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Abstract: Synthetic aperture radar (SAR) satellites produce large quantities of remote sensing im-
ages that are unaffected by weather conditions and, therefore, widely used in marine surveillance.
However, because of the hysteresis of satellite-ground communication and the massive quantity of
remote sensing images, rapid analysis is not possible and real-time information for emergency situa-
tions is restricted. To solve this problem, this paper proposes an on-board ship detection scheme that
is based on the traditional constant false alarm rate (CFAR) method and lightweight deep learning.
This scheme can be used by the SAR satellite on-board computing platform to achieve near real-time
image processing and data transmission. First, we use CFAR to conduct the initial ship detection
and then apply the You Only Look Once version 4 (YOLOv4) method to obtain more accurate final
results. We built a ground verification system to assess the feasibility of our scheme. With the help of
the embedded Graphic Processing Unit (GPU) with high integration, our method achieved 85.9%
precision for the experimental data, and the experimental results showed that the processing time
was nearly half that required by traditional methods.

Keywords: ship detection; lightweight deep learning; CFAR algorithm; on-board processing

1. Introduction

Unlike optical satellites, synthetic aperture radar (SAR) satellites work in all weather
conditions thanks to active data collection. They are widely used in marine monitoring and
are the main remote sensing means for large-scale maritime ship target detection. Marine
ship target detection can monitor maritime traffic, maintain maritime rights and interests,
and improve the early warning capabilities of coastal defenses [1-3]. Therefore, high preci-
sion positioning of ship targets is required. The traditional image information acquisition
process involves four main steps: data acquisition, data download, ground centralized
processing, and information extraction. This process can be slow, and the longer the time
from when the satellite generates the data to when information is extracted on the ground,
the less useful that data will be. It is necessary to migrate the processing and informa-
tion extraction algorithms from the ground to the on-board computing platform in order
to make full use of the limited transmission bandwidth and satellite transmission time
to shorten the time delay in information acquisition. This migration would also reduce
the load on the satellite-ground data transmission system [4-6].
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Many satellites have the capability of on-board processing of remote sensing data.
The Earth Observation-1 launched by NASA’s New Millennium Program in November
of 2000 has on-board processing capabilities that include emergency monitoring, feature
monitoring, change monitoring, and anomaly monitoring. In October 2001, DigitalGlobe
launched the QuickBird satellite, which was the highest resolution commercial satellite
to date and it can produce multiple types of images and perform remote sensing image
preprocessing and real-time multispectral classification on-board. The NEMO satellite,
launched by the US, is equipped with COIS coast imaging spectrometer and adaptive
spectrum identification system ORASIS and it can generate and directly download coastal
description information [7]. On-board processing is usually implemented by Digital Signal
Processor and Field-Programmable Gate Array; however, due to their poor scalability,
implementing new algorithms is difficult, which restricts them from meeting the diverse
needs of intelligent on-board processing. However, with rapid advancements in computing
hardware, such as the advent of embedded Graphic Processing Units (GPUs) with low
power consumption, strong performance, and high integration, new solutions for on-board
real-time processing have been made available [8], such as NVIDIA Jetson TX1 and TX2.

In the past few years, researchers have proposed many traditional ship detection
methods utilizing SAR imagery [9-12]. Gao et al. [9] proposed an adaptive and fast
CFAR algorithm that was based on automatic censoring (AC), and the combination of
AC with the algorithm resulted in good performance. Huang et al. [10] used a new ship
detection approach based on multi-scale heterogeneities under the a contrario decision
framework, this method proved to be suitable for ships of different sizes. Ji et al. [11] used
the K-distribution CFAR method to calculate a global threshold with a given false-alarm
rate, then mathematical morphological filters are applied to the results; this approach
greatly improved the processing speed. Ai et al. [12] proposed an algorithm for ship
target gray distributions based on correlations, and then the joint gray distribution models
of pixels and adjacent pixels in clutter are established using the two-dimensional joint
lognormal distribution. However, these methods are dependent on the pre-classification
and pre-definition of features by humans, and they may be less robust in complex back-
grounds. Furthermore, no on-board traditional method for real-time SAR processing has
been verified.

With the development of computer vision, deep learning has gradually been applied
to ship detection from SAR imagery. Target detectors that are based on deep learning
can be divided into two categories. The first type of target detectors are based on region
recommendations, such as Region-based Convolutional Networks (R-CNN) [13], Spatial
Pyramid Pooling Network (SPP-NET) [14], Fast R-CNN [15], and Faster R-CNN [16]. This
type of detector first uses regional recommendations to generate candidate targets, and then
uses the convolution neural network for processing. Its accuracy is high, but it does not
meet the requirements for real-time processing. The second type of target detectors are
regression-based, such as You Only Look Once (YOLO) [17-19], Single Shot Multibox
Detector (SSD) [20], etc. These methods treat the detection problem as a regression and di-
rectly predict target positions and categories. This type of detector has a fast processing
speed, but low accuracy. Cui et al. [2] applied R-CNN to large scene SAR target recognition,
which can detect objects while recognizing their classes thanks to its regression method
and the sharing network structure. Wang et al. [21] used RetinaNet with feature pyramid
networks (FPN) and focal loss to detect ships, and achieved high accuracy multi-scale
ship detection. Kang et al. [22] used the Faster R-CNN method to conduct the initial ship
detection and then applied CFAR to obtain the final results.

