 36.5 and 89 GHz, the effective microstructure parameter needs to be retrieved based on
the product of the snow layer transmissivity. For thick snow, a cut-off threshold of 1/e is suggested
to be used to include only the surface layers within the microwave penetration depth. The optimal
method provides a root mean squared error of bulk TB of less than 5 K at 10.65 to 36.5 GHz and less
than 10 K at 89 GHz for snow depths up to 130 cm.

Keywords: effective snow microstructure parameter; microwave radiometry; snow stratigraphy;
MEMLS; microwave penetration depth

1. Introduction

Seasonal snow cover is an important component of the cryosphere. Approximately
5% of the precipitation in the world reaches the ground in the form of snowfall [1]. Each
snowfall event accumulates a new amount of fresh snow over the old snow, which results
in a naturally layered snow profile of vertical inhomogeneity. On the ground, snow
particles undergo a complex metamorphism process, where the particle size increases
and the particle shape changes. The snow microstructure governs many snow physical
properties and the radiative transfer properties for remote sensing at visible, near-infrared,
and microwave bands [2–5]. Although the snow microstructure parameters, for example,
the geometric grain size, specific surface area, and autocorrelation function, are measurable
using different instruments [6–8], when it comes to the remote sensing signal simulation or
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snow parameter retrieval based on the theory of forward models, the idea of an effective
microstructure parameter (or simply called the effective grain size) was widely used and
defined as the fitted value of a snow microstructure parameter that gives the same signal as
the remote sensing observations. For example, the effective microstructure parameter at the
snow’s surface was fitted using the observed reflectance of visible to shortwave infrared
(SWIR) sensors in [9–11], and the effective microstructure parameter at the microwave
bands was fitted based on single-layer snow radiative transfer models in [12–14].

The effective snow microstructure parameter at microwave wavelengths is more com-
plex than the visible-to-SWIR bands due to the penetration ability of microwaves and the
vertical variability of the physical properties of natural snow. Optical sensors observe the
topmost part of snow. However, the microwave sensors can receive emissions from the
deeper part of snow, and the snow at the bottom is hotter, denser and of larger particle
size than the snow at the surface. At microwave bands, based on the controlled conditions
experiments of homogeneous snow samples extracted from the snowpits, stable relation-
ships between the observed microstructure parameter and the microwave radiometric
signal were established [15,16]. This relationship is unaffected by snow depth or snow
stratigraphy. Effective snow microstructure parameter is possible to be fitted using these
radiometric measurements, although it can be different with the observations due to the
difference in the model-used and observed parameter types, particle shape assumptions
or the weakness of the model itself to represent the snow’s volume scattering charac-
teristics. On the contrary, snow stratigraphy and total depth can influence the stability
of the effective microstructure parameter of a multiple layer snowpack. Several studies
have explored the influence of the vertical variability of snow properties on the brightness
temperature (TB) observed at the snow’s surface [17–20]. The key point is that the ground
radiometer-observed TB can be reproduced using the in situ multiple-layer snow physical
measurements, but it sometimes fails using the average values. Du et al. (2010) [21] showed
that the influence of stratigraphy is not significant for X- and Ku-band radars, but it was
not systematically evaluated for passive microwave cases at high frequencies.

The effective microstructure parameter was widely used in snow water equivalent re-
trieval, where the snowpack was assumed to have only one homogeneous snow layer [22,23].
However, this parameter was fitted instead of calculated using a formulated method
based on a physical basis. In this paper, we tested different methods to build an effective
microstructure parameter and calculated the bulk TB of a single-layer snowpack to be
compared with the true TB of multiple snow layers. This study covered the microwave
frequencies of 10.65, 18.7, 23.8, 36.5, and 89 GHz at both polarizations.

To isolate the snow parameter and radiometric observation errors and snow radiative
transfer model error from the error of single-layer approximation, the comparison was
first made between multiple-layer and single-layer simulations from the same validated
model. The microwave emission model of layered snowpack (MEMLS), based on the
improved Born approximation (IBA) [24,25], was selected as the modelling tool. This
model is one of the first that considers layered snowpacks. It has a wide applicable
frequency range from 5 to 100 GHz. The IBA, used to calculate snow volume scattering,
has a physical basis. Snow is considered as a dense media at microwave bands, because it
has hundreds of thousands of snow particles packed closely within a one-wavelength cube,
such that the scattered electromagnetic wave fields from each particle are coherent [26,27].
Löwe et al. (2015) [28] showed that IBA is consistent with the widely accepted dense
media radiative transfer (DMRT) models [26,27]. Their scattering coefficients differ by
only a factor that is close to unity. In previous studies, MEMLS have been extensively
validated in Finland [19], US [19,29,30], Canada [19,31], and China [32] using a ground-
based radiometer and concurrent snowpit measurements. The accuracy of MEMLS-IBA is
approximately 5 K root mean squared error (RMSE) if the snow microstructure parameter
is allowed to be scaled by an optimized multiplication factor [29,30,32], and the accuracy
is about 10–15 K RMSE [19,31] if no optimization is performed. The snow microstructure
parameter used in MEMLS is called the exponential correlation length (pex).
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In this study, the bulk TB calculation method was evaluated over the snow profile
samples that followed the natural snow characteristics. A validated snow process model,
the snow thermal model (SNTHERM) [33], was utilized to generate these profiles globally.
SNTHERM simulates the evolution of a snowpack over bare soil forced by meteorological
conditions. It tracks the new snow accumulation, divides the snow and frozen soil into mul-
tiple horizontal layers, and calculates the thickness, density, temperature, grain size, total
water content, and liquid water content of each snow layer until the snow completely melts.

In this paper, first, four methods to calculate the MEMLS-simulated bulk TB were
formulated and used to be compared with the MEMLS-simulated multiple-layer TB. The
effective pex was also compared with the iteratively fitted pex based on a cost function.
Second, the sensitivity of bulk TB error to the incidence angle, snow depth and the average
pex itself was explored. Third, we introduced the idea of penetration depth, which stands
for the distance at which the radiation from the snow’s surface is attenuated to a negligible
fraction of its original value, to check whether the performance at high frequencies (36.5 and
89 GHz) can be further improved. Finally, the proposed method was tested using in situ
snowpit observations from the Altay experiment [32].

2. Materials and Methods
2.1. Data

In this section, two datasets composed of multiple-layer snow profile samples are
introduced as follows.

