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Abstract: The key factors, namely, the radar data quality, raindrop size distribution (RSD) variability,
and the data integration method, which significantly affect radar-based quantitative precipitation esti-
mation (QPE) are investigated using the RCWF (S-band) and NCU C-POL (C-band) dual-polarization
radars in northern Taiwan. The radar data quality control (QC) procedures, including the corrections
of attenuation, the systematic bias, and the wet-radome effect, have large impact on the QPE accuracy.
With the proper QC procedures, the values of normalized root mean square error (NRMSE) decrease
about 10~40% for R(ZHH) and about 5~15% for R(KDP). The QPE error from the RSD variability
is mitigated by applying seasonal coefficients derived from eight-year disdrometer data. Instead
of using discrete QPEs (D-QPE) from one radar, the synthetic QPEs are derived via discretely com-
bined QPEs (DC-QPE) from S- and C-band radars. The improvements in DC-QPE compared to
D-QPE are about 1.5–7.0% and 3.5–8.5% in R(KDP) and R(KDP, ZDR), respectively. A novel algorithm,
Lagrangian-evolution adjustment (LEA), is proposed to compensate D-QPE from a single radar.
The LEA-QPE shows 1–4% improvements in R(KDP, ZDR) at the C-band radar, which has a larger
scanning temporal gap (up to 10 min). The synthetic LEA-QPEs by combining two radars have
outperformed both D-QPEs and DC-QPEs.

Keywords: quantitative precipitation estimation; dual-polarization radar; Lagrangian evolution
adjustment

1. Introduction

Accurate radar-based quantitative precipitation estimation (QPE) has been one of the
longstanding goals of meteorological radar. Marshall and Palmer [1] utilized horizontal
reflectivity (ZHH, mm6m−3) and a power-law relation, ZHH = aRb (Z-R) obtained from
simulated radar variables based on measured raindrop size distribution (RSD), to estimate
rainfall rate (R, mm h−1). However, the Z-R relation varies vastly in convective, stratiform
precipitation, and different climatological regions due to the natural variability in RSD [2].
Seliga and Bringi [3] proposed dual-polarization (dual-pol) radar, which is capable of
transmitting horizontal and vertical electromagnetic signals. Additional dual-pol variables
from a dual-pol radar, such as the differential reflectivity (ZDR) and specific differential
phase (KDP), are utilized in QPE. Consequently, the QPE has significantly been improved
by the better quality of radar data and the inclusion of the RSD information [4–24].

Diverse forms of power-law QPE relations were recommended using single to mul-
tiple dual-pol radar parameters (R(ZHH, ZDR), R(KDP), R(KDP, ZDR), R(ZHH, KDP), and
R(ZHH, KDP, ZDR)); [6–8,11,12,25]. These QPE algorithms have shown pronounced im-
provements compared to the Z-R relation. More sophisticated QPE algorithms were
explored to overcome various QPE issues. For instance, the variational-based algorithm is
developed for attenuation correction and QPE simultaneously [13,19,26]. Moreover, the al-
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gorithm utilizing specific attenuation (i.e., R-A) has demonstrated its superiority in QPE as
well [20–24].

Nevertheless, the dual-pol radar measurement uncertainties contribute to QPE error
significantly [11,27]. The partial beam blockage (PBB), inadequate correction for attenu-
ation, calibration of ZHH and ZDR, and the wet radome effect (WRE) are crucial to QPE
application [11,18,19,27–30]. Furthermore, the variability of RSD also degrades the QPE
performance even though dual-pol radar variables are applied. The QPE can be improved
by using appropriate coefficients in the power-law relationships derived from local RSD
measurements [8,27]. The RSD characteristics of Taiwan in the subtropical region are
diverse among various precipitation systems. Chang et al. [31] has investigated the unique
RSD of typhoon systems using a 2D-Video disdrometer. Lee et al. [32] further utilized a
ten-year JWD disdrometer dataset to study the seasonal variability of RSD in northern
Taiwan. The mean values of mass-weighted diameter (Dm) vary from 1.5 mm of summer
to 0.97 mm of winter, and the standard deviations of Dm are about 0.34–0.49 mm. It is
essential to investigate the impacts of radar data quality control (QC) procedures (e.g.,
attenuation effect, the WRE) and unique RSD on Taiwan’s QPE.

Taiwan’s radar network consists of three Doppler single-pol S-band radars, one dual-
pol S-band radar, and eight dual-pol C-band radars [29]. These radars have two primary
purposes: weather surveillance and QPE; thus, different scanning strategies with various
spatiotemporal resolutions are applied accordingly [33]. Regarding the QPE, each radar
has an individual scheme for operational QPE [29]. The mosaicked rainfall rate field of
the whole Taiwan domain is generated from instantaneous QPE from each radar via the
distance and height-weighted mean scheme. In order to further improve the accuracy of
QPE from multiple radars, optimization of the QC procedures and QPE coefficients based
on the radar frequencies and Taiwan RSD characteristics is needed.

Furthermore, synchronizing the QPE products from a network of multiple radars
with different temporal resolutions and scanning sequences is very challenging in practice.
The precipitation systems evolving vastly over one radar scan period may degrade the
accuracy of accumulated rainfall estimation. Instead of deriving the accumulated rainfall
by discretely integrating the individual QPE of each radar scan, a new integration method
considering the movement and evolution of the precipitation system is required. The
study from Ventura et al. [15] utilized the advection correction to reduce the error from
low temporal resolution. Chen and Chandrasekar [17] used a Piecewise Cubic Hermite
Interpolating Polynomial (PCHIP)-based interpolation methodology. Nevertheless, neither
the advection correction nor the PCHIP method considers the evolution of precipitation
systems.

