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Abstract: The Gaussian mixture model (GMM) plays an important role in image segmentation,
but the difficulty of GMM for modeling asymmetric, heavy-tailed, or multimodal distributions of pixel
intensities significantly limits its application. One effective way to improve the segmentation accuracy
is to accurately model the statistical distributions of pixel intensities. In this study, an innovative
high-resolution remote sensing image segmentation algorithm is proposed based on a flexible
hierarchical GMM (HGMM). The components are first defined by the weighted sums of elements,
in order to accurately model the complicated distributions of pixel intensities in object regions.
The elements of components are defined by Gaussian distributions to model the distributions of pixel
intensities in local regions of the object region. Following the Bayesian theorem, the segmentation
model is then built by combining the HGMM and the prior distributions of parameters. Finally, a novel
birth or death Markov chain Monte Carlo (BDMCMC) is designed to simulate the segmentation model,
which can automatically determine the number of elements and flexibly model complex distributions
of pixel intensities. Experiments were implemented on simulated and real high-resolution remote
sensing images. The results show that the proposed algorithm is able to flexibly model the complicated
distributions and accurately segment images.

Keywords: high-resolution remote sensing image segmentation; Bayesian theorem; Gaussian mixture
model (GMM); hierarchical Gaussian mixture model (HGMM); birth or death Markov chain Monte
Carlo (BDMCMC)

1. Introduction

With the developments in remote sensing technology, the spatial resolution of remote sensing
imagery has improved from meter level to centimeter level [1–3]. Accurate segmentation of
high-resolution remote sensing images plays an important role in obtaining detailed information
of ground objects. Recently, various image segmentation algorithms have been proposed [4–7].
Among them, the statistical model-based segmentation algorithm has received extensive attention. Its
major advantage is its ability to model class attributes and spatial relations of pixels in a probabilistic
way [8]. For example, the label field of pixels can be modeled using the Markov random field (MRF) [9],
while the probability density function (pdf) of the pixel label can be defined by the Gibbs distribution
combining the labels of neighboring pixels [10,11]. Its primary concerns consist of accurately building
the statistical model of the image and estimating the optimal model parameters. The former is the
precondition while the latter is an essential requirement to obtain good results. In high-resolution
remote sensing imagery, the statistical distribution of pixel intensities appears as randomly asymmetric,
heavy tailed, or multimodal in an object region [12,13]. One effective way of obtaining highly accurate
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segmentation results is accurately modeling the distribution of pixel intensities. However, this process
is not simple nor straightforward, and modeling complicated distributions has resulted in significant
challenges in designing statistical model-based image segmentation algorithms.

In recent decades, a number of segmentation algorithms based on statistical models have been
proposed [14,15]. Among them, the single distribution-based segmentation algorithm, which assumes
that the statistical distribution of pixel intensities approximately satisfies the identical and independent
distribution, is usually applied for remote sensing images. Wang et al. [15] proposed the synthetic
aperture radar (SAR) image segmentation algorithm, where the statistical distributions of pixel
intensities are assumed to satisfy the identical and independent Gamma distributions. However,
the algorithm fails to consider the difference of pixel intensities in the object region and the similarity
of pixel intensities in the different regions. This results in the algorithm having some difficulties in
modeling the complicated distributions of pixel intensities.

To resolve this problem, the finite mixture model (FMM) [16], which is defined by the weighted
sums of components, has been proposed to model the statistical distribution of pixel intensities in
image segmentation. The components are used to model the statistical distribution of pixel intensities
in the object region. FMM can model more accurately the statistical distribution of pixel intensities.
In practice, the components of FMM can be defined by various distributions to form the different
mixture models. The Gaussian mixture model (GMM) with a Gaussian distribution as its component is
the most widely used mixture model in image segmentation [8,17–21], due to its simple structure and
easy implementation. Gaussian distribution is symmetric, which is why the component of GMM has
difficulties in modeling the asymmetric, heavy-tailed, or multimodal distributions of pixel intensities.
In order to improve the robustness of modeling complicated distributions, the student’s t-mixture model
(SMM) is proposed. The student’s t-distribution can be heavy tailed by adjusting its freedom parameter.
Hence, the component of SMM is more robust than GMM’s in modeling heavy-tailed distributions
of pixel intensities [22,23]. However, modeling the asymmetric or multimodal distributions of pixel
intensities remains difficult. To address this problem, the Gamma mixture model (GaMM) is proposed.
Its component is a Gamma distribution, which becomes asymmetric and heavy tailed by changing
its shape and scale parameters. GaMM is widely used to model the statistical distribution of pixel
intensities in SAR image segmentation [24,25]. However, it still fails to solve the problem of modeling
the multimodal distribution of pixel intensities. This means that while the said mixture models can
be used in asymmetric or heavy-tailed distributions, their usage in modeling randomly asymmetric,
heavy-tailed, or multimodal distributions of pixels intensities is still heavily constrained. Additionally,
for high-resolution remote sensing images, such a limitation would yield terrible results.