2.1.1. SNTHERM Simulated and Validated Multiple-layer Snow Dataset from the Altay
Winter Experiment

The Altay winter snow observation experiment conducted at the Altay Meteorological
Station (47◦44′26.58′′N, 88◦4′21.55′′E) in Xinjiang, China, from October 2017 to March 2018
provided time series measurements of snowpits and brightness temperature observed
by the ground-based radiometer. Chen et al. (2020) [32] used the hourly meteorological
forcing data observed at the station (including near-surface air temperature, air pressure,
precipitation, wind speed, relative humidity, and solar radiation) to drive SNTHERM and
obtained simulated snow profiles at the 1 hour step as shown in Figure 1.
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Figure 1. Time series change in snow depth, snow stratigraphy, and snow properties in the Altay
dataset: (a) layered geometric grain size (Dmax); (b) layered snow density; and (c) layered physical
temperature (T).
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This dataset was used as the samples inputted into MEMLS to study the bulk TB
calculation method. It is composed of 2800 snow profiles with a number of snow layers
from 1 to 30, a maximum snow depth up to 28 cm and an average depth of 11.9 cm; more
details are summarized in Table 1. Each sample is a layered snow profile over bare soil
that contains the thickness, temperature, density, and SNTHERM-simulated grain size
of each snow layer, and the temperature, water content, and unfrozen soil water content
averaged over 0–5 cm of soil. The SNTHERM simulated snow depth, layered geometric
grain size (Dmax), snow density and snow temperature were validated using in situ snowpit
measurements in [32]. In Figures 2–4, we further present a comparison of vertical profiles
on three different days. It shows that SNTHERM captured the vertical variability of the
natural snowpack and can provide a finer snow stratigraphic resolution compared to in
situ measurements.

Table 1. Statistics for the multiple-layer snow properties of the Altay snow samples.

Statistics Depth
(cm) Layers Average Density

(kg/m3)

Average Geometric
Grain Size

(mm)

Average Exponential
Correlation Length

(mm)

Mean 11.9 17 131.54 1.83 0.29
Standard deviation 6.4 10 12.94 0.42 0.04

Maximum 28.0 35 161.64 2.54 0.34
Minimum 2.5 2 93.63 0.25 0.05
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Figure 2. Comparison of the vertical profiles of snow parameters on 20 November 2017 between the
SNTHERM simulations and Altay in situ measurements: (a) geometric grain size (Dmax); (b) snow
density; and (c) physical temperature (T). The horizontal dashed lines in black are layer interfaces
recognized from the in situ snowpits. The horizontal lines in black and red are the snow’s surface of
in situ measurements and SNTHERM simulations, respectively.

2.1.2. Global SNTHERM Simulated Multiple-Layer Snow Dataset

Although the Altay dataset was validated using in situ snow pit observations, this
dataset covers only a small range of physical properties constrained by meteorological
conditions. Instead of artificially generating random snow property values, we were more
interested in a dataset that follows natural snow’s characteristics. Therefore, we conducted
a global-scale SNTHERM simulation for application in this study. The SNTHERM was
applied to the GLDAS (Global Land Data Assimilation System) meteorological forcing
data [34] from August 2016 to August 2017 at a 3 hour step and 0.25◦ spatial resolution.
The SNTHERM adds a new snow layer when snowfall occurs. It also subdivides thick
layers to maintain the simulation resolution and accuracy. Therefore, in the standalone
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SNTHERM code, the number of snow layers allowed is unlimited. To generate the global
dataset, the standalone SNTHERM was run uninterrupted. However, after the SNTHERM
was running finished, layers more than ten were combined before being saved to the global
grids. Layers were combined iteratively by finding the pair of adjacent snow layers with
maximum similarity in Dmax and density.
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Figure 3. Comparison of the vertical profiles of snow parameters on 16 January 2018 between the
SNTHERM simulations and Altay in situ measurements: (a) geometric grain size (Dmax); (b) snow
density; and (c) physical temperature (T).
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Figure 4. Comparison of the vertical profiles of snow parameters on 7 February 2018 between the
SNTHERM simulation and Altay in situ measurements: (a) geometric grain size (Dmax); (b) snow
density; and (c) physical temperature (T).

In this paper, we selected a longitudinal stripe at 5◦–85◦ N, 90◦–95◦ E in the Northern
Hemisphere. The data are from the simulations on 28 February 2017 at 0:00 UTC time. The
number of samples was approximately 2500. It covered a large spatial range and different
climate zones and, thus, potentially contained a wider range of snow properties compared
to the Altay dataset. In Figure 5, a south-to-north profile of Dmax and snow density centered
at 92.375◦ E is presented. From the statistics in Table 2, the maximum snow depth of this
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dataset can reach 1.3 m, and the average snow depth is 81.8 cm. The number of snow layers
was 10 for all samples, because it had reached mid to peak snow season.
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Figure 5. SNTHERM-simulated snow parameter profiles centered at 92.375◦ E: (a) geometric grain size (Dmax); and
(b) snow density.

Table 2. Statistics of multiple-layer snow properties of global samples in 5◦–85◦ N and 90◦–95◦ E grids.

Statistic Depth
(cm) Layers Average Density

(kg/m3)

Average Geometric
Grain Size

(mm)

Average Exponential
Correlation Length

(mm)

Mean 81.8 10 220.13 1.351 0.248
Standard deviation 34.1 0 32.92 0.334 0.035

Maximum 134.7 10 563.70 2.605 0.344
Minimum 4.1 10 102.32 0.796 0.183

2.2. Methods
2.2.1. Snow Brightness Temperature Simulation Models

The MEMLS, based on the improved Born approximation (IBA), was selected as the
radiative transfer model to calculate the TB of multiple-layer and single-layer snowpacks.
It calculates the volume scattering of each snow layer using the IBA theory and solves the
radiative transfer equation using the six-stream approximation.

The MEMLS model assumes that the snow cover is composed of a set of plane-parallel
horizontal layers (j = 1, 2, . . . , n). At each layer, it uses four fluxes to describe the upward
and downward propagated radiations near the upper and lower interfaces, respectively.
The fluxes across the interfaces are linked by the Fresnel equation with an assumption that
interface bistatic scattering is negligible, and the fluxes inside each layer are linked by the
radiative transfer theory. For example, the upward radiation just below the upper interface
is composed of the upwelling radiation from the lower interface attenuated by a snow
layer transmissivity of t, the downwelling radiation from the upper interface reflected by
an internal reflectivity of snow layer r and the thermal emission of the snow layer, denoted
by e*T, where e = 1 − r − t, and T is the snow physical temperature. See Equations (1)–(4)
and Figures 1 and 2 in [24] for more details. The downwelling sky TB and the upwelling
soil emitted TB are considered the boundary conditions at the air–snow and snow–soil
boundaries, respectively. All these relationships can be used to build a large matrix. The
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four fluxes at each layer can be solved, and the values at the topmost layer can be used to
calculate the TB observed from the snow’s surface.