This study aims to investigate the impact of critical factors on dual-pol QPE utilizing
S- and C-band radars in northern Taiwan. The essential factors discussed here include the
data QC procedures, RSD variability, and the QPE integration method. The final goal is to
obtain the optimal composite rainfall estimation concurrently using two (or more in the
future) different radars. Section 2 shows the radar data and related QC procedures. The
RSD data, power-law QPE algorithms, and QPE integration method will be introduced in
Section 3. The results of various QPEs will be examined in Section 4. Section 5 provides a
brief summary, and Section 6 closes with a conclusion.

2. Quality Control Procedures for S- and C-Band Dual-Polarization Radars

RCWF (radar code of Wu-Fanshan, NEXRAD WSR-88D S-band dual-pol radar,
Ryzhkov et al. [9] from the Central Weather Bureau (CWB) and NCU C-POL (National
Central University C-band polarimetric radar) located in northern Taiwan are exploited
in this study. Their basic information and locations are shown in Table 1 and Figure 1,
respectively. RCWF was upgraded to dual-pol radar around March of 2014 and remained
operating until the Soudelor typhoon damaged the radome on 8 August in 2015. NCU
C-POL is a research radar upgraded from a decommission Ericsson Doppler radar and has
been utilized to study the RSD characteristics of typhoon systems associated with Taiwan’s
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complex topography [31]. Both radars have the same signal processor (Sigmat RVP8), yet
they have different configurations. As shown in Figure 1, these two radars have broad
overlapping coverage in northern Taiwan. In addition, different frequencies are ideal to
evaluate the performance of dual-pol QPE at different wavelengths.

Table 1. The basic information for RCWF (radar code of Wu-Fanshan, NEXRAD WSR-88D S-band
dual-pol radar, Ryzhkov et al. [9] from the Central Weather Bureau (CWB) and NCU C-POL) National
Central University C-band polarimetric radar).

RCWF NCU C-POL

Wavelength (cm) 10.7 5.3

Location (degree) 121.77 N
25.07 E

212.18 N
24.97 E

Height (m) 766 156

Range resolution (m) 250 250

Beam resolution (degree) 0.5 1
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clutter suppression configurations from different manufacturers induce distinct ground 
clutter characteristics. The degree of the attenuation effect varies according to radar wave-
lengths. Each radar has distinct characteristics of systematic ZHH and ZDR biases due to 
different maintenance and calibration procedures (e.g., transmitter and receiver). Finally, 
different radome materials and radar frequencies cause distinct WREs. The QC proce-
dures for both radars shown in Figure 2 (left panel) have been applied before the QPE 
retrievals. These procedures include the PBB and non-meteorological signal removal, the 
corrections of attenuation, the systematic bias, and the WRE. 
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Radar data with the PBB effect, mainly resulting from Taiwan's complex topography, 
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of the radar beams, estimated by 4/3 of the Earth's radius model, is lower than the top of 
the terrain (50% of the power is blocked), the data and the following bins along the radial 
will be removed. 

Figure 1. An example of (a) RCWF and (b) NCU C-POL lowest available data altitude (km) for quantitative precipitation
estimation (QPE) after the partial beam blockage (PBB) and non-meteorological signal removal.

Both RCWF and NCU C-POL have various data quality issues. Different distributions
of PBB depending on the radar locations are displayed in Figure 1. Distinct ground clutter
suppression configurations from different manufacturers induce distinct ground clutter
characteristics. The degree of the attenuation effect varies according to radar wavelengths.
Each radar has distinct characteristics of systematic ZHH and ZDR biases due to different
maintenance and calibration procedures (e.g., transmitter and receiver). Finally, different
radome materials and radar frequencies cause distinct WREs. The QC procedures for both
radars shown in Figure 2 (left panel) have been applied before the QPE retrievals. These
procedures include the PBB and non-meteorological signal removal, the corrections of
attenuation, the systematic bias, and the WRE.
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2.1. PBB Removal

Radar data with the PBB effect, mainly resulting from Taiwan’s complex topography,
are first identified by a beam blockage simulation [10,18,34,35]. When the central height of
the radar beams, estimated by 4/3 of the Earth’s radius model, is lower than the top of the
terrain (50% of the power is blocked), the data and the following bins along the radial will
be removed.

2.2. Non-Meteorological Signal Removal

Despite the Doppler spectrum clutter suppression has been applied to both RCWF
and NCU C-POL radars, some residual non-meteorological signals remain after the PBB
removal. The standard deviation values of the differential propagation phase shift φDP of
five radar bins along a radial (Std. φDP) and the correlation coefficient (CC) are subsequently
used to filter out non-meteorological signals. The data with the values of Std. φDP higher
than 15◦ or with CC less than 0.85 is removed for RCWF. The corresponding threshold
values of Std. φDP and CC for NCU C-POL are 20◦ and 0.8.

The threshold values of Std. φDP and CC for RCWF and NCU C-POL were obtained
accordingly by examining large amounts of radar data. The values which preserve the
most meteorological signal and reduce the most persistent ground clutters were selected as
the threshold. The same technique has been applied to the operational Doppler dual-pol
radars in Taiwan [33].

2.3. Attenuation Correction

The intrinsic ZHH (Zintrinsic
HH ) and ZDR (Zintrinsic

DR ) can be obtained after attenuation and
bias corrections from the observational ZHH (Zobs.