To address this concern, some researchers have utilized the weighted sums of distributions instead
of the component of FMM in modeling the statistical distribution of pixel intensities in the object
region. For example, Nguyen et al. [26,27] proposed a medical image segmentation algorithm based
on asymmetric GMM and a feature selection algorithm based on asymmetric SMM. However, their
proposed algorithms are still sensitive to image noise and do not consider the spatial relation of
pixels. Ji et al. [28] proposed a medical image segmentation algorithm based on spatially constrained
asymmetric GMM. However, this algorithm is difficult to apply when segmenting high-resolution
remote sensing images and cannot obtain good results. This is because the algorithm is complicated
and utilizes a fixed number of distributions, which results in less flexibility in modeling complicated
statistical distributions. The features of high-resolution remote sensing images are also explain this,
such as the diversity of ground objects, the complexity of reflected spectrum, and the uncertainty of
imaging conditions.

In order to resolve the various concerns and accurately segment high-resolution remote sensing
images, a new hierarchical GMM (HGMM)-based high-resolution remote sensing image segmentation
algorithm is proposed in this study. The hierarchy of HGMM presents its components and the
corresponding elements for each component. The proposed algorithm has the following advantages:
First, the proposed algorithm can accurately model the complicated distributions of pixel intensities in
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high-resolution remote sensing images. Since the components of HGMM are defined by the weighted
sums of elements, the algorithm can flexibly model complicated distributions of pixel intensities in the
object regions. This is a major precondition to obtaining highly accurate segmentation results. Second,
the proposed algorithm considers local spatial relations of pixels by modeling the prior distribution
of the component weight, and therefore has robustness against image noise. Finally, the proposed
algorithm is designed using the birth or death Markov chain Monte Carlo (BDMCMC) in simulating the
segmentation model, which can realize parameter sampling in different dimensions. Thus, the number
of elements can be automatically determined to flexibly model the complicated distributions of pixel
intensities. Experiments were conducted on simulated and high-resolution remote sensing images.
The results show that the proposed algorithm has good performance for high-resolution remote sensing
image segmentation.

The remainder of this paper is organized as follows: Section 2 describes the proposed algorithm
in detail. This section includes a discussion on the image model, the segmentation model, and optimal
segmentation. Section 3 presents the experiment results of synthetic and panchromatic remote sensing
images with high resolution. Section 4 presents the discussions of results, and Section 5 presents the
conclusions of the proposed algorithm.

2. The Proposed Algorithm

2.1. Image Model

Let z = {zi; i = 1, . . . , n} be a panchromatic remote sensing image, where i is the index of pixels, n
is the number of pixels, and zi is the intensity of pixel i. In statistical terms, z can be regarded as the
realization of a random field Z = {Zi; i = 1, . . . , n}, where Zi is the random variable defined on pixel i.

In the FMM-based segmentation algorithm, the pdf of the pixel intensity zi can be expressed as:

pi(zi|Ψi) =
k∑

l=1

αlipli(zi|Ωl), (1)

whereΨi = {αi,Ω} is the set of model parameters for pixel i; αi = {αli; l = 1, . . . , k} is the set of component
weights for pixel i; l is the index of the component; k is the number of components corresponding to
the number of object regions; αli represents the probability that pixel i is assigned to the object region l
and satisfies the conditions 0 ≤ αli ≤ 1 and

∑k
l=1 αli = 1;Ω = {Ωl; l = 1, . . . , k} is the set of component

parameters; and pli(zi|Ωl) is the pdf of the zi conditional on the set of the component parameter Ωl,
which is used to mainly model the statistical distribution of the object region l.

Equation (1) is the general formulation of mixture models, where pli(zi|Ωl) can be defined by
various types of distributions. For example, in GMM, its component is the Gaussian distribution with
a mean µl and variance σl

2, that is:

pli
GMM(zi|Ωl) =

(
2πσ2

l

)−1/2
exp

− (zi − µl)
2

2σ2
l

, (2)

whereΩl= {µl, σl
2} is the set of parameters for component l in GMM. Additionally, commonly used

mixture models include SMM and GaMM [22,25], and their components are defined by the student’s t
and Gamma distributions, respectively.