In this paper, MEMLS was also used to calculate the scattering coefficient and the
internal transmissivity of snow layers to support a standalone calculation of the effective
snow microstructure parameter, which is the effective exponential correlation length (pex),
to be specific. pex is a coefficient used to fit the snow autocorrelation function A(x) as A(x)
= exp(−x/pex). A(x) describes the statistics of correlation between two random points in
the snow medium, and x is their distance. The dry snow is composed of ice and air. A(x)
is higher if more pairs of points are both occupied by the same component, and lower if
one is occupied by ice and the other is occupied by air. The geometric grain size (Dmax)
simulated by SNTHERM is converted to pex following Pan et al. (2016) [19] as:

Pex = 0.227 + 0.126 ∗ ln Dmax (1)

where both Dmax and pex is in mm.
The upwelling soil-emitted TB was calculated as the product of soil temperature (Tsoil)

and one minus the snow–soil boundary reflectivity Sss. Sss was calculated using the fitted
frequency-independent Q-H model in [35], which uses the root mean squared height of
the soil surface (rms) as the soil roughness parameter. Tsoil and unfrozen soil water content
(mvsoil) from the SNTHERM simulations were used to calculate the soil dielectric constants
using Zhang et al.’s (2003) model [36]. The rms was set the same as the simulation in
Chen et al.’s [32] at Altay, which was 2 cm. Fixed values of downwelling sky TB (0 K) and
rms (2 cm) were used to reduce the influence of nuisance parameters, when the MEMLS
multiple-layer snow TB was compared only with the MEMLS bulk snow TB. The sky TB
was calculated using air temperature, relative humidity and a standard atmosphere, as
described in [37], when the simulation was compared with the TB observations.

2.2.2. Methods to Calculate the Effective pex and Snow Bulk TB

Figure 6 shows the concept of using the snow parameters of a single-layer snowpack
to represent the emission of a multiple-layer snowpack. Here, dz, pex, ρ and T are snow
thickness, exponential correlation length, density and temperature of each snow layer. The
effective pex was specially denoted as pex_eff. Sas and Sss are the reflectivity of air–snow and
snow–soil boundaries, and S1 to Sn−1 refer to the reflectivity of interfaces between snow
layers. t01, t02 . . . t0n are the one-way transmissivity of each snow layer, and t0eff is the
effective single-layer value.
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Figure 6. Concept of simplification of a multiple-layer snowpack to a single-layer snowpack. (dz, pex, ρ, and T respectively
refer to snow thickness, exponential correlation length, density, and temperature of each snow layer, and pex_eff refers to the
effective pex. Sas and Sss are the reflectivity of air–snow and snow–soil boundaries, and S1 to Sn−1 refer to the reflectivity of
interfaces between snow layers. t01, t02 . . . t0n are the one-way transmissivity of each snow layer, and t0eff is the effective
single-layer value. mvsoil, Tsoil and rms refer to moisture, temperature and roughness of soil).

In MEMLS, the air–snow boundary reflectivity and the interface reflectivity were
calculated by the Fresnel equation, with snow permittivity calculated by an empirical
model as a function of snow density and temperature in [24]. Sss is also influenced by
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the snow density of the bottommost layer. Sss is important, because the soil emission
background is the main source of radiation before it was attenuated by the snow cover. As
the snow depth increases, the attenuation increases and, thus, the TB observed from the
snow’s surface decreases. Sas is important because the relative permittivity of air and snow
determines the radiation that can pass through the boundary and emit out of the snowpack.

t0 is an intermediate radiometric parameter defined in [24]. It describes the fraction of
radiation attenuated when it propagates through a snow layer once. In [24], it is officially
called the one-way transmissivity. t0 is calculated as:

t0 = exp(−γ ∗ dz∗ secθ) (2)

where dz is the layer thickness. θ is the local incidence angle of microwave inside this layer.
dz∗ secθ is also called the slant thickness. γ is the damping coefficient calculated as:

γ =
√

γ′a
(
γ′a + 2γ′b

)
(3)

Here, γ′a and γ′b are the two-flux equivalent absorption and scattering coefficients
in the backward direction, calculated from the six-flux absorption coefficient (γa) and
scattering coefficient (γb in backward direction and γc in horizontal direction). γa, γb and
γc are directly calculated by the IBA as a function of snow density, pex and temperature [25].
γa is mainly determined by snow density, whereas γb and γc are mainly determined by pex.
For dry snow, the scattering effect is usually much larger than the absorption/re-emission
effect. Therefore, pex is the key parameter for the snow volume scattering.

It can be seen from the physical theory in MEMLS that the snow density mainly
determines the soil background radiation emitted across the snow–soil boundary, and pex
mainly influences the snow medium’s attenuation from the volume scattering. When TB
at the snow’s surface decreases with snow depth, it acts like the intercept (at zero depth,
unit: K) and slope (unit: 1/cm), respectively, as in the parameterized model described
in Jiang et al. (2007) [38]. Therefore, our formulation of a bulk TB calculation method
considers both the boundary condition and pex. Also, as presented in many previous
studies [24–27], the relationship between the pex and scattering coefficient is nonlinear.
Larger snow particles produce much larger scattering. Therefore, compared to a mass-
weighted average pex that is mass conversative in the snow physics, a new effective pex that
is radiative conversative in snow emission theory needs to be formulated.

In the following subsections, four different methods to calculate the effective pex and
bulk TB are described. In all of the methods, the single-layer snow thickness is the summed
thickness of all the layers (i.e., snow depth), and the single-layer snow temperature is the
mass-weighted average snow temperature of all the layers (Tavg).

(1) Option 1: Use the mass-weighted average pex of the multiple layers (pex,avg) as the
effective pex to calculate the snow scattering coefficient and use the mass-weighted
average density (ρavg) to calculate Sas and Sss. See Equations (4)–(6). This is the sim-
plest and most mass conservative method without consideration of any nonlinearity
in snow radiative transfer theory.

pex,avg =
∑n

i=1 Wi·pex,i

∑n
i=1 Wi

(4)

ρavg =
∑n

i=1 Wi·ρi

∑n
i=1 Wi

(5)

where n is the total number of snow layers, and,

Wi = ρi ∗ dzi (6)

(2) Option 2: Use the product of one-way transmissivity of all layers as the effective
one-way transmissivity (t0eff) and retrieve pex,eff according to t0eff using a look-up
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table generated using MEMLS-IBA (see Equations (7)–(10)). Use ρ avg to calculate
Sas and Sss.

t0e f f = t01 ∗ t02 . . . ∗ t0j (7)

t0e f f = exp
(
−γe f f ∗ dz′

)
(8)

where

dz′ =
n

∑
i=1

dzi ∗ secθi (9)

γe f f = MIBA

(
pex,e f f , Tavg, ρavg

)
(10)

Here, γe f f is the effective damping coefficient. MIBA represents the look-up table
generated by MEMLS-IBA.

(3) Option 3: Calculate pex,eff using the same method in Option 2, but use the density of
the topmost and bottommost snow layer to calculate Sas and Sss.

(4) Option 4: Use pex,avg to calculate the snow scattering coefficient. Use the density of
the topmost and bottommost snow layer to calculate Sas and Sss.