HH ) and ZDR (Zobs.
DR ) as bellow,

Zintrinsic
HH = Zobs.

HH + AH + Z bias
HH and (1)

Zintrinsic
DR = Zobs.

DR + AHV + Zbias
DR . (2)
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The attenuation effects of ZHH and ZDR on both RCWF and NCU C-POL are cor-
rected by the φDP-based algorithm. The horizontal attenuation (AH, dB) and differential
attenuation (AHV, dB) can be estimated as follows,

AH = α∆φDP and (3)

AHV = β∆φDP. (4)

The coefficients of α and β for S-band (C-band) radar are 0.0151 dB deg−1

(0.0727 dB deg−1) and 0.0025 dB deg−1 (0.0161 dB deg−1), respectively. These coefficients
were obtained from the long-term RSD measurements in northern Taiwan. The RSD data
and implementation of coefficient calculations will be discussed in Sections 3.1 and 3.2,
respectively.

2.4. ZHH Systematic Bias and the WRE Correction

The next step is to correct ZHH biases including the radar systematic bias (i.e., the
miscalibration of transmitter and receiver) and the WRE. The self-consistency among the
ZHH, ZDR, and KDP measurements of rain has been utilized to estimate the radar systematic
bias [36]. The WRE is an additional bias due to the attenuation effect of the water coated
over the radome while a precipitation system is located over the radar site. It has similar
characteristics to the radar systematic bias. Therefore, the ZHH biases which consist of both
radar systematic bias and WRE can be calculated via the self-consistency method. The
radar systematic bias is obtained by averaging the ZHH biases of no-WRE events (identified
by the rain gauge measurements next to the radar site). Hence, the attenuation of ZHH
from the WRE can be derived by examining the excess of estimated ZHH biases from the
systematic bias. On the other hand, the WRE of ZDR measurements depends on the forms
in which the rain accumulates on the radome [37–41]. The forms could be droplets, rivulets,
or non-uniform film and cause diverse WREs of ZDR. It is difficult to estimate the WRE of
ZDR, and there is no practical technique either. Consequently, ZDR is also excluded from
the self-consistency algorithm for the ZHH bias estimation [36] to avoid WRE-contaminated
ZDR.

Here, the attenuation-corrected ZHH (Zcorr.
HH , in mm6m−3) data of rain is applied to the

KDP-ZHH relation to obtain the value of K′DP in each radar bin as shown below,

K′DP = aZcorr.
HH

b. (5)

Based on the RSD measurements in Section 3.2, the coefficients a and b are 5.3× 10−5

(2.5× 10−4) and 0.88 (0.81) for S-band (C-band) radar. The calculated K′DP of each radar bin
is then integrated along a radial to derive the increments of differential phase shift (∆Φ′DP)
as

∆Φ′DP = 2
∫

K′DPdr = 2
∫

aZcorr.
HH

bdr. (6)

dr is the radial resolution of radar data [36]. Since the phase measurement (i.e., ∆ΦDP) is
not affected by the absolute calibration of the radar system and attenuation [11,36], the
ZHH bias (Zbias

HH ) including both the radar systematic and the WRE biases can be estimated
via the calculated ∆Φ′DP and the measured ∆ΦDP as

Zbias
HH =

1
b

log10

(
∆Φ′DP
∆ΦDP

)
. (7)

In practice, the last valid ∆Φ′DP and ∆ΦDP data along a radial below the freezing level
(avoid non-liquid phase data) are used to calculate radial-wise Zbias

HH . The values of ∆Φ′DP
is higher than ∆ΦDP when ZHH is over-calibrated (i.e., positive ZHH bias), and vice versa.
Then the scan-wise representative ZHH bias is determined via the mean value of radial-wise
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Zbias
HH within one scan for the bias correction. Only the WRE of ZHH was considered via a

self-consistency technique. The WRE of ZDR was not corrected in this study.

2.5. ZDR Systematic Bias Correction

The last remaining radar measurement error in the QC processes is ZDR systematic
bias. Since both radars cannot perform vertical pointing scan (birdbath scan), the ZDR
systematic bias is estimated by statistical analysis. The stratiform rain consisting of small
sizes of raindrops mostly has ZDR values slightly above 0 dB. This ZDR characteristic of
light rain is used for ZDR bias estimation. The mean ZDR averaged from the RSD-simulated
ZDR of light rain (i.e., 0.19 dB), mainly the data with ZHH values from 10 to 20 dBZ, is
considered as a reference. The difference between the mean value of radar-measured ZDR
in the light rain region and the reference value is thus reasonably viewed as ZDR systematic
bias. For example, the mean ZDR value in the light rain region from NCU C-POL was
−0.28 dB, then the ZDR bias was determined as −0.47 dB. The ZDR biases of NCU C-POL
were derived case by case and the values were within the range of −0.21 to −0.48 dB in
this study. RCWF is a well-calibrated radar; therefore, ZDR calibration was not applied.

3. Quantitative Precipitation Estimation from S- and C-Band Dual-Polarization Radars

The RSD data obtained from the disdrometer was used to derive the coefficients for
the aforementioned QC procedures and dual-pol QPE algorithms. The procedures of pro-
cessing RSD data, deriving the coefficients of QPE relations, and developing different QPE
(decision-tree) products are introduced. In addition, two integration methods intending to
improve QPE performance are also described in this section.