In this study, a new HGMM is proposed, where the components can accurately model the
asymmetric, heavy-tailed, and multimodal distributions of pixel intensities in each object region.
The pdf of its component can be expressed as:

pli
HGMM(zi|Ωl) =

ml∑
j=1

wl jpl ji
(
zi
∣∣∣θl j

)
=

ml∑
j=1

wl j

(
2πσ2

l j

)−1/2
exp

−
(
zi − µl j

)2

2σ2
l j

, (3)
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where in component l,Ωl = {ml, wl, θl} is the set of parameters; ml is the number of elements and can
be viewed as a random variable to flexibly model the complicated distributions; wl = {wlj; j = 1, . . . ,
ml} is the set of element weights; j is the index of elements; wlj is the weight of element j and satisfies
the conditions 0 ≤ wlj ≤ 1 and

∑ml
j=1 wl j = 1; θl = {θlj; j = 1, . . . , ml} is the set of element parameters;

plji(zi|θlj) is the pdf of the Gaussian distribution called element; θlj = {µlj, σlj
2} is the set of element

parameters; and µlj and σlj
2 are the mean and variance, respectively.

Combining Equations (1) and (3), the pdf of zi givenΨi can be modeled by the HGMM as:

pi(zi|Ψi) =
k∑

l=1

αlipli
HGMM(zi|Ωl) =

k∑
l=1

αli

ml∑
j=1

wl j

(
2πσ2

l j

)−1/2
exp

−
(
zi − µl j

)2

2σ2
l j

. (4)

Equation (4) shows that HGMM has a distinct hierarchy. The HGMM has three layers, and each
layer can be concretely expressed as follow:

1) The basic layer consists of elements, which are used to model the distribution of local sections
of the object region.

2) The second layer consists of components, which are defined by the weighted sums of elements.
They are used to model the statistical distributions of pixel intensities in the object regions.

3) The last layer comprises the HGMM, which is defined by the weighted sums of components,
which are used to model the statistical distribution of pixel intensities in high-resolution remote
sensing imagery.

Assume that the pixel intensities are statistically independent, and the joint distribution of z given
Ψ can be written as:

p(z|Ψ) =
n∏

i=1

pi(zi|Ψi) =
n∏

i=1


k∑

l=1

αli

ml∑
j=1

wl j

(
2πσ2

l j

)−1/2
exp

−
(
zi − µl j

)2

2σ2
l j


, (5)

whereΨ = {Ψi; i = 1, . . . , n} is the set of model parameters, which can be further written asΨ = {α,
m, w, µ, σ2}; α = {αi; i = 1, . . . , n} is the set of component weights; m = {ml; l = 1, . . . , k} is the set of
element numbers; w = {wl; l = 1, . . . , k} is the set of element weights; µ = {µlj; l = 1, . . . , k, j = 1, . . . , ml}
is the set of means; and, σ2 = {σlj

2; l = 1, . . . , k, j = 1, . . . , ml} is the set of variances.
To present the modeling ability of the proposed HGMM and the role of its layers, the complex

histogram and its fitting curves are shown in Figure 1. The histograms of data are shown in Figure 1a,
which presents the regions in different colors: Yellow (Region 1), green (Region 2), and blue (Region 3).
The yellow histogram is asymmetric; the green histogram is asymmetric, heavy tailed, and multimodal;
and the blue histogram is asymmetric and multimodal. The fitting curves of the HGMM and its
components are shown in Figure 1b, which shows that the HGMM with the new components can
accurately fit the complex histograms. For example, the green histogram, which is asymmetric,
heavy tailed, and multimodal, can accurately be fitted by the green curve. The fitting curves of the
elements for each component are shown in Figure 1c, which further indicates the ability of the HGMM
to fit complex histograms.

2.2. Segmentation Model

In order to realize image segmentation, the posterior distribution ofΨ given z is viewed as the
segmentation model. Following the Bayesian theorem [29,30], the segmentation model can be built by
combining the HGMM and the prior distributions of its parameters. It can be written as:

p(Ψ|z)∞ p(z|Ψ)p(Ψ) = p(z|Ψ)p(α, m, w,µ,σ), (6)
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where p(Ψ) is the prior distribution ofΨ. According to the relations among model parameters, p(Ψ) is
further written as:

p(Ψ) = p(α)p(m)p(w|m)p(µ
∣∣∣m)p(σ|m). (7)
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Figure 1. (a) Histogram of data with three regions, where regions 1-3 is shown in yellow, green, and 

blue, respectively. (b) HGMM and its three components, where the red, yellow, green, and blue 

curves present p(z|Ψ), α1p1(z|Ω1), α2p2(z|Ω2), and α3p3(z|Ω3), respectively. (c) Elements of each 

component, where pink, cyan, and black curves are α1w11p11(z|θ11), α2w21p21(z|θ21), and α3w31p31(z|θ31), 

Figure 1. (a) Histogram of data with three regions, where regions 1-3 is shown in yellow, green, and
blue, respectively. (b) HGMM and its three components, where the red, yellow, green, and blue curves
present p(z|Ψ), α1p1(z|Ω1), α2p2(z|Ω2), and α3p3(z|Ω3), respectively. (c) Elements of each component,
where pink, cyan, and black curves are α1w11p11(z|θ11), α2w21p21(z|θ21), and α3w31p31(z|θ31), and pink,
cyan, and black dotted curves are α1w12p12(z|θ12), α2w22p22(z|θ22), and α3w32p32(z|θ32), respectively.