In general, Option 3 is the most complicated method. Option 4 features a simplification
in effective pex, to be compared with Option 3.

When the TB of a multiple-layer snowpack is regarded as the true value, the brightness
temperature error (TB Error) of the bulk TB calculated by these four methods (TB,bulk) is
calculated as:

TBError = TB,bulk − TB,true (11)

The root mean square error (RMSE) is calculated as:

RMSE =

√
∑N

i=1(TBi,bulk − TBi,true)
2

N
(12)

where N is the number of samples.
The correlation coefficient R between TB,bulk and TB,true is calculated as:

R =
∑N

i=1

(
TBi,bulk − TBbulk

)(
TBi,true − TBtrue

)
√

∑N
i=1

(
TBi,bulk − TBbulk

)2
∗∑N

i=1

(
TBi,true − TBtrue

)2
(13)

2.2.3. Fitted Effective pex to Match the multiple-layer Brightness Temperature

Another common way to find the effective pex is to iteratively tune and fit this param-
eter until it matches the multiple-layer TB. A difference with the previous studies is that
we used the same Sas and Sss as the multiple-layer snowpack calculated from the topmost
and bottommost snow density as in Option 2 and 3. The cost function is:

F
(

pex, f it

)
= TB,MEMLS

(
f req, pol, θ, pex, f it

(
ρavg

)
, SD, Tavg, Sas, Sss

)
− TB,MEMLS( f req, pol, θ, pex,i∼n, dz,i∼n, Ti∼n, ρi∼n) (14)

where freq and pol stand for the frequency and polarization, respectively. SD is the snow
depth. pex,fit is the fitted pex to be calculated.

The iteration started from the mass-weighted pex,avg and stopped until the cost function
was smaller than 0.1 K. The relationship between pex,avg, pex,eff and pex,eff was studied.

2.2.4. Effective pex with the Consideration of Penetration Depth

At high frequencies, there is the possibility that the microwave cannot propagate
through the entire snowpack. In other words, the bottom layers become “in-observable”
by the radiometer. The emission from these layers cannot reach the snow’s surface, and the
TB from the snow’s surface loses the sensitivity to their snow properties.
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Therefore, here, the concept of penetration depth is introduced to constrain the snow
layers involved in bulk TB calculation in surface layers. Penetration depth refers to the
depth at which the electromagnetic wave can penetrate. It is determined both by the
medium properties and the microwave wavelength. The distance at which the intensity is
attenuated to 1/e (e ≈ 2.77) of its original value is a commonly used cut-off threshold. In
this study, the powers of 1/e were tested, too. With the penetration depth considered, the
new t′0e f f and γ′e f f was recalculated using Equation (15) and used to retrieve effective pex

using Equation (10).
t′0e f f is defined as:

t′0e f f = exp
(
−γ′e f f ∗ dz′′

)
=

m

∏
i=1

t0i ≈ CR = 1/ek (15)

where

dz′′ =
m

∑
i=1

dzi ∗ secθi (16)

where m ≤ n. k is changed in order to find m, and afterwards, m is used to calculate t′0e f f .
Tavg and ρavg used to find pex,e f f using the MIBA look-up table were also calculated from
layer 1 to m.

3. Results
3.1. Comparison of Four Bulk TB Calculation Methods
3.1.1. Results Based on the Altay Snow Samples

First, the four methods to calculate the effective pex and the corresponding bulk TB
described in Section 2.2.2 were evaluated using the multiple-layer snow samples from the
Altay experiment at an incidence angle of 55◦ and at the frequencies of 10.65 GHz, 18.7 GHz,
23.8 GHz, 36.5 GHz and 89 GHz. The simulated brightness temperature at 36.5 GHz and the
TB Error are shown in Figure 7. The x-axis is time. In order to improve the understanding of
TB Error, the snow depth is presented in thick gray lines. The change in snow density at the
topmost and bottommost layers between two adjacent samples in a time series, calculated
as |∆ρ| = |ρi − ρi−1|, are represented as orange and blue lines, respectively, where i is the
sample ID. The results at other frequencies are shown in Figure 8.

As can be seen in Figure 7, at 36.5 GHz, in most cases, the absolute value of TB Error is
smaller than 5 K at both polarizations, which is approximated at 2.3% relative error (5 K
divided by 220 K). Five kelvins is between the observation accuracy of the radiometer
(2–3 K) and the accuracy of snow radiative transfer models (10–15 K) [18,19,29–32,39]. Two
factors lead to the difference of TB error calculated by different options. One was from
the abrupt change in the local snow density near the air–snow and snow–soil boundaries.
The change in the topmost snow density was from the new snowfall. The change in the
bottommost snow density was basically due to the arithmetic in the snow process model
calculation. Although the snow density of a single layer in most cases monotonically
increases due to the snow compaction [24], when the sublimation and windblown effects
at the snow’s surface are excluded, the mass of the bottommost snow layer can decrease
due to the movement of water vapor to upper layers. At some point, the mass of the
bottom layer decreases to zero and is combined with the adjacent layer in the next step. At
this turning point, an abrupt change in the bottommost snow density occurred, because
we updated the snow density in a timely manner. It can be seen in Figure 7d that using
the mass-weighted average snow density of the entire snowpack (Options 1 and 2) will
result in an overestimation of TB observed at the snow’s surface, up to ~15 K. However,
using the local density near the air–snow and snow–soil boundaries, in other words, to
keep the same boundary reflectivity as the multiple-layer snow case, will largely reduce
the TB Error to ~5 K. From a comparison between Figure 7c,d and Figure 8, it shows
the importance of boundary reflectivity, as it was much stronger at low frequencies and
horizontal polarization. This led to a generally smaller RMSE at vertical polarization than
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horizontal polarization. The second was from the single-layer exponential correlation
length used for simulation. The same pex,avg was used for both polarizations, same as for
pex,eff. At 36.5 GHz, vertical polarization, when the pex,avg used in Options 1 and 4 was
larger than pex,eff used in Options 2 and 3 at approximately 0.005 mm, it resulted in a smaller
bulk TB, ~4 K on average. Note that the influence of pex was so large because the absolute
value of pex was large after November 2017. In Figure 7c, it also shows that the difference
from the different boundary reflectivities was very small at 36.5 GHz, vertical polarization.
However, at the horizontal polarization in Figure 7d, the TB difference from the boundary
reflectivity was of the same magnitude (~4 K) as the difference from the pex. In Figure 7d,
Option 1 gave the largest mean bias, whereas Option 3 gave the smallest mean bias; these
two methods had differences in both the boundary reflectivity and effective pex choices.
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Figure 7. Comparison of MEMLS simulated brightness temperature (TB) based on a multiple-layer snowpack and single-
layer snowpack using four calculation methods at 36.5 GHz: (a,b) simulated TB observed at the snow’s surface; (c,d) error
of bulk TB compared to multiple-layer TB, together with the snow depth (SD), difference (|∆ρ|) in density of topmost
(ρtop)/bottommost (ρbottom) snow layer between two adjacent samples in time series and the difference (pex,eff Diff ) in
effective exponential correlation length (pex,eff) used for simulation.
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and difference (|∆ρ|) in density of topmost (ρtop)/bottommost (ρbottom) snow layer between two adjacent samples, together
with snow depth (SD), in time series.

