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Abstract: In recent years, modeling gully erosion susceptibility has become an increasingly popular
approach for assessing the impact of different land degradation factors. However, different forms
of human influence have so far not been identified in order to form an independent model. We
investigate the spatial relation between gully erosion and distance to settlements and footpaths, as
typical areas of human interaction, with the natural environment in rural African areas. Gullies are
common features in the Ethiopian Highlands, where they often hinder agricultural productivity.
Within a catchment in the north Ethiopian Highlands, 16 environmental and human-related variables
are mapped and categorized. The resulting susceptibility to gully erosion is predicted by applying
the Random Forest (RF) machine learning algorithm. Human-related and environmental factors are
used to generate independent susceptibility models and form an additional inclusive model. The
resulting models are compared and evaluated by applying a change detection technique. All models
predict the locations of most gullies, while 28% of gully locations are exclusively predicted using
human-related factors.
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1. Introduction

Gullies are linear depressions of constant grade incised deeper than 0.3 m, resulting
from the removal of soil and weathered bedrock by concentrated runoff [1,2]. Where gully
erosion appears, it poses a problem for the conservation of arable land and thus for long-
term food production [3-5]. Poesen et al. [6] conclude that 10%-94% of overall soil loss
volume due to water erosion is caused by gullying. In order to predict and subsequently
prevent gully erosion, several remote-sensing-based models are available that use machine
learning algorithms and statistical methods, i.e., Random Forest (RF), Support Vector
Machines (SVM), or Weights-of-Evidence (WoE).

These models aim to assess the geomorphic threshold that must be exceeded for
the initiation of gully erosion based on classification rules and include a combination
of environmental and land use factors [7-10]. The distinction between environmental
and human-driven factors is only rarely addressed in the available modeling approaches,
although soil erosion is primarily understood as a process of accelerated erosion resulting
from human impact [11-15]. Gully erosion, in particular, has been shown to be related
to different aspects of land use such as overgrazing, topsoil crusting, and unadapted
irrigation techniques [5,16]. Furthermore, it is suggested that the occurrence of pathways,
i.e., unpaved roads and footpaths, trigger the generation of concentrated runoff [14,16-18];
hollow ways are a typical indication of past gullying processes along pathways [19-21].

In the present study, we focus on the role of land use and settlement activities in gully
erosion. We aim to generate a gully erosion susceptibility model which will: (a) distinguish
between the influences of human and environment-related factors on the spatial distribu-
tion of gullies; and (b) evaluate the influence of pathways on the formation of gullies. A
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catchment in the north Ethiopian Highlands served as a study site (Figure 1), an area which
is well known for current gully erosion dynamics [3,14,17,22].

10

WGS 84 Zone 37 N

Figure 1. Regional overview. Hill-shade map of the study catchment (red frame) and the surroundings
based on ALOS Global DSM elevation data with 30 m x 30 m pixel size (Version 2.2.), ©JAXA 2014.

2. Study Area

The study area is located in the Tigray region in the north Ethiopian Highlands, about
30 km north of Aksum and ca. 9 km south of the Mareb River (called the Gash River further
downstream) which marks the border between Ethiopia and Eritrea here (Figure 1). The
topography of the study area is characterized by a graben-like structure with a major S-N
strike direction. A road connecting the Ethiopian town of Adwa with the Eritrean town of
Adi Ugri runs through and follows this structure. The depression is drained by the River
Inda Shawit which is a tributary to the Mareb River. The studied catchment is tributary
to the Inda Shawit and lies on the eastern side of the depression c. 16 km south of the
confluence of the Inda Shawit and Mareb River, covering ca. 6.7 km?. At the mouth to
the Inda Shawit, the catchment is situated at 1375 m (a.s.l.). Due to its topography the
study catchment can be subdivided into three zones: (a) the lowlands (<1463 m a.s.l.)
predominant in the western and central parts, and (b) a transition zone (1463-1575 m a.s.1.)
connecting the lowlands with (c) the hill country (>1575 m a.s.l.) that is dominated by short
steep slopes with inclinations up to 40° (Figure 2a).

The annual precipitation cycle follows a bimodal pattern and reaches an average
annual value of 300-800 mm [23]. At the Adwa weather station (1908 m a.s.l.), ca. 25 km to
the south of the study area, annual rainfall amounts to 668 mm, and the annual temperature
average is 19.6 °C (1982-2012) [24].

Rainfall occurs in the “belg”-season (March-May) and the “kiremt”-season (June-September),
which corresponds to the major rainy season [25]. The potential mean annual evapotran-
spiration in the Tigray region varies between 1600 and 2100 mm; thus, up to 90% of the
region is classified as semi-arid [26].
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Figure 2. Overview map of the studied catchment area (red frame in Figure 1) and the main-
stream (river) to which the watershed streams are tributary (ALOS Global DSM). (a) includes the
drainage network, differentiated into gullies, main channels, and rivers. The white line marks
the local topography-based division into lowlands (<1463 m above sea level (a.s.l.), transition
(1463-1575 m a.s.l.), and hill country (>1575 m a.s.l.). (b) shows areas of human interaction (res-
idential areas, pathways and hollow ways).

Referring to the Soil Atlas of Africa [27], ca. 93% of the study area is characterized
by eutric cambisols, while in the headwater area, eutric leptosols are widespread. On-site
soil identification showed that soils in the transition zone and the hill country consisted
mainly of leptosols developed in highly weathered and eroded bedrock, indicating high
morpho-dynamics [27].