3.1. Disdrometer Data

In this research, the RSD data collected by a 2D-Video Disdrometer (2DVD, [42])
located at NCU from October of 2000 to June of 2007 is used to characterize the RSD in
northern Taiwan. The 2DVD records the particle diameter (D) and the terminal velocity (Vt)
of each raindrop. The data is quality controlled by the Vt–based filter technique [31,43,44].
The 6-min RSD is then calculated to ensure sufficient raindrop sampling numbers of each
RSD [19,31,32,45]. Moreover, the rainfall rates of less than 1 mm h−1 are removed to
eliminate inadequate RSD data set. There are a total of 14,314 quality-controlled minutely
RSDs available for analysis.

Chen and Chen [46] has investigated the characteristics of Taiwan’s precipitation
systems and classified them into five distinct types. They are spring rain from March
to April, Mei-Yu from May to June, summer convection from July to September, winter
cold front from October to February, and typhoon systems. Most of the systems can be
approximated simply by month, except typhoon is case-selected. Lee et al. [32] utilized
the same classification and demonstrated unique RSD characteristics of these five types of
precipitation systems. The bigger mean raindrop size (i.e., mass-weighted diameter) from
Mei-Yu, summer convection, and typhoon events is found compared to spring rain and
winter cold front.

The NCU 2DVD data is thus classified according to Chen and Chen [46]. The rainfall
intensities of 6-min RSD for each precipitation type are summarized in Figure 3. The
majority of rainfall intensities are less than 15 mm h−1. The maximum rainfall rates of all
types of precipitation are around or above 70 mm h−1. The Mei-Yu and typhoon season
have similar maximum rainfall up to 90 mm h−1. The rainfall rates of the cold front are
mostly below 5 mm h−1. These quality-controlled and classified RSD data are consequently
used to derive the coefficients of various QPE relations.
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3.2. QPE Coefficients

Various forms of power-law relationship using one to two dual-pol parameters were
proposed to improve QPE, namely R(KDP) [6,11,25], R(ZHH, ZDR) [8,12], and R(KDP,
ZDR) [7,8]. The conventional Z-R and the most common dual-pol relations used in this
study are shown in the following,

R(ZHH) = a1Zb1
HH, (8)

R(ZHH, ZDR) = a2Zb2
HHZc2

DR, (9)

R(KDP) = a3Kb3
DP and (10)

R(KDP, ZDR) = a4Kb4
DPZc4

DR. (11)

Lee [27] has shown that the RSD variability is one of the significant error sources in
radar-based QPE. Thus, the correspondingly precipitation-type coefficients in dual-pol QPE
relations are derived for reducing QPE error from the seasonal RSD variabilities [32]. First,
the S- and C-band radar variables (i.e., ZHH, ZDR, KDP, AH, AHV) are computed through
the T-matrix scattering calculation [47] using the measured 6-min RSDs data set from NCU
2DVD, with the assumption of raindrop axis-ratio proposed by Brandes et al. [48] and
Chang et al. [31] to non-typhoon cases and typhoon cases, respectively. Then the coefficients
of Equations (8)–(11) for five types of precipitations (hereafter, seasonal coefficients) are
derived by fitting the simulated radar variables and RSD-derived rainfall rates via the
Levenberg–Marquardt algorithm [49] at both frequencies. Diverse coefficients due to the
natural RSD variability among precipitation systems can be noticed. The coefficients based
on the entire database (hereafter, all-season coefficients) are also obtained for comparison
(Tables 2 and 3). The same procedures is also utilized to derive the coefficients of the
attenuation correction and self-consistency relationship in Equations (3)–(5).
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Table 2. The coefficients of four power-law rain rate relations for S-band radar. The all-season coefficients are derived from
the entire database measured by a 2D-Video Disdrometer (2DVD) at National Central University (NCU). The seasonal
coefficients are classified into spring, Mei-Yu, summer convection, typhoon, and winter cold front.

All-Season Spring Mei-Yu Summer Convection Typhoon Winter Cold Front

R(ZHH)
a1 0.0279 0.0197 0.0244 0.0435 0.0282 0.0408

b1 0.6619 0.6874 0.6779 0.6233 0.6624 0.6173

R(ZHH,ZDR)

a2 0.0046 0.0019 0.0018 0.0011 0.0013 0.0033

b2 0.8492 0.9452 0.9578 1.0017 0.9490 0.8888

c2 −0.6193 −0.9734 −1.0434 −1.1240 −0.7988 −0.7439

R(KDP)
a3 47.5998 44.6864 48.0516 48.3448 64.3293 42.5163

b3 0.7605 0.7950 0.7915 0.7725 0.7278 0.7225

R(KDP,ZDR)

a4 64.8411 61.9421 62.3633 63.3633 73.0964 60.2012

b4 0.9880 0.9782 0.9727 0.9727 0.9476 0.9486

c4 −0.6921 −0.6445 −0.6196 −0.6196 −0.6039 −0.5836

Table 3. Same as Table 2 but for C-band radar.