Another interesting point in Figure 7c,d is that after January 2018, the variation in
the TB Error sometimes showed a short-time local correlation with the variation in snow
depth. This is because the Altay samples were from a continuous snow process. At each
time step, the snow compaction and snow grain growth resulted in a continuous change in
thickness, density, and grain size of each layer, and these parameters further influenced the
local interface reflectivity and scattering coefficient. In a simplified single-layer model, it is
indeed impossible to capture all the fine resolution details inside the snowpack. Therefore,
a drift of TB Error due to the combined effect is understandable. Such phenomenon is
only found at a short time scale. For all the samples, the TB error and snow depth are
clearly uncorrelated.

In general, the result at 36.5 GHz shows that Option 3 is the best effective pex and
bulk TB calculation method. Later, we explored the results at other frequencies (see
Figure 8). Figure 8 shows clearly that at 10.65 to 23.8 GHz, the use of boundary reflectivity
calculated by local snow density (Options 3 and 4) gave less biased simulation at horizontal
polarization. A comparison between Options 3 and 4 shows that, the difference from
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different pex was less than 1 K. From the statistics of mean bias, RMSE, and correlation
coefficient in Table 3, it shows Option 4 had the best performance at 10.65 and 18.7 GHz,
whereas Option 3 had a smaller RMSE and higher correlation coefficient at 23.8 and
36.5GHz. The performance at 89 GHz was quite different with other frequencies. In
Figure 8g–h, from mid-November 2017 to January 2018, the simulation using pex,eff (Options
2 and 3) gave a smaller bias; however, after mid-January 2018, the simulation using pex,avg
(Options 1 and 4) gave a smaller bias. The influence of boundary reflectivity was minor at
both polarizations. The performance of different options was unstable. From the statistics,
it showed the RMSE at 89 GHz at both polarizations can reach 8 K, which is at least three
times of other frequencies.

Table 3. Statistics for mean bias (MB), RMSE, and correlation coefficient (R) of simulated brightness temperature in different
bands and polarizations (Altay samples). The sample size was 3016. The values in bold represent the highest accuracy
among four methods.

Frequency
(GHz) Polarization

MB(K) RMSE (K) R
Opt1 Opt2 Opt3 Opt4 Opt1 Opt2 Opt3 Opt4 Opt1 Opt2 Opt3 Opt4

10.65 H −1.96 −2.20 1.51 1.51 4.11 4.26 1.31 1.31 0.332 0.335 0.984 0.985
18.7 H −2.51 −2.63 0.88 0.78 4.25 4.29 0.99 0.91 0.097 0.119 0.983 0.981
23.8 H −2.73 −2.59 0.68 0.35 4.61 4.34 1.06 1.22 0.559 0.585 0.975 0.953
36.5 H −3.85 −2.23 0.18 −1.63 5.40 3.50 1.39 2.77 0.973 0.983 0.996 0.992
89 H −6.74 −6.32 −5.89 −6.14 8.57 8.57 8.38 8.16 0.968 0.969 0.969 0.969

10.65 V −0.24 −0.30 0.11 0.10 0.28 0.29 0.09 0.08 0.981 0.982 0.999 0.999
18.7 V −0.07 0.01 0.36 0.22 0.43 0.28 0.48 0.48 0.981 0.996 0.995 0.981
23.8 V −0.12 0.26 0.57 0.14 1.11 0.75 0.95 1.13 0.979 0.994 0.993 0.978
36.5 V −0.87 1.23 1.43 −0.72 2.18 2.10 2.06 2.10 0.995 0.998 0.997 0.995
89 V −5.41 −4.88 −4.86 −5.39 7.91 8.38 8.37 7.90 0.970 0.968 0.968 0.970

Figure 9 shows a comparison of pex,eff at different frequencies. It shows this parameter
was smaller at higher frequencies. This was because the smaller penetration depth at high
frequencies gives larger weight to surface snow layers.
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Figure 9. Comparison between effective exponential correlation length (pex,eff) at different frequencies:
(a) mass-weighted average exponential correlation length (pex,avg) used in Options 1 and 4 versus
pex,eff used in Options 2 and 3; and (b) difference in pex,eff at different frequencies using pex,avg as the
reference value.

3.1.2. Results Based on the Global Snow Process Model Simulation Samples

In this section, the global simulated snow samples from a longitudinal stripe described
in Section 2.1.2 were used to evaluate the TB Error of four methods at an incidence angle
of 55◦. The statistics of the mean bias (MB), RMSE, and R are listed in Table 4, and the
comparison of pex,eff, pex,avg, and pex,fit is presented in Figure 10.
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Table 4. Statistics for mean bias (MB), RMSE and correlation coefficient (R) of simulated brightness temperature in different
bands and polarizations (global samples). The sample size was 2487. The values in bold represent the highest accuracy
among four methods.

Frequency
(GHz) Polarization

MB(K) RMSE(K) R
Opt1 Opt2 Opt3 Opt4 Opt1 Opt2 Opt3 Opt4 Opt1 Opt2 Opt3 Opt4

10.65 H −8.03 −8.15 1.62 1.61 8.67 8.79 2.46 2.44 0.718 0.715 0.919 0.920
18.7 H −6.76 −6.35 1.98 1.48 7.41 6.91 2.73 2.57 0.784 0.831 0.930 0.914
23.8 H −5.91 −4.71 2.08 0.81 6.69 5.29 2.92 2.65 0.894 0.934 0.955 0.927
36.5 H −8.72 −6.90 −3.75 −5.14 9.20 7.93 5.58 5.76 0.974 0.954 0.950 0.980
89 H −27.95 −36.87 −36.50 −26.29 32.09 39.97 39.64 30.61 0.698 0.709 0.704 0.688

10.65 V −0.80 −0.82 0.21 0.17 0.98 1.03 0.27 0.24 0.987 0.985 0.999 0.999
18.7 V 0.19 0.79 1.54 0.87 1.15 1.14 1.73 1.44 0.979 0.990 0.994 0.981
23.8 V 0.36 1.84 2.38 0.81 2.08 2.36 2.80 2.24 0.974 0.987 0.988 0.973
36.5 V −5.16 −3.48 −3.31 −5.05 5.94 5.76 5.69 5.86 0.984 0.959 0.958 0.983
89 V −26.71 −36.96 −36.95 −26.69 31.14 40.21 40.20 31.12 0.686 0.690 0.690 0.686
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Figure 10. Comparison of effective exponential correlation length (pex,eff, in blue dots) used in Option 3 and average
exponential correlation length (pex,avg, in red dots) used in Option 4 at different frequencies using fitted exponential
correlation length (pex,fit) as the reference: (a) 10.65 GHz; (b) 18.7 GHz; (c) 23.8 GHz; (d) 36.5 GHz; and (e) 89 GHz.