Due to the periodic rainfall pattern and the annual negative water balance, local agri-
culture depends on irrigation. Land use in the western part of the lowlands is characterized
by croplands and plantations where mainly avocado and mango trees are cultivated. The
high water demand of these cash crops is met using a motorized pump system that lifts
water from the Inda Shawit River. Field crops (maize, sorghum, teff, and finger millet)
dominate the central lowlands. A small residential area is located in the northwest of the
lowlands, complemented by scattered housing distributed over the entire catchment area.
Amid the lowland’s agricultural areas, badlands have developed, mostly along the main
channels and close to pathways. Sloping areas of the hill country and the transition zone
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are either terraced and used to cultivate finger millet and teff, or uncultivated land mostly
covered by shrubs.

3. Modeling Gully Erosion

The formation of gullies is determined by the erodibility of the source material and
the force of water as the eroding agent [14,28]. The erodibility is related to the geomorphic
threshold; thus, it is a determinant for a landscape system’s stability [11,29,30]. In order
to reproduce the terrain-forming process of gullying, various models aim to predict the
influences on the erodibility threshold. Conditioning influences are approached mainly by
topographic, climatic, pedogenic, and geological factors [21,31-34]. Additionally, Valentin
et al. [5] emphasize the importance of land use change on the formation of gully erosion.
Accordingly, Boardman [35] criticizes common soil erosion models stating that they under-
estimate the influence of socio-economic variables. This observation is underscored by the
suggestion that, e.g., the construction of roads causes a reduction in the infiltration capacity
and results in a concentration of superficial water, leading to surface runoff. This, in turn,
has been shown to affect the formation of gullies [36,37]. Following similar principles,
Schiitt et al. [14] observe that a vast number of gullies formed along paths and cattle trails
as well as in the vicinity of settlements. The compaction of sediment underneath paths and
residential areas results in a reduction of infiltration capacity, in turn generating surface
runoff [14,16,21]. Given these observations, it is evident that there is need for a model
describing the spatial relation between gully erosion, pathways, and settlements.

Modeling gully erosion involves a high degree of complexity. Standard approaches
for soil erosion modeling, such as the Universal Soil Loss Equation USLE [38] and its
subsequent extensions (RUSLE; MUSLE) express the basic principle of erosion but cannot
address the gully erosion process [39,40]. Other models, such as the Chemicals, Runoff,
and Erosion from Agricultural Management Systems (CREAMS; [41]), the European Soil
Erosion Model (ESEM; [42]), the Ephemeral Gully Erosion Model (EGEM; [43]) or the Water
Erosion Prediction Project (WEPP; [44]), aim not only to address soil erosion, but also to
reproduce erosion rates both quantitatively and qualitatively [7,15].

In order to understand the dynamics and emergence of gully erosion in terms of the
variability of the conditioning factors, it is necessary to consider the spatial distribution of
gully erosion as a first step. Correspondingly, the locations of gully heads can be associated
with a combination of factors that cause instability and trigger erosion. The transition
between stability and instability is described by a geomorphic threshold [29,30]. This
dimensionless state is composed of environmental and human-related factors that describe
and affect the physical basis of a specific location. Even though the above-mentioned
models help to understand the fundamental processes of gully erosion, none of them
addresses the spatial distribution of this terrain-forming process. Consequently, most recent
studies about gully development using statistical models are based on remote sensing
data and apply data mining methods and geographic information systems (GIS). Machine
learning algorithms such as Support Vector Machines (SVM), AdaBoost, Artificial Neuronal
Networks (ANN), Boosted Regression Tree (BRT), or Random Forest (RF) are frequently
used for gully erosion modeling [7,8,31,45]. Statistical methods applied include Frequency
Ratio (FR), Multivariate Adaptive Regression Splines (MARS), Weights-of-Evidence (WoE),
and Maximum Entropy (ME) [7,8,10,21].

Comparison of the different approaches reveals that the Random Forest algorithm can
handle large datasets and generate models with high accuracy. It can produce fast and stable
classifications, especially given the need to incorporate multiple features. Additionally, RF
is able to assess the importance of each variable used in order to calculate a multi-classifier,
and evaluates its own accuracy [7,9,46].
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4. Material and Methods
4.1. Database

Mapping of the gully, settlement, and pathway networks is based on Google Earth im-
agery (CNES/ Airbus, Maxar Technologies, Map data ©2020) imported into QGIS (2.18.16)
via the “QuickMapServices” plug-in. Mapping results were complemented and validated
during a field campaign in November 2019. During the field campaign area-wide mapping
of gullies and gully heads was also undertaken.

4.2. Gully Erosion Conditioning Factors

Sixteen factors potentially determining the location of gullies are considered; the
compilation of these factors is based on a literature review. The factors are grouped into
human-related and environmental influences, whereby environmental factors are under-
stood as influences that also exist without human intervention (Figure 3, Table 1) [7-10,47].
Three factors were selected to reflect possible human drivers of gully erosion: distance to
settlements, distance to pathways, and land use land cover (LULC). These three factors are
associated with the occurrence of gullies in the literature [5,14,16,21,48]. The number of
variables is not equal when comparing environmental and human-related factors. How-
ever, the lower amount of these human-related factors should not affect the prediction of
gullies due to their independent evaluation and the overall similarity in magnitude.

/ Database \ ( Gully erosion conditioning factors \
| Optical satellite | Field survey | Human-related Environmental
imagery -
= Land use = Elevation
‘ Land cover = Slope Degree
Digitalized gully, settlement and * * Distance to *  Slope Aspect
pathway network pathways = Slope Length and
= Distance to Steepness
*'V residential areas . Curvature/
Extraction of Random points landforms
gully heads of non-gullies = Convergence Index
‘ = Normalized
Difference Vegetation
Extraction of conditioning Raster layer Index
factors at each point _ stack . = Bedrock
= Soil type
‘ = Drainage density
Test for = Distance to river
multicollinearity = Stream Power Index
= Topographic
K / \ Wetness Index /

Data Processin: \
Random .. Random forest » Predicted
partition w Training » classifier training dataset

Importance rankings:

= Mean decrease accuracy
Classification of

. = Mean decrease gini
Predicted pixel-wise
test dataset iori
Out of bag error . majority Vo“.!s
‘ into gully erosion
susceptibility
classes

Estimation of receiver operating
Accuracy - characteristic curve and area
assessment under the curve

_/

Figure 3. Workflow for modeling gully erosion susceptibility.
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Table 1. Factors conditioning gully erosion for Models A, B and C including associated environmental or human-related
origin, calculation methods and references to case studies that either established this method or related it to the development

of gully erosion.