All-Season Spring Mei-Yu Summer Convection Typhoon Winter Cold Front

R(ZHH)
a1 0.0376 0.0260 0.0316 0.0710 0.0360 0.0434

b1 0.6340 0.6330 0.6558 0.5761 0.6394 0.6138

R(ZHH,ZDR)

a2 0.0035 0.0014 0.0014 0.0013 0.0010 0.0028

b2 0.8886 0.9922 0.9952 1.0018 0.9812 0.9199

c2 −0.6575 −0.9840 −1.0031 −1.0239 −0.7714 −0.7474

R(KDP)
a3 26.2343 23.9480 25.8619 26.4884 36.1670 24.0925

b3 0.7485 0.7823 0.7784 0.7590 0.7158 0.7103

R(KDP,ZDR)

a4 31.2514 29.8459 30.4106 29.9747 36.8965 30.3301

b4 0.9648 0.9563 0.9593 0.9381 0.9212 0.9500

c4 −0.5988 −0.5334 −0.5418 −0.5132 −0.5146 −0.5717

The seasonal coefficients are expected to diminish the RSD variations by considering
the seasonal RSD characteristics, thus outperform all-season coefficients. The benefit of
optimized QPE coefficients is first examined via the simulated data. The estimated rainfall
(Rest) using seasonal and all-season coefficients, respectively, are derived from the RSD-
simulated radar variables, and its performance is validated against RSD-derived rainfall
rates (Rt). Since radar variables and Rt are both based on the same database, namely,
without radar measurement errors, the influence of the RSD variability on QPE can be
investigated solely. The normalized bias (NBIAS) and normalized root mean square error
(NRMSE) are calculated for validation,

NBIAS =
∑ (Rt−Rest)

N

Rt
and (12)

NRMSE =

(
∑ (Rt−Rest)

2

N

)0.5

Rt
. (13)

N is the number of RSD.
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The results in Figure 4 (upper panel) show that the values of NBIAS of QPEs using
seasonal coefficients are closer to 0 than using all-season coefficients at S band, while C-
band QPEs have comparable results. The NRMSEs of QPEs using seasonal coefficients are
consistently lower than using all-season coefficients (Figure 4 lower panel). The improve-
ments from applying seasonal coefficients are most pronounced in R(KDP) and less evident
in R(ZHH). It can be explained by the fact that the seasonal variability of Taiwan RSD
is mostly owing to small to medium sizes of raindrops [32] by which KDP is dominated.
Moreover, the KDP-based algorithms outperform ZHH-based algorithms at both C and S
bands. R(KDP, ZDR) has the lowest NRMSE due to the additional RSD information from
ZDR. The results show a good agreement with Bringi and Chandrasekar [11] and Lee [27].
Even though dual-pol radar variables have been utilized, applying seasonal coefficients in
QPE relations further reduces the QPE uncertainty by diminishing the RSD variability.
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Figure 4. The normalized bias (NBIAS) of estimated rainfall rates using seasonal (solid lines) and all-season (dashed lines)
coefficients at (a) C-band and (b) S-band. (c) and (d) are the same but for the normalized root mean square error (NRMSE).
The estimated rainfall rates are derived from the RSD-simulated radar variables and compared to RSD-derived rainfall rates
for the theoretical verification.

3.3. Simplified Decision-Tree QPE

In practice, various dual-pol radar measurement errors cause a decline in QPE perfor-
mance [27]. For instance, the noisy ZDR due to a fast-scanning radar with a low sampling
rate [11,28] severely affects ZDR-based QPEs. The range-derivative KDP estimated from
φDP requires various filtering techniques [8,11,50–53] and introduces more uncertainty in
KDP-based QPEs. In the case of light rain, KDP is too small to be estimated with sufficient
accuracy. The combination of different dual-pol QPE algorithms using decision-tree logic
was thus proposed [8,9,14,16,54]. The superiority of this composite method over a single
dual-pol algorithm has been proved [8].

Most of the decision-tree algorithms use more than two dual-pol QPE relationships.
For example, studies from [14,16,54] utilize three dual-pol QPE relationships including
R(Z), R(ZHH, ZDR), and R(KDP, ZDR) for their final QPE products. In this study, however,
each dual-pol QPE algorithm is combined with R(Z) only. The purpose of utilizing sim-
plified decision-tree algorithms is to examine the performance of specific dual-pol QPE
relationships solely. In Figure 2 (right panel), the decision-tree algorithms are applied to
quality-controlled plan position indicator (PPI) radar data. An additional filter of ZHH less
than 10 dBZ, whose contribution to accumulated rainfall is neglectable, is applied. Each
algorithm has its own criteria to assign different QPE relationships (Step C). The criteria
were determined theoretically based on the dual-pol radar principle [11] and empirically
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adopted from previous researches. The concept is to avoid using inaccurate KDP in light
rain and negative-biased ZDR due to the WRE in pure rain. For clarity, the simplified
decision-tree QPE combining Z-R with R(ZHH, ZDR), R(KDP) or R(KDP, ZDR) are referred to
R(ZHH, ZDR), R(KDP) or R(KDP, ZDR) QPEs, hereafter. To derive the composite QPE, the
PPI QPE is then interpolated into the Cartesian coordinate. The lowest available Cartesian
QPE is implemented as a final composite QPE product. These procedures are similar to
Kwon et al. [18].

3.4. Integration Methods for Radar-Based QPE

Conventionally, the radar-based QPE is obtained by integrating each radar scan
discretely, hereafter D-QPE (∆Ti: time difference between two scans). The D-QPE of rapidly-
evolving severe precipitation systems suffers from an inadequate radar scanning rate. Some
researches proposed different solutions, namely the advection correction [15] and PCHIP
interpolation [17]. Nevertheless, the influence of the evolution of the precipitation systems
on QPE has not been well investigated. As aforementioned the time resolutions of RCWF
and NCU C-POL were not synchronized and varied between 5 to 10 min (Table 4). To
overcome this issue, the D-QPEs from asynchronous radars are “discretely” combined
(hereafter, DC-QPE) to increase temporal resolution. The DC-QPE then can better reveal
the evolution of precipitation than D-QPE does. Figure 5 displays an example that the NCU
C-POL (red circles) and RCWF (blue crosses) D-QPEs are "discretely" combined whenever it
is available (marked by black triangles). Hence, the DC-QPE has more sampling numbers.