The challenge of on-board ship detection of lightweight SAR satellite is to achieve
the accurate and efficient detection of targets under the constraints of the limited memory
and computing power of the satellite processing platform. Most of the ship detection
methods use high-power GPUs on the ground to detect ships, and these network models
are always large in size and complex computations. However, the special hardware used
for lightweight satellites is different from the mature technology available in ground data
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centers. Therefore, these highly complex network models cannot be used to complete
real-time detection missions with the limited on-board memory and computing power.

To solve the above problem, we propose an on-board ship detection scheme that
combines the traditional CFAR algorithm and lightweight deep learning to achieve efficient
on-board ship detection. Firstly, this method is based on geographic prior experience and re-
gional growth methods to realize sea-land segmentation. Sea-land segmentation can reduce
the interference of the land and improve detection efficiency. Secondly, the K-distribution
is used to model sea clutter in images, and the CFAR algorithm is used for fast rough
detection. Subsequently, the initial detection results are used as input for the YOLOv4-tiny
network to refine the detection results. Finally, through a reasonable hardware acceleration
strategy, the entire algorithm was ported into a Jetson TX1 GPU and achieved an acceptable
algorithm speed. This method only uses the preliminary extraction results as the input
for the YOLOv4-tiny network, which greatly reduces the computation power required.
The main difference between our method and the vast majority of the SAR automatic target
recognition approaches is that we consider an end-to-end workflow, in which manually
extracting samples for target classification is not required. In addition, our algorithm
can directly generate the category probability and position coordinate value of the object,
and obtain the final detection result after a single detection, so it has a faster detection
speed. When combined with the hardware acceleration strategy, our method achieved high
accuracy and efficiency on the ground verification platform. The main contributions of this
paper are as follows:

1. Inorder to eliminate the influence of land, we first remove the land from the image,
which greatly reduces the computation load of the algorithm. Subsequently, we use
the CFAR algorithm that is based on K-distribution to extract ship targets.

2. We input the CFAR detection results into the YOLOv4-tiny network for further ship
detection using its efficient global context information extraction capability.

3. We combine each part of the algorithm organically in the Jetson TX1 platform. Through
a reasonable hardware acceleration strategy, we reduce the running time of our
algorithm. Additionally, our method was validated on the HISEA-1 satellite.

The organization of this paper is as follows. Section 2 relates to the details of our
proposed ship detection algorithm, including the CFAR algorithm and YOLOv4-tiny.
Section 3 introduces the satellite computing platform and the construction of the ground
verification system. Section 4 reports on the experiments. Sections 5 and 6 present our
discussion and conclusion.

2. Methods of On-Board Ship Detection

Because of the limitations of the GPU’s memory, the original large-scale SAR remote
sensing images should be broken into image patches before target detection. Because
of the large-size of the original image, the number of image patches will be relatively
large, which will not only take up the limited storage, but it will also result in the model
processing many empty image blocks. This is why this paper proposed an on-board
ship detection scheme based on the CFAR algorithm and deep learning. Using the CFAR
method before deep learning, target recognition can significantly reduce the number of
image patches submitted to deep learning detection. Because of the high complexity of
the deep learning algorithm, the processing time will increase with an increased number
of target patches. Therefore, the first extracting targets using CFAR will greatly reduce
the computations that are required by deep learning. Our experimental results showed
that using the CFAR method before deep learning reduced the computational time by
more than half when compared to using only the deep learning method. First, the image
is categorized as either sea or land, and if it is includes the coast, it will be divided by
sea and land. This is done to prevent land features from affecting the detection of ships.
Subsequently, the CFAR algorithm is used for an initial quick and rough ship detection,
and any detected targets are stored as 256 x 256 pixels image patches. The resulting
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image patches are input into the trained and lightweight deep learning model for further
detection to obtain a more accurate final ship detection. Finally, the targets are mapped
on the original image to obtain its pixel coordinates, the latitude and longitude coordinates
of the four corners of the original image are used to determine the targets actual location
using the bilinear interpolation method, and then this effective information is transmitted
through the satellite-earth data transmission system. Figure 1 shows the process of on-
board ship detection.

SAR imagery Image patches
£€ P i Target information
sea-land CFAR
i
> |
I'rained model
A
On—bnnlr(l upload
processing
Ground
processing
. label Deep learning - Deep learning
HISEA-1 imagery |————p tansfer training model optimization
A
Public sample SAR ship dataset
library

Public model
parameters

Figure 1. The process of on-board ship detection based on constant false alarm rate (CFAR) and deep learning.