Model Factor Association Database/method/algorithm Reference
Japan Aerospace
Elevation Environmental 30 m ALOS Global DSM (v. 2.2-2014) Exploration
Agency (JAXA)
Slope degree Environmental Slope/ArcMap
Slope aspect Environmental Aspect/ArcMap [49]
Slope length and Environmental LS (Bhner and Selige 2006)/SAGA GIS [50,51]
steepness (LS)
Curvature/landforms Environmental r.geomorphon/GRASS GIS [52]
Convergence Index (CI) Environmental Convergence Index/SAGA GIS [53]
. . European Space Agency (ESA)/Sentinel
. VNorﬁ?llieIififai?Ss;) Environmental 2B (level 1-C) image (24.09.2019)/BOA- [54]
= cgetation thde correction/NDVI/SNAP
S Geological map of Axum (Map sheet:
p . ND-37-6; scale: 1:250,000,
< Bedrock Environmental GSE)/Digitalization/rasterized 5]
= (30 x 30 m)/ArcMap
B European Soil Data Centre (ESDAC)/Soil
b Atlas of Africa (scale:
Soil type Environmental 1:1,000,000-5,000,000) / digital [27]
polygons/rasterized
(30 x 30 m)/ArcMap
Drainage Density Environmental Raster Calculation/ArcMap [49]
Distance to river Environmental Digital mapping i QGIS/Euclidean [56]
distance/ArcMap
Stream Power Index (SPI) Environmental Stream Power Index/SAGA GIS [57]
Topographic Wetness . .
Tndex (TWI) Environmental Topographic Wetness Index/SAGA GIS [58]
Land use land cover (LULC) Human-related On:site mapping/ digital mapping in [5,16]
@) QGIS/rasterized (30 x 30 m)/ArcMap !
o] . ) On-site mapping/digital mapping in
-é Distance to pathways Human-related QGIS/Euclidean distance in ArcMap [14,48]
Distance to residential areas Human-related On-site mapping/digital mapping in [14,17]

QGIS/Euclidean distance in ArcMap

Several of the environmental factors are derived from the Digital Surface Model (DSM)
ALOS Global DSM (Version 2.2-2014) of the Japan Aerospace Exploration Agency (JAXA)
with 30 m x 30 m spatial resolution. This serves as a basis to receive data on elevation
[m a.s.l.] and to calculate all other topographical factors as derivatives (Supplementary
Material, Figure Sla).

In addition to the delineation of slope degree and aspect values in ArcMap (10.5),
the slope length and steepness factor (LS) of the Revised Universal Soil Loss Equation
(RUSLE) were derived by applying the method of “Bohner and Selige 2006” in SAGA
GIS (2.3.2) (Supplementary Material, Figure S1b-d). Terrain forms as described by their
specific curvature were recorded by applying the Convergence Index (CI) using the
eponymous SAGA GIS (2.3.2) tool. Additionally, the delineation of landforms (geo-
morphon) was undertaken by applying the GRASS GIS (7.8.4.) tool “r.geomorphon”
(Supplementary Material, Figure Sle,f). The Topographic Wetness Index (TWI) and the
Stream Power Index (SPI) were calculated using the eponymous modules in SAGA GIS
(2.3.2) (Supplementary Material, Figure S1g,i). The relation between the cumulated length
of channel segments in an area, defined as Drainage Density [49], was calculated in ArcMap
(10.5) (Supplementary Material, Figure S1h). The captured lithologic characteristics of
bedrock were manually digitized based on the geological map of Axum [55] using ArcMap
(10.5) (Supplementary Material, Figure S1p). Factorized soil types are provided by the
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European Soil Data Centre (ESDAC) and are based on the classifications of the Soil At-
las of Africa [27] (Supplementary Material, Figure S1o). A Sentinel 2B (level 1-C) image
(European Space Agency, ESA) was bottom-of-atmosphere (BOA) corrected and used to
calculate the Normalized Difference Vegetation Index (NDVI) in the Sentinel Application
Platform (SNAP, 7.0.3) (Supplementary Material, Figure S1n). The Sentinel scene was taken
at the end of the kiremt-season (24.09.2019). This period not only provides a lower cloud
cover, but also represents a potential phenological peak of the study area and consequently
maximum vegetative-induced stability [54]. The land use land cover (LULC) was manually
mapped during the field survey using the classes of cropland, mixed cropland and planta-
tions, residential areas, badlands, erosion protection terraces, and currently uncultivated
land (Supplementary Material, Figure S1m). The Euclidean distance to the mapped and
digitized pathways network, river courses, and residential areas was calculated in ArcMap
(10.5) (Supplementary Material, Figure S1j-1). Most of the factors were calculated at a
horizontal resolution of 30 m, predetermined by the spatial resolution of the DSM and the
Sentinel 2 image. To facilitate the combination of the distance raster layers (5 m) and the
residual datasets (30 m), especially as footpaths can be only ca. 2-6 m wide, all factors were
resampled to a spatial resolution of 5 m using nearest neighbor resampling in ArcMap
(10.5). Variance inflation factors (VIF) were calculated in Rstudio (3.5.0) to estimate the
multicollinearity between all the conditioning factors.