Table 4 shows that, like the results from Altay samples, the TB Error at the vertical
polarization was smaller than the horizontal polarization, and the TB RMSE from the best
model at each frequency from 10.65 to 36.5 GHz was no larger than 6 K. However, none
of the four methods was applicable to 89 GHz, where the TB error RMSE was at least
30 K. At horizontal polarization, the performance of using the correct boundary reflectivity
(Options 3 and 4) was better than the other choice. Between Option 3 and Option 4, similar
to the results from the Altay samples, Option 4 performed better at 10.65 and 18.7 GHz,
and Option 3 was better at 36.5 GHz. The difference in the results from the global samples
shows Option 4 also performed better at 23.8 GHz.

Figure 10 shows a comparison between pex,eff and pex,avg using the global snow samples.
pex,fit can be considered as the true value, as it was fitted to match the multiple-layer TB. In all
cases, pex,eff was larger than pex,avg. At 10.65 to 23.8 GHz, both pex,eff and pex,avg were close to
pex,fit, whereas pex,eff showed an underestimation and pex,avg showed an overestimation. pex,eff
was unbiased at 36.5 GHz. At 89GHz, both pex,avg and pex,eff were strongly overestimated,
especially for the small grain size cases.
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3.2. Sensitivity Analysis of Bulk TB Error

This section explores the sensitivity of TB Error to the incident angle, snow mass-
weighted average grain size, and snow depth using Option 3 and the global snow samples.

3.2.1. Sensitivity of TB Error to Incident Angle

Figure 11 shows the sensitivity of TB Error to incidence angle at different frequencies.
It shows that TB Error generally increases with the incidence angle (except at 10.65 GHz,
horizontal polarization), because the slant snow depth (SD∗ secθ) increases with θ. How-
ever, as the incidence angle increases from 25◦ to 65◦, the increase in TB RMSE was smaller
than 3 K. At all angles, TB RMSE was smaller than 4 K at 10.65 to 23.8 GHz, and smaller
than 7 K at 36.5 GHz.
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Figure 11 also shows the sensitivity of the TB RMSE at the horizontal polarization
was larger than vertical polarization at low frequencies (10.65 and 18.7 GHz), but it was
smaller at high frequencies (36.5 and 89 GHz). This indicates that the boundary reflectivity
dominated the performance at low frequencies, whereas the accuracy of effective pex and
volume scattering calculation was more important at high frequencies. At 89 GHz, TB
RMSE increased from ~35 K at 25◦ to ~41 K at a 65◦ incidence angle.

3.2.2. Sensitivity of TB Error to Average pex

Figure 12 shows the sensitivity of TB Error to pex,avg, which represents the average
level of snow particle sizes. Only the results at 36.5 and 89 GHz are presented, because
the volume scattering is less important at lower frequencies. The incidence angle was
55◦. Figure 12 shows TB RMSE at 36.5 GHz was the largest at medium values of pex,avg.
However, in general, it was uncorrelated with pex,avg. At 89 GHz, TB Error distribution gave
a relatively complex pattern. The scatter points can be summarized in two groups. In the
first group, the bulk TB was unbiased and generally insensitive to pex,avg (see the points of
TB Error > –5 K). In the second group, the bulk TB was significantly underestimated, and the
underestimation decreased as pex,avg increased. This indicates the strongly underestimated
TB at 89 GHz came from the small grain size samples. It does not mean the influence of
pex to TB is smaller for small pex, but is more likely related to the characteristics of natural
snow—pex,avg is smaller for deeper snowpacks. The results in Section 3.2.3 prove this
assumption. The results at other incidence angles were similar.
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samples tended to be overestimated for thick snow from 10.65 to 23.8 GHz and underes-
timated at 36.5 GHz. Only at 89 GHz was the underestimation of TB and the snow depth 
highly correlated. When snow depth reached 1 meter, the bulk TB could be underesti-
mated by 60 K compared to the multiple-layer TB. 
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Figure 12. Sensitivity of brightness temperature (TB) Error to mass-weighted average exponential
correlation length (pex,avg) at 55◦ incidence angle: (a) 36.5 GHz, V pol.; (b) 36.5 GHz, H pol.; (c) 89 GHz,
V pol.; and (d) 89 GHz, H pol. The blue scatter points are TB Error of different samples. The black
line is the TB RMSE summarized at 0.01 mm pex,avg step. It was calculated using samples ± 0.005 mm
around each pex,avg step.

3.2.3. Sensitivity of TB Error to Snow Depth

Figure 13 shows the sensitivity of TB Error to snow depth. It shows in all cases that the
TB RMSE was larger for thicker snow, expect at 10.65 GHz. This is understandable. From
10.65 to 36.5 GHz, the TB Error and snow depth was uncorrelated, although some samples
tended to be overestimated for thick snow from 10.65 to 23.8 GHz and underestimated
at 36.5 GHz. Only at 89 GHz was the underestimation of TB and the snow depth highly
correlated. When snow depth reached 1 meter, the bulk TB could be underestimated by
60 K compared to the multiple-layer TB.
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Figure 13. Sensitivity of brightness temperature (TB) Error to snow depth (SD) at a 55◦ incidence angle: (a) 10.65 GHz;
(b) 18.7 GHz; (c) 23.8 GHz; (d) 36.5 GHz; and (e) 89 GHz. The scatter points are TB Error of different samples. The lines are
the TB RMSE summarized at 10 cm SD step. It was calculated using samples ± cm around each SD step. The results at the
vertical polarization are presented in red and horizontal polarization are presented in blue.
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3.3. Improvement of Bulk TB at High Frequencies Using the Penetration Depth

In this section, the concept of penetration depth was applied to improve the bulk TB
performance at 36.5 and 89 GHz.

At 89 GHz, the underestimation of bulk TB and snow depth was highly correlated.
Here, by reducing the range of snow layers involved in pex calculation to surface layers using
different cut-off thresholds (i.e., CR values), the accuracy of the simulated TB at 89 GHz
was significantly improved (Table 5). When the CR value gradually increased from 0 to
1/e, the TB RMSE decreased from 40.20 to 9.43 K at vertical polarization, whereas that at
horizontal polarization was reduced from 39.64 to 9.25 K. The accuracy was the highest when
CR = 1/e and started to decrease when CR further increased to 1/e1/4. It can clearly be seen in
Figures 14 and 15 that the underestimation for deep snow and small pex,avg was reduced when
the CR value gradually increased from 0 to 1/e1/2. However, a very large value of CR at
1/e1/4 led to an overestimation of TB. Therefore, the best CR threshold was near 1/e, where
the TB RMSE at both polarizations could be reduced to below 10 K at 89 GHz.