2.1. Sea-Land Segmentation

During ship detection, land area is not of interest, but the SAR images that are used
commonly include both land and sea. The purpose of sea-land segmentation is to mask or
remove the land area from the SAR images, so that the detection algorithm only processes
the sea area and ignores the land [23]. This is particularly important, because many land
objects appear in SAR images as strong scatterers that are similar to ships at sea. These
land objects will produce false alarms and waste processing power that should be focused
on the detection of ships. Therefore, effective sea-land segmentation can limit the detection
range to sea areas, thereby improving the detection efficiency and accuracy.

This paper first adopted a method in which geographic prior information (coastline
vector data) is superimposed on SAR images using a vector layer, and the polygon vector
elements in the vector layer are then used to determine whether the image is of the sea, land,
or sea-land junction. The region growing method is then used for sea-land segmentation.

2.1.1. Judgment on Land and Sea

In this part, using the latitudes and longitudes of the four corners of the image,
the global coastline vector data are superimposed to determine the position of the image.
Because every polygon on the vector layer corresponds to a piece of land, the problem of
judging whether corner points of the SAR image are sea or land is converted to a problem of
whether the points on the vector layer are in the polygons designated as land. The problem
of determining whether a point is in a polygon in the vector layer is carried out according
to the graphics algorithm [24]; where, the time complexity of the algorithm is O(n) and n is
the number of polygonal line segments. Because of the large size of the acquired images
and the requirements for efficiency, only the four corner points of the image are used to
obtain the approximate position of the image.
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2.1.2. Sea-Land Segmentation Based on Region Growth

Region growth is an image segmentation method that is based on image gray-scale
similarity, neighborhood information, etc., with the basic goal of grouping pixels with
similar properties to form regions [25]. Segmentation that is based on region growth has
two key elements: one is to select the seed point of the image to be segmented and the other
is to establish the range of pixel intensity contained in the region. Once there is a seed
and a range, the area will grow from the seed point. When there are no more pixels that
meet the conditions, the algorithm stops. T is the given threshold, so the seed growth
criterion is expressed by Equation (1), as:

(i) —purl <T. )

where, y(i,j) is the gray value of the pixel to be determined; and, yir is the average intensity
of the growth area R of the seed pixel.

The selection of seed points is based on the results of the land and sea judgment. If a
corner point is judged to be land, then that pixel point is used as the seed for regional
growth. Compared with the ocean area, the land area in the SAR image exhibits strong
scattering and it has a higher gray value. The gray value is used as the threshold value
and the sea and land area can then be separated through regional growth. Figure 2 shows
exxamples of sea-land segmentation.

(@) (b) © (d)

Figure 2. Representative examples of sea-land segmentation. (a,c) Original images. (b,d) Images
after sea-land segmentation.

2.2. CEAR Detector Based on K-Distribution

When considering the large scale of the original image, recognition speed using only
the deep learning model will be relatively slow. Therefore, this paper proposed using
CFAR to perform the initial ship detection, the results of which are then used as the input
for the YOLO method to obtain the final, more accurate, detection results. The initial ship
detection results are stored as sub-images that are suitable for neural network recognition,
and then input into the YOLO model to obtain accurate detection results.

The false alarm rate is the probability that the detector will misjudge noise or other
interference signals as valid target signals in a given unit of time. By setting a constant
false alarm rate, stable target detection results can be obtained during signal detection. It is
necessary to carry out statistical analyses of the characteristics of sea clutter to accurately
model background sea clutter in order to obtain a constant false alarm effect under different
sea and environmental conditions. For this reason, different clutter distribution models
have been proposed, including the Rayleigh, Lognor-mal, Weibull, a-steady distribution,
G distribution [26], and K-distribution [27] models, among which the K-distribution is
the most commonly used statistical model. It not only accurately matches the clutter ampli-
tude distribution over a wide range, but also accurately simulates the correlations between
clutter echo pulses. As such, it has become a classic model for describing sea clutter.
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2.2.1. Parameter Estimation on K-Distribution Model

The probability statistical model of the K-distribution [28] is as follows:

P = i1 (20) o1 (3) @

where, I'(-) is the Gamma function; K,_1(:) is the second type modified Bessel function
of order v-1; a is the scale parameter; and, v is the shape parameter. For most sea clutter,
the shape parameter values range is 0.1 < v < co. When v— oo, the distribution of the clutter
is close to the Rayleigh distribution.

Subsequently, we chose the statistical estimation method to estimate the parameters.
From the K-distribution model expression, the r-moment of the K-distribution can be
obtained, as shown in Equation (3):

E[x'] = I'(v+0.5r)T(1+0.5r)

ﬂr = F(U) (2a>r‘ (3)

According to the properties of the Gamma function presented in Equation (4), we can
obtain Equation (5).