4.3. Data Processing

The calculations are based on selectively extracted factors at the origin of the mapped
gullies (gully heads). The ArcMap (10.5) tool “point extract” was used to obtain the
respective starting points of the digitalized gully-polylines.

The Random Forest (RF) algorithm [59] was applied in R environment using Rstudio
(3.5.0) and the “randomForest” package of Liaw and Wiener [60]. From the combinations
of classified human-related and environmental factors, a total of three models were trained
to predict the formation of gullies within the studied catchment. Each of the models should
allow susceptibility to gully erosion to be estimated for any given location.

At the mapped gully heads, human-related and environmental factors (Table 1) were
extracted from the GIS environment and combined in order to train and validate the
models in a ratio of 70:30 with 30% of the data for cross-validation (Figure 3). As a control
group, the same amount of “non-gully” points were randomly created, visually validated,
and added in the same ratio to the training and test datasets. Thus, in the bootstrap
aggregation process of the random forest algorithm (so-called “bagging”), training points
were randomly selected and used to derive a newly assembled bootstrapped dataset. In
order to estimate a classification rule for each of the three models, it was specified how
many of the variables are used for a decision at each split node of the decision trees (mtry).
The “randomForest” package by Liaw and Wiener [60] contains the function “tuneRF”,
which was used to identify the best amount of mtry variables dependent on the resulting
prediction error. With the fixed number of mtry variables and trees, the algorithm built
up the individual decision trees using a random subset of the bootstrapped dataset at
each split [46,59,61].

Model A applies all 16 factors (Table 1) and was derived by using 500 trees at four
mtry variables. In Model B, 13 variables incorporating only the environmental factors are
processed in the RF algorithm by 600 trees and two mtry variables. Model C is exclusively
based on the three human-related factors (Table 1) and was trained by 600 trees at three
mtry variables. The prediction of gully erosion susceptibility in the study area by Models
A—C led to pixel-wise majority votes, which were equally classified into five susceptibility
classes (very low, low, moderate, high, very high). Each class corresponds to a share of
20%. Therefore, pixels representing classes from very low to low were determined to be
susceptible to gully erosion by only 40% or less of all decision trees, indicating that gullies
are less likely to develop in these areas. The moderate class addresses pixels close to the
majority vote threshold and aims to prevent uncertain classifications (40-60%). High to very
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high scores indicate a substantial positive agreement between the decision trees (>60%),
indicating that gullies are more likely to develop in these areas. Results were incorporated
in a Gully Erosion Susceptibility Map (GESM) displayed for each model [32,33,45]. Three
different methods were used to validate the model accuracies: (1) supervised validation by
a subset and unbiased test dataset, (2) “out of bag” (OOB) error, automatically estimated by
the random forest algorithm, and (3) comparison of the Receiver Operating Characteristic
(ROC) curves and the corresponding Area Under the Curve (AUC) by the test data. To
assess variable importance, the Mean Decreasing Accuracy (MDA) and the Mean Decrease
of the Gini index (MDG) were applied following recent studies [7,47,62,63]. Differences
among the models based on human-related and environmental influences were compared
by applying a change detection between the Gully Erosion Susceptibility Map (GESM) of
Models B and C. Dissimilar pixels were classified in ArcGIS into five classes regarding
their susceptibility to gully erosion: (1) areas predicted as non-susceptible to gully erosion
by either Model B and Model C or one of them, (2) areas predicted as susceptible to gully
erosion only by Model B, (3) areas predicted as moderately susceptible to gully erosion
by either Model B and Model C or one of them, (4) areas predicted as susceptible to gully
erosion only by Model C and (5) areas predicted as susceptible to gully erosion by Model B
and Model C.

5. Results

In the study catchment (6.7 km?) a total of 667 gullies and 546 gully heads were
mapped. The variance inflation factors among all variables indicate no multicollinearity
(Supplementary Material, Table S3). The most relevant human-related and environmental
factors influencing the spatial distribution of gullies and gully heads are derived in the
following (for remaining factors, see Table S1 in the Supplementary Material).

5.1. Gully Head Distribution

The majority of all gully heads are found in the hill country (51%), while 38% of
the gully heads are in the transition zone, and 11% in the lowlands. Gully heads occur
primarily on slopes with an inclination of 15%-35° (71%). The location of gully heads in
the vicinity of pathways follows a bimodal distribution: 89% of the gully heads are located
up to 100 m from pathways, while 21% of all gully heads occur at distances of less than
5 m distance from pathways. Distances of 5-25 m between gully heads and pathways are
underrepresented (4%—-7%) (Supplementary Material, Table S1). About 11% of all gully
heads are located more than 100 m from pathways (Supplementary Material, Table S1).
Furthermore, 71% of all gully heads are located more than 100 m from settlements
(Supplementary Material, Table S1). Analyzing the distribution of gully heads among
the different land use land cover classes shows that most gully heads are either located on
uncultivated bare land (64% of all gully heads) or in areas covered by erosion protection
terraces (25% of all gully heads). Only 7% of the gully heads occur on cultivated croplands
(Supplementary Material, Table S1).

5.2. Model Performance

To train gully erosion susceptibility models, a training dataset of 764 points was
applied. Half of these points correspond to mapped gully heads, while the other half
are located in supervised areas that are not affected by gullying. Considering all factors
(Model A, Table 1), 340 of 382 (89%) of the gully heads were correctly predicted, and 336
of 382 (88%) areas unaffected by gully heads were correctly predicted as “non-gully head
locations”. The out-of-bag (OOB) error (11.52%) results in an accuracy of 88.48%; the
verification of the test data reveals an accuracy of 89.26% for Model A (Table 2).
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Table 2. Performances of Models A, B, and C by out-of-bag (OOB) error, supervised test validation,
and area under the curve (AUC) scores.