Table 5. Statistics for mean bias (MB), RMSE, and correlation coefficient (R) with different penetration
depth thresholds (CR) at 89 GHz and a 55◦ incidence angle. The values in bold represent the highest
accuracy among different CR thresholds.

CR
V pol. H pol.

MB (K) RMSE (K) R MB (K) RMSE (K) R

0 −36.95 40.20 0.690 −36.50 39.64 0.704
1/e4 −20.42 22.08 0.930 −20.14 21.72 0.933
1/e2 −13.32 15.36 0.927 −13.13 15.08 0.929
1/e −4.85 9.43 0.919 −4.78 9.25 0.920

1/e1/2 3.38 10.23 0.898 3.28 9.97 0.901
1/e1/4 8.83 15.13 0.861 8.56 14.63 0.867
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Figure 15. Sensitivity of brightness temperature (TB) Error to snow depth (SD) using different penetration depth cut-off
thresholds (CR) at 89 GHz, vertical polarization and a 55◦ incidence angle.

At 36.5 GHz, the bulk TB was underestimated for some thick snow (>60 cm) and
medium pex,avg (approximately 0.25 mm) cases. Here, the results in Table 6 and Figure 16
show that the use of a cut-off threshold of 1/e for the product of transmissivity improved
the accuracy of these samples and reduced the overall RMSE from approximately 5.6 to
about 4 K.

Table 6. Statistics for mean bias (MB), RMSE and correlation coefficient (R) with different penetration
depth thresholds (CR) at 36.5 GHz and a 55◦ incidence angle. The values in bold represent the highest
accuracy among different CR thresholds.

CR
V pol. H pol.

MB (K) RMSE (K) R MB (K) RMSE (K) R

0 −3.31 5.69 0.958 −3.75 5.58 0.950
1/e4 −3.31 5.69 0.958 −3.75 5.58 0.950
1/e2 −3.30 5.66 0.959 −3.73 5.55 0.950
1/e 2.35 4.12 0.970 1.55 3.79 0.954

1/e1/2 14.59 16.59 0.825 12.77 14.92 0.754
1/e1/4 23.00 25.41 0.656 20.24 22.59 0.573

3.4. Application of the Optimal Method
3.4.1. Application to In-Situ Snow Profile and Ground-Based Radiometer Measurements

Summarizing Sections 3.1–3.3, the optimal method for calculating bulk TB is to use
pex,avg, Sas, and Sss calculated from the local density near the boundaries for 10.65 to
23.8 GHz, and use pex,eff calculated from the product of one-way transmissivity of snow
layers within the penetration depth of microwaves propagating from the snow’s surface
and Sas and Sss calculated from the local density near the boundaries at 36.5 and 89 GHz.

The optimal methods were applied to the in situ snow profile measurements from the
Altay experiment. The bulk TB was compared with the TB measured by a ground-based
radiometer (see Chen et al. (2020) [32]), and the error from single-layer approximation
was compared to the model error of MEMLS. Table 7 and Figure 17 show that the MEMLS
model error was between 2–7 K, whereas the error of single-layer approximation itself
was only between 0.6–1.5 K. The error of single-layer approximation applied for in situ
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snowpits was even smaller than that applied for SNTHERM-simulated profiles in Table 3,
because the observed snow profiles had much fewer layers.
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Figure 16. Sensitivity of brightness temperature (TB) Error to snow depth (SD) (a) and mass-weighted
average exponential correlation length (pex,avg) (b) using cut-off threshold (CR) of 1/e at 36.5 GHz,
vertical polarization and a 55◦ incidence angle.

Table 7. Error statistics for the MEMLS-simulated multiple-layer brightness temperature
(TB,Multi-layer), MEMLS-simulated single-layer temperature (TB,Bulk) and brightness temperature
measured by ground-based radiometer (TB,Measured).

Error (K)
RMSE (MB) (Sample Size = 63)

18.7 V 18.7 H 36.5 V 36.5 H

TB,Multi-layer − TB,Measured 2.08(1.22) 6.91(6.29) 5.53(−4.01) 5.84(−4.13)
TB,Bulk − TB,Measured 2.20(1.64) 7.10(6.51) 4.74(−3.11) 6.44(−4.72)
TB,Bulk − TB,Multi-layer 0.63(0.43) 0.42(0.23) 1.41(0.90) 1.16(−0.59)

Note that, compared to the result in [32], the measured single-layer snowpits were not included in the statistics of
TB,Multi-layer − TB,Measured.
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3.4.2. Comparison to Satellite TB and the Problems

In this section, the MEMLS-simulated 18.7–36.5 GHz TB difference using multiple and
single snow profiles for vertical polarization, calculated in Section 3.1.2, are presented as a
geographic map in Figure 18b. It shows that the MEMLS simulations in these two cases
had a similar spatial distribution pattern.

The satellite-observed TB from the Advanced Microwave Scanning Radiometer 2
(AMSR2) [40] is also presented. The daily snow depth measurements from the meteo-
rological stations in the Global Historical Climatology Network [41,42], and the forest
cover fraction of a 0.25◦ spatial resolution calculated from the MODIS/Terra Vegetation
Continuous Fields Yearly L3 Global 250 m SIN Grid Version 6 (MOD44B v006) dataset [43]
were introduced in the error analysis.

Remote Sens. 2021, 13, x FOR PEER REVIEW 22 of 26 
 

 

 
Figure 18. Comparison of GLDAS+SNTHERM+MEMLS-simulated TB with the AMSR2 observations on February 28, 2017: 
(a) The comparison of GLDAS+SNTHERM-simulated snow depth with that measured at meteorological stations at the 
same longitude. siteSD-3 used the stations placed in 90–95°E, whereas siteSD-2 and siteSD-1 contained observations from 
wider longitude ranges in 80–105°E and 70–115°E, respectively. In both (b) and (c), from left to right, are the 18.7–36.5 
brightness temperature (TB) difference for vertical polarization from the AMSR2 measurements, MEMLS multiple-layer 
TB simulation, and MEMLS bulk TB simulation. The white area in the MEMLS simulation is from snow-free pixels. The 
only difference between (b) and (c) is that the area of forest cover fraction >20% was masked by the grey color in (c). 