I(x+1)=x-T(x), 4)
Zy = % = (247)a®(20 + 7). )

It can be seen from Equation (5) that the moment estimation method only requires that
multiple z, groups be calculated. For sea clutter samples {x;;i = 1,2, - -, N}, the k-order
sample moment of the K-distribution is expressed by Equation (6):

o= 35 L (6)

Random sample moments are used instead of overall moments and an inverse trans-
formation is performed to obtain the scale parameter 4 and shape parameter v.

2.2.2. CFAR Ship Detection Based on the K-Distribution

The CFAR algorithm determines the threshold based on the statistically determined
characteristics of the image pixels. The basic principle is that, for each pixel x;, a certain
reference window around it is defined and threshold I. is determined based on the char-
acteristics of the pixels in the window. Target detection can be achieved by comparing
the value of the pixel with the value of the threshold. The sea background statistical model
uses the K-distribution, and the specific process is as follows:

(1) The scale parameter a and shape parameter v of the K-distribution are calculated

using Equations (3)—(5).

(2) The parameter estimations are used in Equation (1) to obtain the probability density
function that is used to solve Equation (7) for I, as follows:

L
Pr =1 —/0 p(x)dx, (7)
where, Py, is the false alarm rate.

(3) According to the detection threshold I. obtained by Equation (7), we can determine
whether the pixel x; to be detected in the target window is a target pixel based on
Equation (8):

xX; > I, (8)

if the equation is satisfied, then it is categorized as a target; otherwise, it is categorized
as background.
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2.3. Ship Detection Based on the YOLOv4-Tiny Network

Traditional deep learning models have the disadvantages of involving many parameters
and being very large. Applications in various fields have shown that YOLO is better at general-
ization than R-CNN. We constructed a YOLOv4-tiny-based [29] training convolutional neural
network to obtain the final ship detection results in order to achieve real-time and efficient
detection of ship targets, while, at the same time, considering model size and subsequent
model injection through the satellite-earth data transmission system. The model was only
22.4 MB, which would satisfy the mission requirements for on-board real-time detection.

2.3.1. Architecture of the YOLOv4-Tiny Network

YOLO is an algorithm that integrates target area and target category predictions
into a single neural network. First, the images are divided into grids with sizes S x S,
where each grid cell is responsible for the detection of the object that is centered in that
cell. The predicted confidence scores indicate the accuracy of the prediction results for
each grid cell. If there is no object in the cell, the confidence score is zero. Otherwise,
the confidence score is equal to the intersection over union (IoU) between the ground
truth and prediction box [18]. We used a confidence score threshold to determine whether
the predicted bounding boxes should be retained.

The CSPDarknet53-tiny network is a simplified version of CSPDarknet53, and it uses
the CSPBlock module instead of the ResBlock module. The CSPBlock module can enhance
the learning ability of convolution network comparing with ResBlock module. At the same
time, it improves the inference speed and accuracy of the YOLOv4-tiny method.

The building blocks of CSPDarknet53 can be divided into two groups: the convolu-
tional building block and the five CSPBlock modules. The convolutional building block
contains a convolutional (Conv) layer with a kernel size of 3, a stride of 1, and a Mish layer.
The CSPBlocks divide the feature map of the base layer into two parts, and then merges
them through a cross-phase hierarchy, as shown in Figure 3a. In this way, the gradient
flow can propagate through different network paths after being separated [30]. The five
CSPBlock modules are repeatedly stacked by the two Conv layers in the red box in Figure 3.
The numbers of stacked Conv layers are 1, 2, 8, 8, and 4, respectively. The first Conv layer
has a kernel size of 3 and a stride of 2, and the second Conv layer has a kernel size of 3,
and a stride of 1. YOLOv4-tiny is designed based on YOLOV4, but it prioritizes faster
object detection speeds. YOLOv4-tiny uses the CSPDarknet53-tiny network as its backbone
network, it’s network structure is shown in Figure 4.

CSPDarknet53-tiny consists of three Conv layers and three CSPBlock modules. Specif-
ically, there is a Conv layer and LeakyReLU layer in the first two Conv layers, and each
Conv layer has a kernel size of 3 and a stride of 2. The last Conv layer has kernel size
of 3 and a stride of 1. CSPDarknet53-tiny uses the LeakyReLU function as the activation
function in place of the Mish activation function, which simplifies the calculation process.

CSPDarknet53 CSPBlock CSPDarknet53-tiny CSPBlock

Inputs(416,416,3)

CSPBlock x1

Output(208,208,64)

CSPBlock x2
Output(104,104,128)

CSPBlock x8

Con 1
LeakyReLU(13,13,512)

(@) (b)
Figure 3. The structure of CSPDarknet53 (a) and CSPDarknet53-tiny (b).
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The YOLOv4-tiny uses two different scales feature maps that are 13 x 13
and 26 x 26 to predict the detection results. At the same time, each feature map uses
three anchor boxes of different sizes to predict three bounding boxes, and k-means cluster-
ing is used in advance to pre-define the number of anchor boxes, and there is a total of six
pre-defined boxes for the three scales.