Model 100%-OOB Error Test AUC
Model A 88.48% 89.26% 95.5%
Model B 86.78% 88.34% 94.3%
Model C 81.68% 84.97% 89.3%

When training gully erosion susceptibility by including environmental factors only
(Model B), gully heads are predicted with an accuracy of 87.44% and non-gully heads with
an accuracy of 86.13%. The validation of the test data for Model B reveals an accuracy of
88.34% (Table 2) and an OOB error that corresponds to an accuracy of 86.78%. According
to the comparison of receiver operating characteristic (ROC) curves, the area under the
curve (AUC) of Model B is slightly lower than for Model A (Figure 4, Table 2). In Model C,
applying exclusively human-related factors, the prediction of gully heads achieves an
accuracy of 87.44% and, thus, is widely similar to that of Model B. According to the
validation of the test data, Model C predicts the location of gully heads with 84.97%
accuracy (Table 2). The AUC of Model C is lower than for Model A and Model B, indicating
a higher false-positive rate for the classifications of Model C (Figure 4, Table 2). For Model
C, the OOB error (18.32%) yields a precision of 81.68% and Model C predicts the location
of non-gullies with an error of 24.08%.
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”

Figure 4. Comparison of the model performances by estimating the “receiver operating characteristic
(ROC) curve for each model (A-overall; B-environmental; C-human-related). Corresponding “area
under the curve” (AUC) shares are shown in brackets.

5.3. Variable Importance

The Mean Decrease in Accuracy (MDA) and the Mean Decrease in Gini (MDG) scores
estimate the drainage density, Land Use Land Cover (LULC), and elevation as the most
important variables included in Model A (Table 3). According to the estimated MDA of
Model A, these variables are followed by the slope aspect, distance to residential areas,
slope degree, NDVI, and the distance to pathways (in descending relevance). In contrast
to the MDA, the MDG indicates that the slope degree and distance to pathway have a
higher impact on the performance of Model A. In contrast to MDA slope length, steepness
(LS) and curvature are of higher influence for Model A in the MDG ranking. The least
influential factor for both rankings of Model A is the stream power index (SPI). Essential
variables for Model B are the drainage density and the elevation (Table 3). Furthermore,
the MDG ranking indicates that the factors drainage density and elevation are followed in
importance by slope degree, and after a considerable gap by slope aspect. In contrast to
the MDG ranking, the MDA assessment for Model B estimates the NDVI and slope aspect
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factors as being more eminent for the model performance than the slope degree. MDA and
MDG rankings for variables in Models A and B show great similarities (Table 3). For Model
C, the land use land cover represents the most crucial factor applying both ranking systems,
followed by the distance to residential areas and the distance to pathways (Table 3).

Table 3. Rankings of the mean decrease accuracy (MDA) and mean decrease Gini (MDG) for Model A (all factors), Model B
(exclusively factors displaying the natural environment) and Model C (exclusively factors displaying human impact).

MODEL A
Rank Conditioning Factor MDA Conditioning Factor MDG
1 Drainage Density 53.19 Drainage Density 92.82
2 Land use land cover (LULC) 40.97 Land use land cover (LULC) 62.83
3 Elevation 23.90 Elevation 43.13
4 Slope aspect 23.51 Slope degree 36.39
5 Distance to residential areas 21.13 Slope aspect 24.11
6 Slope degree 17.85 Distance to pathways 23.41
7 Normalized Difference Vegetation Index (NDVI) 14.22 Distance to residential areas 16.43
8 Distance to pathways 12.76 Curvature/landforms 14.05
9 Distance to river 8.38 Slope length and steepness (LS) 13.85
10 Convergence Index (CI) 8.23 Convergence Index (CI) 13.44
11 Bedrock 7.70 Normalized Difference Vegetation Index (NDVTI) 12.48
12 Soil 7.64 Topographic Wetness Index (TWI) 7.60
13 Curvature/landforms 7.40 Bedrock 7.02
14 Topographic Wetness Index (TWI) 5.79 Distance to river 4.09
15 Slope length and steepness (LS) 5.06 Soil 2.72
16 Stream Power Index (SPI) 1.30 Stream Power Index (SPI) 1.26
MODEL B
1 Drainage Density 66.17 Drainage Density 98.28
2 Elevation 32.37 Elevation 55.37
3 Slope aspect 25.07 Slope degree 50.56
4 Normalized Difference Vegetation Index (NDVI) 23.83 Slope aspect 28.64
5 Slope degree 23.19 Curvature/landforms 18.92
6 Convergence Index (CI) 13.35 Normalized Difference Vegetation Index (NDVI) 18.62
7 Bedrock 12.37 Slope length and steepness (LS) 17.95
8 Topographic Wetness Index (TWI) 11.37 Convergence Index (CI) 17.78
9 Distance to river 9.81 Bedrock 14.04
10 Curvature/landforms 9.27 Topographic Wetness Index (TWI) 13.31
11 Soil 524 Distance to river 6.13
12 Slope length and steepness (LS) 4.27 Soil 2.93
13 Stream Power Index (SPI) 1.39 Stream Power Index (SPI) 1.55
MODEL C
1 Land use land cover (LULC) 160.06 Land use land cover (LULC) 169.47
2 Distance to residential areas 31.60 Distance to residential areas 39.95
3 Distance to pathways 23.74 Distance to pathways 38.19

5.4. Spatial Distribution of Gully Erosion Susceptibility

The spatially differentiated prediction of gully erosion susceptibility for the study
catchment by Models A and B results in a pixel-wise maximum majority voting of 80.5%.
This implies that the applied random forest algorithm of both models was not able to
achieve an absolute distinction between gully erosion susceptibility and non-gully erosion
susceptibility in all of its decision trees. In contrast, Model C achieves a maximum majority
voting of 100%. All three models A-C clearly point out that about 50% of the study
catchment displays very low susceptibility to gully erosion (Figure 5a—c).
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Figure 5. Pixel-wise predicted Gully Erosion Susceptibility Maps (GESM) and change detec-
tion between Models B and C. (a) Model A-based on 16 environmental and human-related
factors, (b) Model B-based on 13 environmental factors, (c) Model C-based on three human-related
factors, (d) Change detection between Models B and C.