Table 4. The information of 18 heavy rainfall events investigated in this study.

Date (hour) Precipitation Type Max. Hourly Rainfall
(mm h−1)/Accumulated Rainfall (mm)

Scan Time (min:s)

RCWF NCU C-POL

26 April 2014 (1 h) Spring 60 5:50 6:40

5 May 2014 (2 h) Mei-Yu 20/33 5:50 6:40

9 May 2014 (2 h) Mei-Yu 23.5/35 5:50 6:40

15 May 2014 (1 h) Mei-Yu 57.5 5:50 6:40

20 May 2014 (3 h) Mei-Yu 26/50 5:50 6:40

21 May 2014 (2 h) Mei-Yu 38/52.5 5:50 6:40

29 May 2014 (6 h) Mei-Yu 56.5/115 5:50 6:40

5 June 2014 (6 h) Mei-Yu 46/135.5 5:50 6:40

7 June 2014 (1 h) Mei-Yu 35 5:50 6:40

31 July 2014 (1 h) Summer convection 48.5 5:50 10:00

13 August 2014 (1 h) Summer convection 36.5 5:50 10:00

19 August 2014 (3 h) Summer convection 71.5/92.5 5:50 10:00

24 February 2015 (4 h) Cold front 29.5/58.5 5:50 10:00

12 May 2015 (2 h) Mei-Yu 41.5/50.5 5:50 10:00

22 May 2015 (2 h) Mei-Yu 19.5/28 5:50 10:00

6 June 2015 (2 h) Mei-Yu 37/45.5 5:50 10:00

14 June 2015 (2 h) Mei-Yu 103.5/167 5:50 10:00/12:30

23 July 2015 (2 h) Summer convection 74/80 5:50 10:00/12:30
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Figure 5. An example of time steps of available data for QPE on 14 June, 2015. Red circles represent
the NCU C-POL discrete QPE (NCU C-POL D-QPE), and blue crosses for the RCWF discrete QPE
(RCWF D-QPE). Black triangles are the discretely combined C- and S-band QPE (DC-QPE) and green
dots are the Lagrangian-evolution adjustment QPE (LEA-QPE).

However, not every location can be covered by two radars or more. A novel algorithm,
namely Lagrangian-evolution adjustment (LEA), is developed for improving D-QPE/DC-
QPE in this study. The QPEs from RTi

and RTi+1
are first used to derive the advection

speed and direction of precipitation movement via tracking radar echo based on the cross-
correlation (TREC, [15,55]). Thus, the RTi

can be forward advected to Ti+1 (= Ti + ∆Ti),
and the RTi+1

can be backward advected to Ti. The evolution of the precipitation system
between Ti and Ti+1 is subsequently estimated via time-weighted linear interpolation. The
linear interpolated QPE (RTi+∆tj

) at Ti + ∆tj is derived as follows,

RTi+∆tj = RTi

∆Ti − ∆tj

∆Ti
+ RTi+∆Ti

∆tj

∆Ti
. (14)

The interval of ∆tj is defined as one minute (Figure 5 green dots) in this study. The
seamless LEA-QPEs with the considerations of the advection and evolution of the precipi-
tation systems are implemented between Ti and Ti+1.

4. QPE Comparison between C- and S-Band Radar

Eighteen heavy rainfall events for real case studies were selected by examining the
rain gauge measurements in northern Taiwan (Table 4). Most of the events are from the
Mei-Yu season (East Asia rainy season, from mid-May to mid-June for Taiwan), since it
contributes to most of the rainfall in Taiwan [46]. The most intensive hourly rainfall rate
and highest event-accumulated rainfall are 103.5 mm h−1 and 167.0 mm on 14 June, 2015.
RCWF and NCU C-POL have diverse scanning strategies and configurations. RCWF has
higher azimuthal and temporal resolution compared to NCU C-POL (Tables 1 and 4). The
advantage of NCU C-POL is its location at a relatively lower altitude (156 m) than RCWF
(766 m), providing closer observations to the surface and less vertical discrepancy than
RCWF. QPE performances are evaluated against operational tipping bucket rain gauge
measurements which are collected and maintained by CWB (black dots in Figure 1). For
clarity, the S- and C-band QPEs will refer to RCWF and NCU C-POL QPEs hereafter.

4.1. The Influence of QC Procedures on C- and S-Band QPE

As discussed in previous studies [11], the KDP-based QPEs are immune to the system-
atic bias or attenuation effect and are expected to have better performance than ZHH-based
QPEs. Nevertheless, ZHH-based QPEs are still applied in the simplified decision-tree QPE
algorithms for specific purposes (e.g., avoid noisy KDP in light rain). Thus, it is essential
to examine the impacts of various measurement errors from attenuation and the WRE on
QPE.
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To avoid WRE-contaminated ZDR error in the analysis, only R(ZHH) and R(KDP) are
examined for comparison. As shown in Figure 6, both the C-band R(ZHH) and R(KDP)
QPEs have higher values of NRMSE than the S-band when only the systematic bias is
corrected. These results can be expected because of less attenuation and the WRE at longer
wavelength radars. The values of NRMSE decrease dramatically at C band after the ensuing
attenuation correction (brown areas), and the improvements are more pronounced than at
S band. The results indicate that applying a proper attenuation correction can significantly
mitigate the impacts of the attenuation effect on the C-band QPEs. The C- and S-band
QPEs have a comparable performance after the systemic bias and attenuation corrections.
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Figure 6. The NRMSEs of the C-band (refer to NCU C-POL) and S-band (refer to RCWF hereafter)
QPEs at different levels of ZHH corrections. The height of each bar indicates the NRMSE after
systematic-bias correction only. The brown color represents the reductions of NRMSE after the
ensuing attenuation correction, and the yellow marks the reductions after the correction of the wet
radome effect (WRE). The blue color is the final NRMSE when all QC procedures, including the
systematic-bias, attenuation and wet-radome corrections, are completed.