__________________________________________

Backbone

= = -~ . I

————————————————————————————————————————— ‘ 13%13x255

CSP Block

i 1
R — | 1

i 1

i 1

CBL CBL CBL

Ny  Lese = - — epL :
i Subsample CBL | concat !
1 ! \
1 ! |

Figure 4. YOLOv4-tiny network architecture.

2.3.2. Loss Function

The loss function of YOLOv4-tiny contains three parts and can be expressed as follows:
loss = lbox + lobj + Icls, )

where, lbox, lobj, and Icls are confidence bounding box regression loss, classification loss,
and confidence loss functions, respectively.

YOLOv4-tiny uses complete intersection over union (CloU) loss instead of Mean
Square Error (MSE) loss, which takes the three geometric factors of the two detection
boxes into account, namely their overlapping area, the distance between their center points,
and their aspect ratios. Accordingly, the bounding box regression loss function is:

2 gt
lbox:1—10U+‘)(i+b)+zx-v, (10)
v
‘= (1—TIolU) +v’ (1
4 w8t w.,
v = ?(arctan e arctan ﬁ> , (12)

where, IoU is the intersection over union between the truth bounding box and predicted
bounding box; b is the coordinate of the center point of the predicted bounding box; b8! is
the center point coordinates of the real bounding box; p(-) is the calculation of Euclidean
distance; c is the diagonal distance of the box that can contain the predicted and truth
bounding boxes; w$! and h$! are the width and height of the truth bounding box; and, w
and h are the width and height of the predicted bounding box.

The confidence loss function is:

CSxS By X X
lobj = — ,ZO 'Eo I;"[Cilog(C;) + (1 — Cj) log(1 — Ci)]—
i=0 j=

SxS B (13)

L ¥ (1-177)[Cilog(C) + (1 - Ci) log(1 — &),
i=0 j=0

where, S x S is the grid size; B is the number of bounding boxes in a grid; Iigjbj is a function
of the object, if the jth bounding box of the ith grid is responsible for detecting the current
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object, Ifjb] = 1, otherwise Ifjb] =0 Cl- and C; are the confidence scores of the predicted
and truth boxes, respectively.
The classification loss function is:

SxS B .
lels = — ;)gf;}bf L [p(e)log(pi(e)) + (1= pi(e)log(1 = pi(e))], (14
1=U j= ceclasses

where, p;(c) and p;(c) are the predicted probability and true probability that the object
belongs to ¢ classification in the jth bounding box of the ith grid.

The detection results will produce a large number of overlapping detection bounding
boxes. Based on traditional Non-Maximum Suppression (NMS), distance intersection
over union non-maximum suppression (DIoU-NMS) is used to resolve problems when
the bounding boxes do not overlap, using the distances between the center points of
the bounding boxes to do so. We chose 0.4 as the threshold for DIoU-NMS in this article.

3. Satellite Ground Verification System and Algorithm Hardware Acceleration Strategy
3.1. Algorithm Hardware Adaptation and Acceleration Strategy

We used the Jeston TX1 as the on-board development board in order to realize on-
board ship detection. The embedded vision computer system Jetson TX1, which was
developed by NVIDIA integrates an ARM Cortex-A57 Central Processing Unit (CPU)
and a 256-core NVIDIA Maxwell architecture GPU, can realize trillions of floating-point
operations per second on Linux systems and is very suitable for artificial intelligence
calculations. At the same time, its small size, low power consumption, and high integration
make it suitable for real-time on-board satellite processing.

In order to give full play to the computing power of the Jeston TX1 hardware, we fully
analyzed the algorithm principles and assigned each module to the appropriate hardware to
maximize the calculation efficiency. Specifically, due to the large number of logic operations
required by the sea-land segmentation and CFAR algorithms, which belong to the serial
logic flow algorithm, they are designated to the CPU, which has superior serial computing
power. For the YOLOv4-tiny network, a large number of matrix convolution operations
are involved with floating point type data. For these operations, the GPU can provide
better throughput, albeit with the cost of a delay. Taking full advantage of the multi-core,
the GPU is much better than the CPU in parallel computing and floating-point computing
efficiency. Therefore, we assigned the YOLOv4-tiny network to the GPU.

In addition, in order to prevent the time taken to transfer data between the CPU
and GPU from affecting the overall performance of the program, we made the calculation
workload of the GPU far greater than the workload of copying and transferring data so
that it does not copy and transfer frequently. This can reduce the proportion of time that is
spent copying and transmitting data relative to the total time consumed, which will reduce
its effect on overall performance. At the same time, when multiple threads are ongoing
on the CPU, one thread can be in the process of copying while the other thread is performing
calculations. In this way, calculations and copying can be performed simultaneously to
reduce the calculation time. Finally, using the stream mechanism of the CUDA GPU,
in asynchronous mode, when one stream is copying the other is calculating.