Areas with low gully erosion susceptibility cover about 21% (Model A) with respect
to. 24% (Model B) of the study area. Predominantly the lowlands show overall low
susceptibility to gully erosion; however, low gully erosion susceptibility is also predicted
for the proximity of mapped gully courses (Figure 2). Areas that are moderately susceptible
to gully erosion cover 13% of the study catchment. Locations with high susceptibility for
gully erosion show a widely similar spatial pattern with 15 (Model A) with respect to
14% (Model B). These areas that are highly susceptible to gully erosion predominantly
occur in the transition zone and hill country as well as in the changeover between the
transition zone and the lowlands. According to Model A, areas of very high gully erosion
susceptibility cover 3%, while according to Model B they cover 0% of the study catchment
and occur exclusively within the changeover between the hill country and the transition
zone. Applying exclusively human-related factors (Model C) shows a slightly different
spatial pattern of gully erosion susceptibility from those of Models A and B. Model C
classifies 49% of the catchment area as having very low susceptibility to gully erosion and
23% as having low susceptibility to gully erosion; these areas predominantly occur in the
western part of the lowlands. Compared to Models A and B, the outcomes of Model B
in general predict a lower gully erosion susceptibility in the lowlands and a higher gully
erosion susceptibility in the hill country and the transition zone. Areas of moderate (1%)
and high (2%) gully erosion susceptibility are scarce in Model C (Figure 5c). In contrast
to Models A and B, Model C estimates 25% of the catchment to be highly susceptible to
gully erosion (Model A: 1%, Model B: 0%). The areas of high gully erosion susceptibility
predicted by Model C primarily occur in the transition zone and hill country and in general
occur in association with footpaths and residential areas (Figures 2b and 5c).
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5.5. Change Detection

Outputs of Model B (exclusively considering environmental factors) and Model C
(exclusively considering human-related factors) are compared and assessed by change
detection. The results exclude Model A (all factors) and are differentiated into five classes:

5.5.1. Areas Predicted as Susceptible to Gully Erosion by Model B and Model C

Comparing the gully erosion susceptibility predictions by Models B and C reveals
that both models similarly predict 9% of the catchment to be highly to very highly sus-
ceptible to gully erosion. Comparison with the field datasets confirms that 183 (34%) of
the gully heads mapped occur in areas predicted to be highly to very highly susceptible
to gully erosion by both models with a core area of these 183 gully heads predominantly
occurring in the hill country (120 gully heads) and the transition zone (63 gully heads),
primarily on slopes with inclinations >10°. According to the LULC classification, 144 of
the 183 gully heads are located in uncultivated areas and 39 gully heads can be found
within erosion protection terraces. Of the 183 mapped gully heads found in areas pre-
dicted as being highly to very highly susceptible to gully erosion, 125 gully heads occur
within 100-200 m of settlement areas and 126 (69%) occur at less than 50 m to pathways
(Supplementary Material, Table S2).

5.5.2. Areas Predicted as Susceptible to Gully Erosion Only by Model B

Areas that are predicted as highly to very highly susceptible to gully erosion by
Model B but not by Model C cover about 11% of the total study catchment. 156 (29%) of
the mapped gully heads are located in areas predicted exclusively by Model B as being
highly to very highly susceptible to gully erosion. 90% of these 156 gully heads occur at
distances of more than 200 m from residential areas, while 58% of these 156 gully heads are
located within 50 m of pathways (Supplemental Material, Table S2).

5.5.3. Areas Predicted as Susceptible to Gully Erosion Only by Model C

Overall, 18% of the study area is predicted as having high to very high susceptibility
to gully erosion by Model C but not by Model B. Of the mapped gully heads, 151 (28%)
are located in areas predicted exclusively by Model C as highly to very highly susceptible
to gully erosion, with 91 of these gully heads being located in the hill country, 51 in the
transition zone, and 9 in the lowlands. According to the distribution of land use land cover
classes, these 151 gully heads primarily occur on uncultivated land (119 gully heads) and
to a minor degree on erosion protection terraces (32 gully heads). Gully heads located
within 50 m of the pathway network comprise 75% of those located in areas that are highly
to very highly susceptible to gully erosion as predicted by Model C only. 86% of the gully
heads occurring in areas predicted as susceptible to erosion exclusively by Model C are
located within a distance of 50-200 m to settlement areas. Slopes with 15-30° inclination
accommodate 77% of these 151 gully heads (Supplementary Material, Table S2).

5.5.4. Areas Predicted to Have Moderate Gully Erosion Susceptibility by Either Model B
and Model C or by One of Them

Areas classified as being moderately susceptible to gully erosion either by Model B
or Model C or by both show majority votes in the random forest between 40%—-60% of all
trees. These areas only cover about 1% of the total study catchment and do not follow a
distinctive spatial pattern (Figure 5d). Only 7 (1%) of all mapped gully heads are located in
such areas. In consequence, these areas are used to exclude uncertain classifications from
the comparisons.