Removing the WRE further reduces QPE errors (yellow areas). The most pronounced
reduction of NRMSE can be found in the C-band R(ZHH) and R(KDP) QPEs. The C-band
radar is more vulnerable to the weakening of the backscattering power due to rain over
the radome. The C-band QPEs show slightly better results compared to S-band after the
complete data QC procedures. The ZHH correction here is also beneficial to the R(KDP)
algorithms since ZHH used in light rain is corrected, and more accurate ranges of ZHH are
identified for the decision-tree criterion.

4.2. C- and S-Band Seasonal and All-Season Coefficients in QPE Algorithms

The dual-pol QPEs using seasonal and all-seasonal coefficients, respectively, in real
case are first examined by comparing their NBIAS (Figure 7 upper panel). The QPEs using
seasonal coefficients are consistently less biased than the ones using all-season coefficients.
In terms of NRMSE (lower panel), C-band QPEs of seasonal coefficients show lower errors
than all-seasonal coefficients, except for the R(ZHH, ZDR) algorithm. For the S-band QPEs,
the seasonal ZDR-based algorithms have slightly higher NRMSE values compared to the
all-season. It is noticed that both C- and S-band R(ZHH, ZDR) algorithms using the seasonal
coefficients perform much worse. The biased ZDR measurement due to the uncorrected
WRE (visually examined, not shown in the paper) is postulated as the main reason.
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Figure 7. Same as Figure 4 but from real cases. Eighteen heavy precipitation events observed by NCU C-POL and RCWF
are evaluated via rain gauge measurements.

However, the R(KDP, ZDR) algorithms are less affected by ZDR than R(ZHH, ZDR). It
can be explained by the more negative (more weighted) seasonal exponents of ZDR in the
R(ZHH, ZDR) relations, and the less negative (less weighted) seasonal exponents of ZDR
in R(KDP, ZDR). The sophisticated seasonal R(ZHH, ZDR) algorithms are sensitive to the
ZDR bias in the real case. The R(ZHH, ZDR) algorithms using seasonal coefficients at S-band
shows less deterioration due to the relative insensitivity of ZDR to the WRE. Overall, R(KDP)
shows the most improvements after using seasonal coefficients, consistent with the result
from the theoretical verification in Section 3.2.

4.3. C- and S-Band Discrete QPE Comparison (D-QPE)

The C- and S-band D-QPEs are first compared individually at different rainfall in-
tensities to identify the best algorithm. The NRMSE (or NBIAS) as a function of rainfall
intensities are derived by gradually increasing rainfall intensity thresholds in Equations (12)
and (13); namely, only the data of Rt > rainfall intensity threshold are included for the
calculation. In Figure 8, the R(KDP, ZDR) algorithm shows the lowest NRMSE value over
other algorithms consistently at different rainfall intensities at both C- and S-band radars.
The KDP-based algorithms mostly outperform ZHH-based algorithms. The R(ZHH, ZDR)
algorithm performs worst at C-band due to its higher sensitivity of ZDR to the WRE, and
R(ZHH) has the highest values of NRMSE at S-band.
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Subsequently, various D-QPEs from two radars are compared in Figure 9. Except for
the R(ZHH, ZDR) algorithm, the C-band D-QPEs are slightly better than S-band D-QPEs,
which show smaller errors in heavy rain. Better results from the C-band radar can be
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concluded for two reasons. First, the C-band radar is located at a relatively lower altitude
and provides radar measurements closer to the surface. Second, the KDP measurement is
more sensitive to rainfall rate at C band. Beware that the C-band QPEs are obtained with a
longer radar scan period, otherwise the advantages of the C-band radar would be more
noticeable. As the comparable QPEs from S- and C-band radar have been obtained after
the complete QC procedures and seasonal coefficients are applied, the integration method
is investigated in the next section.
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4.4. Discretely Combined C- and S-Band QPEs (DC-QPE)

The results of DC-QPEs (Figure 10 black lines) show that both R(KDP) and R(KDP, ZDR),
which are the best D-QPEs and thus chosen for further examination, have pronounced
improvements. The DC-QPEs outperform both S- and C-band D-QPEs, especially in R(KDP,
ZDR), with lower values of NRMSE in all rainfall intensities. The reductions of NRMSE
from D-QPEs to DC-QPEs are about 1.5–7.0% in R(KDP) and about 3.5–8.5% in R(KDP, ZDR).
The encouraging improvements confirm the fact that radar scanning strategy (i.e., temporal
resolution) does play a crucial role in radar-based QPE. Integrating asynchronous D-QPE
products can reduce the inaccuracy dramatically by increasing the radar sample number.
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4.5. Lagrangian-Evolution Adjustment (LEA) QPE

Figure 11 demonstrates two C-band QPE maps derived from R(KDP, ZDR) at 06:54 UTC
(RTi

) and 07:04 UTC (RTi+1
) on 19 August in 2014. The temporal resolution (∆Ti) in this case

is 10 min. The convective core (R > 100 mm h−1) and precipitation area (R > 10 mm h−1)
shifted northward noticeably within 10 min. It also clearly shows the precipitation system
not only moved fast but also evolved vastly. The heavy rainfall area had expanded, and
its intensity had been enhanced. An example of LEA-QPE of ∆tj = 5 min is shown in
Figure 11c. The convective core (blue

⊕
) is located between the cores of RTi

and RTi+1
(white and black

⊕
). The movement and evolution of the precipitation structure are also

noticeable. There are nine additional LEA-QPEs obtained within these 10 min using the
LEA technique.
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) on
19 August in 2014, and LEA-QPE at (c) 06:59 UTC as ∆tj = 5 min. The solid contour lines represent the precipitation
area (R > 10 mm h−1) and

⊕
marks indicate the convective core where R > 100 mm h−1.