3.2. Composition of Ground Verification System

We constructed a ground verification system for testing before porting it into the satel-
lite to verify the feasibility of our scheme. All of our experiments were carried out in this
simulated environment. Figure 5 shows the system schematic.
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Figure 5. Schematic of the ground verification system.

The main components of the system were the OBC (on-board computer), POBC (on-
board data processing computer), GPS (global positioning system) module, switch module,
camera, image simulator, and simulated ground measurement and control system. As the
control center of the system, the OBC runs the satellite service software and controls
the entire satellite. It sends the status and telemetry information from the satellite to
the simulated ground measurement and control system, and it communicates with the GPS
module through the serial port. The POBC receives the camera’s image data through
the camera link, processes it as required, and then transmits it via ethernet. The simulated
ground measurement and control system displays the satellite telemetry signal and status
parameters. The GPS module provides latitude and longitude information.

With this system, the information flows from the camera, which collects images of
the image simulator, to the POBC through the camera link for processing and storage,
before finally travelling to the simulated ground measurement and control system where
the data are displayed.

3.3. The HISEA-1 Satellite and Its On-Board Image Processing Load

At 12:37 noon Beijing time on December 22, 2020, the HISEA-1 satellite that was
developed by Spacety was successfully launched on the CZ-8 rocket. The HISEA-1 satellite
represented the first SAR remote sensing satellite constructed for scientific observation of
oceans and coastal zones by a domestic university. It is also the first star of the planned
HISEA series of small satellite constellations. The constellation will include multiple
small and light SAR satellites and multi-spectral satellites that can be utilized by various
field observation systems. Table 1 lists the requirements for the HISEA-1 mission. On
25 December 2020, the first batch of images from the HISEA-1 satellite were successfully
obtained. To reduce the pressure of data transmission, the satellite platform is equipped
with an intelligent information processing module for technical exploration of on-board
intelligent image processing. This module is designed to extract effective information
from remote sensing images and, thereby, reduce the data load sent to the measurement
and control station and improve the efficiency of data acquisition.
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Table 1. HISEA-1 mission parameters.
Index Value
Orbit 400-500 km
Center frequency 5.4 GHz
Bandwidth 60-300 MHZ
Incidence angle range 20°-35°
Polarization VV, HH
Resolution and swath 3m@20km,20m @100 km, 10m @50 km, 1 m @5 km * 5 km
Positional accuracy <200 m
Absolute radiometric accuracy 2.0dB
Antenna size 4.0m (A) x 0.64 m (R)
Average power <2500 W
Total mass 185 kg

The on-board image processing load of the HISEA-1 satellite includes two parts, one
is the SAR image preprocessing module and the other is an intelligent application module.
Pre-processing includes data decoding, radiometric calibration, and geometric correction.
The intelligent application module is responsible for real-time ship detection and detection
of ground changes. Figure 6 shows the processing flow. Using the pre-processed images,
the on-board ship detection process will extract the target image patches and position
information, producing the effective information that will be transmitted to the ground
receiver through the downlink. At the same time, the ground control system can monitor
satellite transmission data in real time and communicate ground instructions to the satellite
and, by continually updating the algorithm model parameters in the satellite’s intelligent
processing unit through the satellite upload channel, it can be tasked to complete more
on-board processing tasks.

Multi-temporal g | Change detection

image

Data decoding > Rad'iome‘rric > Geomer‘ric __________ _

calibration correction | 1

1

Ship detection |

1 1
| —-----T .- - - TSmO 1
< ’ . 1

| Sea-land YOLOv4-tiny

| SAR imagery > e m(, 1 CFAR detection [ . va-tmy > Final result I
| * segmentation trained model |

Figure 6. On-board intelligent processing platform processing flow.

4. Experimental Results and Analysis

In this section, we will explain the datasets used for the experiment, the process of
the experiment, and discuss the results. First, the dataset was divided into three parts,
i.e., the training set, validation set, and the testing set with their respective proportions
being 7:2:1. We applied different versions of the YOLO model, SSD, and Faster R-CNN to
train the dataset and compared the results. Next, we used the Sentinel-1 simulated images
for ship detection experiments and evaluated the accuracy of the results. Finally, we tested
our proposed method on real images from HISEA-1.

4.1. Experimental Dataset

In this work, we used the public SAR image ship detection dataset from the Key
Laboratory of Digital Earth Sciences, Aerospace Information Research Institute, Chinese
Academy of Sciences [31], which was labeled by Wang et al, part of the sample images is
shown in Figure 7. It contained 102 Gaofen-3 images and 108 Sentinel-1 images, in which
there were 59,535 ships in 43,819 ship chips. The images varied in terms of polarization, res-
olution, incidence angle, imaging mode, and background. The dataset was created for vari-
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ous SAR image applications and the size of each image in the dataset was 256 x 256 pixels.
In this dataset, each image target in the dataset has a ground truth boundary and label,
and each target corresponds to an Extensible Markup Language (XML) file, which is con-
sistent with the PASCAL VOC data set. The dataset was divided into three parts: training
set, validation set, and test set at a 7:2:1 ratio.