5.5.5. Areas Predicted as Non-Susceptible to Gully Erosion by Either Model B and Model C
or by One of Them

Up to 60% of the study area is classified as having low to very low susceptibility
to gully erosion by Model B as well as by Model C. These areas predominantly occur in
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the lowlands and partly the hill country (Figure 5d). In total, 49 of the mapped gully
heads (9%) are located in areas predicted as having low to very low susceptibility to gully
erosion either by Model B or by Model C, and 30 of these 49 mapped gully heads are
located in the lowlands, 11 in the transition zone and 8 in the hill country. Correspond-
ingly, 28 of these 49 gully heads are located on slopes with an inclination of less than 5°
(Supplemental Material, Table S2). 31 of these 49 gully heads located in areas predicted
to have low to very low gully erosion susceptibility can be found at distances of more
than 200 m to settlement areas; 25 of these 49 gully heads are located less than 50 m
from pathways.

6. Discussion
6.1. Modeling Gully Erosion Susceptibility

Comparing performances between the three Models A-C designed to predict gully
erosion susceptibility by applying different conditioning factors in general certifies that
all three models achieve a satisfying classification accuracy for gully erosion susceptibility
(Table 2). The achieved accuracies are in agreement with performances recently published
for gully erosion susceptibility assessment [7,64].

Model B, which includes just environmental factors, and Model C, exclusively includ-
ing human-related factors, correspond to subsets of Model A. Therefore, the relevance of the
implemented variables can be determined by comparing the accuracies of Models B and C.
Comparing these two modeling approaches reveals that a considerably higher degree of
accuracy is achieved with exclusively environmental rather than strictly human-related
factors (Table 2). Consequently, Model A, which integrates all factors, generated the highest
accuracy in predicting an area’s susceptibility to gully erosion. Taking both human and
non-human related types of factor into account using a single model has previously pro-
duced highly accurate GESMs [7,47,64]. However, in these models distances to pathways
and settlements were not considered as input factors.

The importance of the factor “distance to pathways” is neither represented in the mean
decrease in accuracy (MDA) nor the mean decrease in Gini (MDG) ranking of Model A or
Model C (Table 3). However, areas close to settlements, which like pathways are similarly
exposed to strong trampling and resulting soil compaction [14], are less likely to have
gully heads in their immediate vicinity than pathways. The MDA and MDG rankings
indicate a more eminent impact of distance to residential areas on the performance in
Models A and C than for distances to pathways (Table 3). Methodologically, this inverse
importance of both factors relates to the training of Models A-C, as each model was trained
by a supervised dataset to create a classification rule, i.e., a multi-classifier, that is able to
effectively differentiate between factors associated with gully head points and random
non-gully head points. This training implies that a factor that supports the prediction
of non-gully heads (true negative classification) but decreases the performance for the
prediction of gully heads (true positive classification) can still have a high value for the
models and therefore a high importance rank. Consequently, an exclusive comparison
of the rankings does not provide robust information about which of the factors have a
decisive influence on controlling gully erosion. The root of this problem corresponds to
the problems described by Braun [65] while discussing remote-sensing-based land use
analysis. His “More Accuracy Less Meaningful” (MALM) approach criticizes the desire
for the highest accuracy of predictions seen in many land use modeling studies, which
often leads to a neglect of environmental validity for the modeling results. However,
the chosen procedure of MDA and MDG rankings reflects how effectively an individual
factor contributes to the model’s decision on a distinctive differentiation between gully
heads and non-gully heads. Although the evaluation of MDA and MDG rankings is a
valuable method to reflect the accuracy of predictions for each model and estimate valuable
factors [63,66], it does not allow delineation between the different factor-sets applied in the
miscellaneous model approaches.
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6.2. Human Influence on Gully Erosion

It is assumed that morpho-dynamics underlie a dynamic equilibrium which can be
disturbed by natural triggers as well as human impact [67]. Especially human settlement
activities affect this dynamic equilibrium and change tipping points of surface shaping
processes [12,67-69]. While settlement activities mostly cause an acceleration of erosion
processes corresponding to soil erosion [12,68,69], targeted soil conservation and water
harvesting measures increase landscape stability [70,71].

6.2.1. Land Use and Land Cover

The land use land cover factor (LULC) is one of the most eminent factors for Models
A and C, which corresponds to the results of Gayen et al. [64] and the observations of
Valentin et al. [5]. The land use land cover factor primarily displays areas that are utilized
by humans (cropland, terraces, settlement areas) combined with different environmental
characteristics and may also indicate land degradation [5,16,32]. One indicator for human-
accelerated soil degradation is the extensive badlands found in the lowlands within the
main agricultural area of the study catchment, which is predominantly used for cash crop
cultivation. Human-driven interventions contributing to such soil disturbance are unsuit-
able soil cultivation practices and unsuitable crops [72], as well as insufficient maintenance
of the cropping areas [14].

The majority of gully heads occur in areas that are classified as uncultivated. These
areas, especially in the hill country, are primarily covered by sparse shrubland with poor
ground vegetation. The resulting poor leaf coverage increases exposure to raindrop impact
and generation of saturation overland flow [73,74] and causes low rooting density that
reduces ground stabilization [75,76], and both contexts increase exposure to soil erosion
and gully erosion, especially when combined with steep slope inclinations [74]. Moreover,
pathways crossing these uncultivated areas are not considered in the land use land cover
classification, thus the effects of gully erosion due to concentrated runoff developing along
pathways cannot be differentiated [14,17]. Gully head density in areas of erosion protection
terraces (192 gully heads/km?) is higher than gully head density in uncultivated areas
(163 gully heads/km?) and, thus, indicates a higher susceptibility to gully erosion. The
construction of erosion protection terraces aims to increase slope stability in the headwater
area and thus to reduce linear erosion. However, although they are intended to prevent
erosion, terraces in the study catchment are an area highly affected by gully erosion
(Table S1). Similar to the descriptions of Nyssen et al. [17] and Schiitt et al. [14], most of the
stone terrace risers in the study catchment are unmaintained. Accordingly, their protective
function is impaired, and especially during heavy rainfall events, backward erosion causes
dissection of the terrace risers (cf. ‘bank gullies”) [6]. Further, uncontrolled excess water in
the terraces infiltrates and soaks the riser, putting pressure on it in line with the hydraulic
gradient [77]. Especially at the transition from dry season to rainy season, desiccation
cracks frequently foster infiltration and the generation of subsurface runoff [77-79]. Large
mud cracks observed on the surface of the terrace treads indicate such subsurface processes.
For semi-arid areas, Bocco [11] observes that 60% of the gullies formed as a result of piping.
The rare occurrence of gullies on croplands and plantations corresponds to the relatively
flat terrain of these areas, which are mostly located in the lowlands, and thus the lack of
the minimum hydraulic gradient for gully head development [11].