4. Discussion 
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Figure 18. Comparison of GLDAS+SNTHERM+MEMLS-simulated TB with the AMSR2 observations
on 28 February 2017: (a) The comparison of GLDAS+SNTHERM-simulated snow depth with that
measured at meteorological stations at the same longitude. siteSD-3 used the stations placed in
90–95◦ E, whereas siteSD-2 and siteSD-1 contained observations from wider longitude ranges in
80–105◦ E and 70–115◦ E, respectively. In both (b) and (c), from left to right, are the 18.7–36.5 bright-
ness temperature (TB) difference for vertical polarization from the AMSR2 measurements, MEMLS
multiple-layer TB simulation, and MEMLS bulk TB simulation. The white area in the MEMLS sim-
ulation is from snow-free pixels. The only difference between (b,c) is that the area of forest cover
fraction >20% was masked by the grey color in (c).
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It can be seen from Figure 18b, c that the simulated TB was different with the AMSR2
TB north of 52◦ N. The reasons are as follows.

First, it can be seen in Figure 18a that GLDAS+SNTHERM simulated the snow depth
measured at the meteorological stations north of 65◦N more than once. Because there
are only two stations within the 90–95 ◦E range (see black asteroids), measurements from
stations in a wider longitude range (70–115 ◦E) are also presented (see black triangles and
red points). Because of the overestimation of snow depth, the simulated snowpack gave
stronger volume scattering, which resulted in an overestimation of the 18.7–36.5 GHz TB
difference, north of 65 ◦N. The average AMSR2 TB difference was approximately 30 K,
whereas the GLDAS+SNTHERM+MEMLS simulation reached approximately 50 K. The
overestimation of the SNTHERM-simulated snow depth was not because SNTHERM did
not contain a canopy interception module for the snowfall, because the forest fraction was
below 20% north of 65◦ N. More work is needed to check the error in the GLDAS forcing
data and the deficiency of SNTHERM. SNTHERM also does not consider the windblown
effect; however, it is unlikely half of the snow was blown off by wind.

Second, between 52◦ and 65◦ N, the forest cover fraction was larger than 20%. The
forest canopy can strongly attenuate the volume scattering signal emitted from the snow’s
surface. As a result, the 18.7–36.5 GHz TB difference will decrease. The modelling tool used
in this study has only a snow emission model; the forest emission model is not included.
Therefore, the TB difference in 52′65◦N was also overestimated, which was approximately
50–60 K compared to 10–20 K observed by AMSR2.

4. Discussion

In this paper, a method for calculating a single-layer effective microstructure parame-
ter that can reproduce the TB of a multiple-layer natural snowpack was formulated. The
proposed single-layer approximation method was mainly established based on the physi-
cal radiative transfer theory and through a model-to-model comparison study based on
MEMLS. Compared to previous studies [12–14], the effective microstructure parameter
was not fitted from any real TB observations. No observation error or radiative transfer
model error were involved in the evaluation of the optimal method.

In previous studies, the focus was not on finding the theory of how a multiple-layer
snowpack can be radiometrically equivalent to a single-layer snowpack. An effective
microstructure parameter was fitted from TB observations. The focus was on the possibil-
ity of simultaneously conducting effective grain size and snow water equivalent (SWE)
retrievals [12], proving the existence of a consistent effective grain size fitted from the
ground-based, airborne, and satellite TB observations using the same snow emission
model [13] and the relationship between the effective grain sizes fitted from radiometer
and radar and, consequently, the possibility to use the former as prior knowledge for radar
SWE retrieval [14].

Because the effective microstructure parameter was completely fitted from TB obser-
vations using a cost function between the model simulation and observations [12–14], the
importance of keeping the multiple-layer snow case boundary conditions was not found.

In [12], Kongoli et al. (2008) generated a look-up table by one-layer DMRT snow
emission model (range of inputs: 1–60 cm snow depth, 0.25–0.75 mm snow grain radius)
and used this table to simultaneously find the snow depth and grain radius of the closest
match to the atmosphere corrected land surface emissivity. He only empirically considered
the influence of penetration depth at high frequencies, by tuning the one-layer snow grain
radius to 0.8, 0.6, and 0.5 of the low-frequency values at 50, 89, and 157 GHz, respectively.
When the retrieval method was applied in the Continental US on April 15, 2008, the forest
influence was not considered.

In Lemmetyinen et al. (2015) [13], the effective grain size was fitted from tower-
based, mobile sled-based, airborne and satellite TB near Sodankylä, Finland, based on cost
functions. The snow emission model was the Helsinki University of Technology (HUT)
model. Concurrent field experiments were carried out to provide information about snow
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depth and snow vertical properties for the effective grain size fitting. It was found that the
use of at least two snow layers can improve the simulation accuracy for mobile sled-based
TB and for airborne TB for snowpits in forests and over lakes at 36.5 GHz. The multiple-
layer configuration was not important for airborne-level simulation at 18.7 GHz. This was
consistent with our study. Lemmetyinen et al. (2015) proved that the effective grain size
and the measured average geometric grain size have relationships that vary temporally.
Because their TB modelling tool incorporated a forest and an atmosphere correction model,
they successfully retrieved very close effective grain size of a similar seasonal variation
trend from the ground-based, airborne and satellite TB observations. The modelling tool
used in our study failed to do so (Section 3.4.2), but our main conclusion was unaffected.
In [13], it was pointed out that the fitted grain size contains errors unrelated to the effective
snow grain size from vegetation, soil conditions, scene heterogeneity, etc.

In [14], the effective pex was fitted based on MEMLS3&a [44] using the tower-based
passive microwave and active microwave observations. It was found that the effective pex
fitted from 18.7–37 GHz TB difference for vertical polarization was highly correlated with
that fitted from 10.2–16.7 GHz VV backscattering coefficient difference (in dB), although
their absolute values were different.

In this paper, the SNTHERM simulated snow depth driven by GLDAS did not fully
match the observed snow depth in the global snow samples; the satellite TB cannot be
reproduced because of the error in simulated snow depth and the lack of forest TB correction
model. These factors led to some differences between the global snow samples and the
actual conditions. Our study was based on MEMLS. Therefore, although it has considered
the physical theory, the main conclusions may still need to be re-evaluated if other snow
emission models are used.

5. Conclusions

This paper described our study of the method of using single-layer snow parameters
to reproduce the TB of multiple-layer snowpacks based on MEMLS model simulations
and natural snow’s characteristics. The results showed that it is important to use the same
air–snow and snow–soil boundary reflectivity as the multiple-layer snow case, which can
largely improve the accuracy of bulk TB compared to multiple-layer TB at low frequencies
and for horizontal polarization. After the correct boundary reflectivity is used, the simple
mass-weighted average snow pex can be used for 10.65 to 23.8 GHz. For higher frequen-
cies, it is suggested to use the product of one-way snow layer transmissivity within the
microwave penetration to retrieve the effective pex.

The optimal method provided an RMSE of single-layer approximation of less than 5 K
for 10.65 to 36.5 GHz, and less than 10 K for 89 GHz. The error was insensitive to incidence
angle, average pex, and snow depth.

The effective microstructure parameter is widely used in snow water equivalent
(SWE) retrieval. The research in this study provides a method for calculating the effective
microstructure parameter of a snowpack using only the snow physical parameters, without
the need for TB observations.
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