Figure 7. Sample images from the SAR ship dataset.

4.2. Experimental Results
4.2.1. Implementation Details

All of the experiments were implemented under the Darknet deep learning frame-
work [16]. When considering the GPU capacity and training efficiency of Jeston TX1,
we used a PC with a 11G memory NVIDIA GeForce GTX 1080Ti (16 GB RAM, Intel
(R) Xeon(R) CPU, e3-1226 v3, @3.30 GHz) to train the model. The operating system was
64-bit Ubuntu16.04, the CUDAS.0 and its matching cuDNN were installed in the system.
Subsequently we ported the well-trained model into Jeston TX1.

4.2.2. Comparison with Other Models

In order to evaluate the performance of the model, we used mAP (mean average
precision) and FPS (frames per second) as the evaluation indicators for ship detection.
The mAP is the average of the average accuracy of detecting each class. Because there
are only ships in our experiment (i.e., only one class), the mAP was equal to the average
accuracy (AP). FPS represents the number of images that can be successfully processed
in one second.

We compared the performance of YOLOv3, YOLOv4, YOLOv3-tiny, YOLOv4-tiny,
SSD, and Faster R-CNN by assessing their performance in mAP and FPS. The results are
shown in Table 2. It was apparent that the performance of SSD and Faster R-CNN was
poorer than YOLO, and YOLOv4-tiny achieved the best performance with regards to mAP.
The mAP of YOLOv4 and YOLOv3 were higher than YOLOv4-tiny and YOLOv3-tiny,
respectively. The YOLOv3-tiny’s FPS performance was the best. The network structures
of YOLOv4 and YOLOV3 are complex and have many parameters, which is suitable for
more complex tasks and a larger variety of detection tasks. However, because the goal
of this paper was to detect only one class of target, i.e., ships, the YOLOv4, and YOLOv3
networks were not necessary. This was especially true when considering that these models
are larger and require more powerful computing platforms. The embedded computing
devices deployed on spaceborne SAR satellites must be lightweight and, therefore, less
powerful. Therefore, YOLOv3-tiny and YOLOv4-tiny were better suited for our on-board
detection mission, and, of the two, YOLOv4-tiny was selected because it had a higher mAP.

Table 2. Comparison of different methods in FPS , mAP, and model size.

Model FPS mAP(%) Model Size (MB)
YOLOvV3 64 88.82 234.9
YOLOv4 55 93.21 244.2

YOLOvV3-tiny 348 91.16 33.1
YOLOv4-tiny 339 93.46 224
SSD 76 75.46 93.2

Faster R-CNN 17 88.75 527.8
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4.2.3. Results of Ship Detection with Simulated SAR Image

The method that was designed in this paper was centered on detecting ships in large-
size SAR images, so we tested the robustness of the proposed method on large-size SAR
images. We used simulated SAR images to evaluate the robustness of the model. The image
data source was Sentinel-1, and its format was a simulated HISEA-1 SAR image format.
During the simulation process, regular black bands are inevitably generated in the images
because of deviations in geometric corrections, but these did not affect the actual detection
results. Table 3 presents the image information.

Table 3. Simulated SAR image specific information. ! Location refers to the longitude and latitude of
the center point of the image. The width is the number of range pixels and the height is the number
of azimuth pixels.

Location ! Resolution ~ Width! Height! Polarization

31°1'29.21”"N 122°41'36.44"E 15m 9042 12,930 \'A%

In the CFAR detection, we set the false alarm rate to 0.001, and used the sliding
window to extract targets that may be ships from the images. The detection result of
the CFAR algorithm was binarized, and we mapped it to the original image and stored
it as a 256 x 256 pixel image patch. Figure 8 shows examples of the output results.

Figure 8. Examples of image patches after CFAR detection.

On this test image, the total of 673 image patches were output by the CFAR algorithm,
which included image patches with real ship targets and some false alarms. From the results,
it can be seen that the CFAR algorithm was able to detect most ship targets, but false alarms
were prone to occur in areas with complex sea conditions, and some sea waves were
commonly detected as ship targets. At the same time, because some small islands and reefs
in the ocean are not connected to land, they are not segmented during pre-processing, and
they can also be detected as ship targets. Secondly, there are some ship-like targets that do
not fully conform to a ship’s characteristics, but the CFAR detector cannot completely filter
them. Additionally, there are also some very small ships that were not detected. Because
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of the various false alarm sources, it is necessary to use deep learning to further assess
the initial positive detection results and improve the ship detection accuracy.

A true positive (TP) indicates that the predicted result was a ship, and it actually
is a ship. A true negative (TN) means that the predicted result was not a ship and that
the actual result is not a ship. In our experiment, we did not add negative samples into
the dataset, so the occurrence of TN in the experiment was zero. The false positive (FP)
indicates that, while the predicted result was a ship, in fact there is no ship in the im-
age. The false negative (FN) indicates that the model predicted that there was no ship
in the image, but the image does contain a ship.