6.2.2. Distance from Pathways

Mapping of gully heads shows that about a quarter of the gully heads are located
within 5 m of pathways, and almost all gully heads are located less than 100 m from
pathways (Table S1). These findings coincide with the observations of Schiitt et al. [14],
who suggest that the initiation of gully erosion in the immediate vicinity of pathways is due
to runoff concentration along the pathways. These observations were later validated for
the Tigray region [21]. During the field survey it was observed that mainly cattle herds and
occasional groups of people moved along the pathways to and from the Adwa-Adi Ugri
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main road, forming pathways by repeated trampling along the same route. The surface of
pathways is usually bare, and trampling compacts the near-surface underground and re-
duces its pore volume [80]. Consequentially, during rainfall events, the reduced infiltration
capacity of these compacted surfaces favors the generation of surface runoff [14,16,48,81].
Where this surface runoff causes erosion along the pathway, a hollow way can develop.
It has been observed that most of these situations occur in areas of moderate relief, such
as the transition zone. In contrast, in areas of stronger relief, such as in the hill country,
surface runoff along the pathways is likely to result in downslope wash-over of the down-
hill pathway edge, consequently resulting in linear erosion in the direct slope direction,
frequently at right angles to the pathway.

6.2.3. Distance from Settlements

Gully heads usually do not develop in the direct vicinity of settlements, with the
majority of gully heads (71%) developing >100 m from settlements. As the immediate
area around settlements is greatly affected by trampling and soil compaction, this is in
sharp contrast to the development of gullies close to pathways. This contradiction can
be explained by the fact that the terrain in settlement areas is mostly flat to moderately
sloped, thus lacking the necessary hydraulic gradient to initiate gullies [11]. This coincides
with the observation that the occurrence of gully heads in the vicinity of settlements in
general coincides with an increase in slope inclination. In consequence, the results do not
indicate a direct positive connection between the location of gully heads and settlement
areas. However, this result is weakened by the distinct connection between the positions of
gully heads and pathways and the merging of pathways at settlements (Figure 2b).

6.3. Modeling Environmental and Human-Related Factors

In order to assess areas of natural stability and areas affected by human influences
and settlement activities, a change detection was conducted between the Gully Erosion Sus-
ceptibility Maps (GESM) with models based exclusively on natural factors (Model B) and
exclusively on human-related factors (Model C). The change detection allows estimation of
the influence of these two types of factor on triggering gully erosion. Change detection
of gully erosion susceptibility prediction by Model B and Model C reveals that ca. 25% of
the mapped gully heads are due to their location as distinctly controlled by human-related
factors (LULC, distance to pathways, distance to settlement areas). Furthermore, according
to the MDA and MDG evaluations, all three human-related factors are eminent for the RF
algorithm of Model A, taking all factors into account (Table 3).

Independently from each other, Models B and C predicted the location of 29% and 28%
of gully heads. Gully heads that occur in an overlap prediction of both Models B and C
(34%) are more likely to be interpreted as environmentally triggered. However, the accel-
erating effect of diffuse human activities on land degradation and erosion processes (e.g.,
overgrazing, reducing infiltration capacity by soil compaction, damaging irrigation tech-
niques, tillage) should not be ignored [13,68]. Accordingly, areas assessed as susceptible
to gully erosion by Models B and C cannot be strictly attributed to a distinctively envi-
ronmental origin. Considering the number of gully heads that are predicted by applying
exclusively human factors (Model C) and those which are potentially influenced by an
accelerating human-effect (overlapping predictions of Models B and C), the maximum
human impact influences the development of up to 62% of the mapped gully heads.

7. Conclusions

It is evident from this work that gullies tend to occur in the immediate vicinity of
footpaths, but not necessarily in the direct vicinity of residential areas. In general, gullies
develop close to human-influenced areas, but environmental factors control their ultimate
formation. In this respect, it is necessary to consider human influence as an accelerating
factor when predicting Gully Erosion Susceptibility. In this research, different types of
human influence were combined for the first time to generate a Gully Erosion Susceptibility



Remote Sens. 2021, 13, 2009

16 of 19

References

Map (GESM) using a study catchment in the Ethiopian Highlands. The application of
the data-mining algorithm “Random Forest” provided powerful models with stable and
accurate predictions of Gully Erosion Susceptibility by incorporating several different
natural and human-related factors. Applying the change detection tool enabled us to
distinguish between natural and human-related drivers for gully head development and
to identify intersections of both types of factors. Including the distance to pathways as
an additional variable that affects gully erosion and distinguishing between natural and
human-related factors by comparing Gully Erosion Susceptibility Maps can both be used
to identify, monitor, and prevent further human acceleration of land degradation. Further
research is required to better understand the impact of settlement activities on landscape
dynamics taking both spatial and temporal aspects into account. Within a heterogeneous
environment, modeling approaches should integrate such activities to provide applicable
predictions of gully erosion susceptibility.
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