The C-band radar, which has larger values of ∆T than the S-band, shows 1–4% re-
ductions of NRMSE after the LEA algorithm is applied (Figure 12). On the other hand,
S-band LEA-QPEs have little improvement with the NRMSE values remaining similar to
D-QPEs. Moreover, the C-band LEA-QPEs have consistently lower values of NRMSE than
the S-band LEA-QPEs. These results indicate that the LEA algorithm has more positive
feedback in the case of large ∆T. The most improvements are found in rainfall rates above
40 mm h−1 in R(KDP, ZDR). It is postulated that the evolutions of the precipitation systems
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can be mainly revealed by the RSD variations. Hence, the LEA algorithm can further
improve ZDR-based QPEs by including the RSD evolutions from ZDR measurements.
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As discussed in the previous section, the DC-QPE outperforms the D-QPE by com-
bining the S- and C-band D-QPEs. Applying the LEA technique compensates for the
disadvantage of relatively lower temporal resolution at the C-band radar. In Figure 13 (up-
per panel), the QPEs derived from R(KDP) show a consistent underestimation of the rainfall
rate, and ones from R(KDP, ZDR) are less biased. When the LEA technique is applied to
DC-QPE (LEAC-QPE), the LEAC-QPEs are slightly better than DC-QPEs for R > 0 mm h−1.
The difference between LEAC-QPEs and DC-QPEs diminishes as the rainfall intensity
increases. NRMSE in the lower panel of Figure 13 shows that the DC-QPEs outperform
both the S- and C-band LEA-QPEs with lower NRMSE. LEAC-QPEs show nearly identical
NRMSE values to DC-QPEs in both R(KDP) and R(KDP, ZDR). Overall, the LEAC-QPEs
have less biased NBIAS than DC-QPEs and the lowest NRMSE as DC-QPEs.
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5. Summary

The dual-pol QPEs of RCWF and NCU C-POL radars have been investigated compre-
hensively in this study. Three key factors influencing the QPE accuracy, namely, the radar
data quality, RSD variability, and the QPE integration method, were examined. Eighteen
heavy rain events over northern Taiwan were selected for QPE validation in this work.
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The QC procedures, including the corrections of attenuation, the systematic bias, and
the WRE for S- and C-band radars over northern Taiwan, have been documented. Different
levels of ZHH corrections were applied for QPEs for 18 heavy precipitation events. The
results show that attenuation and the WRE play crucial roles in QPE, even for S-band
radars. The proper QC procedures significantly reduce the QPE uncertainty. The C-band
QPE, in the end, performs slightly better than the S-band partially due to the lower altitude
of the radar-site. The R(KDP, ZDR) algorithm outperforms other QPEs.

The all-season and seasonal coefficients in four power-law QPE relations derived from
eight-year 2DVD disdrometer data were examined to investigate the impact of seasonal
RSD variability on QPE. The results indicate that the seasonal coefficients pronouncedly
reduce the error by diminishing the RSD variability. The R(ZHH, ZDR) algorithm has higher
values of NRMSE due to the WRE of ZDR measurements.

With the proper QC procedures and seasonal coefficients, the comparable QPEs from
S- and C-band radars are thus ready for further composition. Even though these QPEs were
from asynchronous S- and C-band radar scanning with different temporal resolutions, two
QPE integration methods have been carried out to increase the radar sample number. The
D-QPEs from C- and S-band radars were first combined discretely. DC-QPE has improved
the QPE accuracy significantly with the reductions of NRMSE about 1.5–7.0% in R(KDP) and
about 3.5–8.5% in R(KDP, ZDR) from D-QPE to DC-QPE. However, the D-QPE/DC-QPE
may still miss the motion and evolution of the precipitation systems. A newly developed
algorithm, namely Lagrangian-evolution adjustment (LEA), is proposed in this study to
further improve the QPE performance. The advection of precipitation systems is estimated
via a tracking technique, and the evolution is derived via time-weighted linear interpolation.
The LEA-QPE has shown a noticeable improvement in R(KDP, ZDR) at the C-band radar,
which has larger scanning temporal gaps (up to 10 min). NRMSE reduction after the
LEA algorithm is about 1–4%. Further combining the DC-QPE and LEA-QPE, namely
LEAC-QPE, shows little improvement.

6. Conclusions

The individual dual-pol QPE can be significantly improved by two key factors: (1)
improving the data quality by applying proper radar data quality procedures, includ-
ing attenuation, the radar systematic bias and the WRE corrections, and (2) reducing the
influence of the RSD variability on dual-pol QPE by applying seasonal coefficients. Con-
sequently, the comparable QPEs from asynchronous S- and C-band radar scans can be
composited using more sophisticated integration methods, such as discretely combined
QPE and Lagrangian-Evolution Adjustment (LEA) proposed in this study. The synthetic
LEA-QPEs by combining S- and C-band dual-pol radars have outperformed conventional
QPEs.
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