We used false alarm (FA), missing alarm (MA), recall, and overall accuracy (OA) to
evaluate the detection performance. The definitions of these indicators are as follows:

FP
FA = w557/ (15)
FN
A= ——. 1
M TP+ FN (16)
Precision is the ratio of true positives to the identified image:
TP
[SI0N = —————. 17
precision TP+ EP (17)

Recall represents the ratio of the number of detected ship targets (TP) to all ship targets

in the image.
TP

TP+FN’
The overall accuracy is the most intuitive performance measure and it is a ratio of
correctly predicted observations to the total observations.

Recall = (18)

TP+TN

04 = TP+ TN+ FP+FN’

(19)

Figure 9 and Table 4 shows the detection results of our proposed method and only
using YOLOv4-tiny. The results verified that our proposed method was correct and ef-
fective in terms of accuracy and efficiency. It can be seen that the ship detection system
we proposed was robust, with a detection accuracy rate of 88.58%, a false alarm rate of
14.12%, and a missed detection rate of 11.42%, some false alarms and missing ships are
shown in Figure 10. Furthermore, the running time was improved and it met the mission
requirements for real-time ship detection using the on-board platform of the satellite.

Table 4. The ship detection results of the the simulated image.

Method Detected Ships TP FP FN Precision Recal OA FA MA Running Time (s)

Proposed method 262 225 37 29 859%  88.6% 77.3% 14.1% 11.4% 67.18s
Only YOLOv4-tiny 274 232 42 22 847% 91.3% 784% 153% 8.7% 156.83s
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(e) ® (2) (h)

Figure 10. Examples of false alarms (a—e) and missing ships (f-h).

4.2.4. Results of Ship Detection with HISEA-1 Image

With the successful operation of HISEA-1 in orbit, we have obtained some actual
results of on-board ship detection. We selected a relatively representative image for



Remote Sens. 2021, 13, 1995

16 of 18

verification purposes due to the limited data. Table 5 shows the information for the HISEA-1
test image. Figure 11 shows the test results.

Table 5. The information of the HISEA-1 image.

Acquisition Time Resolution Width Height Polarization
2020.12.25 3m 9980 6607 \4%

There were relatively few ship targets in this test image, and it was obvious that our
method was able to detect all of the ships on the sea, as shown in Figure 11. However, near
the harbor, the model triggered a false alarm, which may have been caused by the building
having a similar backscattering signature to the ships.

Figure 11. The ship detection results on HISEA-1 image. The purple boxes are the detection results

of our method and the white boxes are the target patches extracted by our network.

5. Discussion

The above experiments verified the validity of our scheme. We can deploy our
network scheme to the Jetson TX1 on the lightweight SAR satellite for on-board ship
detection. The combination of the classic CFAR algorithm and YOLOv4-tiny lightweight
deep learning network greatly improved the speed of ship detection. After extracting the
ship targets, the coordinates of the upper left and lower right corners of the images are
collected and latitude and longitude coordinates of the ship are obtained through coordinate
conversion. Only the target image patches and geographic coordinates will be transmitted
to the ground receivers. This on-board ship detection method greatly reduces the amount
of data that must be transferred to the ground receiver, which helps to reduce the pressure
on the ground receiver. However, if required for special missions, users on the ground can
control the satellite and obtain images of a region of interest, and the useful information
will be transmitted to the ground after on-board processing. With these data, ground users
will be able to make better and faster decisions in emergency situations.

In addition, as shown above, our method achieved a rapid and accurate ship detection
in SAR images. In order to obtain better ship detection results, subsequent work will need
to label the ship chips of original images that were downloaded from the satellite at an early
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stage and train the model. Finally, the model can be updated or a new model can be up-
loaded to the satellite to achieve more accurate detection results. Furthermore, in addition to
the role of the deep learning model in determining detection accuracy, the CFAR algorithm
also impacts the detection accuracy. Therefore, our future work will continue to improve
the CFAR algorithm.

6. Conclusions

In this paper, we proposed an on-board real-time ship detection scheme based
on the CFAR algorithm and lightweight deep learning for HISEA-1 SAR imagery, and con-
structed a ground system to verify the feasibility of our scheme. The scheme uses CFAR to
perform initial ship detection followed by the YOLOv4-tiny method to obtain the final re-
sults. Subsequently, the entire algorithm was ported into the Jetson TX1 GPU and, through
a reasonable hardware acceleration strategy, our scheme achieved high accuracy and ef-
ficiency on the ground verification platform. The experiments showed that this scheme
demonstrated good applicability for real-time on-board ship detection on lightweight SAR
satellites. In our future work, we will continue to improve the CFAR algorithm while also
improving the YOLOv4-tiny network to further maximize the computational efficiency.
When more data from the HISEA-1 are obtained, we will focus on labelling the ship chips
to improve the accuracy of target detection.
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