The prior distributions of model parameters are defined as follows:
1) p(α). In order to take the spatial relations of pixels into account, MRF [8,9] is built on the

component weights. The pdf of αi can be defined by the Gibbs distribution [8] given the component
weights of neighboring pixels for pixel i. Then, the prior distribution of α can be modeled as:

p(α) =
1
A

exp

−β n∑
i=1

∑
i′∈Ni

k∑
l=1

(αli − αli′)
2

, (8)

where A is the normalizing constant and is usually set to be 1; β is a constant controlling the smoothing
strength of neighboring pixels of pixel i; Ni is the set of indexes for neighboring pixels in the square
window centered at pixel i; and, i’ is the index of neighboring pixels.

2) p(m). Assume that the number of elements ml, l = 1, . . . , k satisfy the independent and identical
truncated Poisson distribution [15] with parameter λ, which can be written as:

p(m) =
k∏

l=1

p(ml) =
k∏

l=1

λml exp(−λ)
ml!

. (9)

3) p(w|m). Given the numbers of elements ml, l = 1, . . . , k, the element weight vectors wl, l = 1, . . . ,
k have different dimensions. Since the Dirichlet distribution [31] is flexible in modeling the statistical
distribution of multidimensional data, it can be used to model the pdf of the weight vector wl. Assume
that the element weights are independent among components. Accordingly, the prior distribution of w
given m can be written as:

p(w|m) =
k∏

l=1

p(wl|ml) =
k∏

l=1

Γ

 ml∑
j=1

δl j

 ml∏
j=1

w
δl j−1
l j

Γ
(
δl j

) , (10)

where Γ(·) is Gamma function; δlj is the parameter of the Dirichlet distribution, which can be further
written as δ = {δl; l = 1, . . . , k} = {δlj; j = 1, . . . , ml}; and, δlj

.s are constants for controlling the peak
position and the steepness of the distribution curves. To simplify the model solution, δlj is set to be the
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same, i.e., δlj = δ. Then, the symmetric Dirichlet distribution is used as the prior distribution of the
element weight, which can be expressed as:

p(w|m) =
k∏

l=1

ml∏
j=1

Γ(δml)wδ−1
l j

Γ(δ)ml
. (11)

4) p(µ|m) and p(σ|m). Given the number of elements ml, µlj (σlj) are assumed to satisfy the identical
and independent Gaussian distribution with a mean µµ (µσ) and variance σµ2 (σσ2), i.e., µlj ~ N(µµ,
σµ2) and σlj ~ N(µσ, σσ2), where µµ(µσ) and σµ2(σσ2) are constants. The joint prior distributions of µ
and σ can be written as:

p(µ
∣∣∣m) =

k∏
l=1

ml∏
j=1

p
(
µl j

∣∣∣ml
)
=

k∏
l=1

ml∏
j=1

(
2πσµ2

)−1/2
exp

−
(
µl j − µµ

)2

2σµ2

, (12)

p(σ|m) =
k∏

l=1

ml∏
j=1

p
(
σl j

∣∣∣ml
)
=

k∏
l=1

ml∏
j=1

(
2πσσ2

)−1/2
exp

−
(
σl j − µσ

)2

2σσ2

. (13)

2.3. Optimal Segmentation

To realize image segmentation, a new BDMCMC algorithm [15,32] is designed to simulate from the
segmentation model in Equation (6), which can implement parameter sampling in various dimensions.
The simulation process can be summarized as follows: Let the set of current parameters beΨ and the
set of candidate parameters be Ψ*, where t is the index of iterations. The acceptance rate a(Ψ, Ψ*)
ofΨ* can be calculated using the posterior distributions ofΨ andΨ*. If a(Ψ,Ψ*) = 1, thenΨ(t+1) =

Ψ*; otherwise,Ψ(t+1) =Ψ. Four simulating operations are designed in this study, including updating
the component weight, updating the element weight, updating the set of element parameters, and
the birth or death an element in a component. The specific processes and the acceptance rates of each
operation are described as follows:

1) Updating the component weight operation. Let the randomly selected component weight be αli,
and this is then changed to αli + α*, where α*

∈(−αli, 1) is the increment weight. To satisfy the constraints
of the component weights for pixel i, their normalization is needed to change each component weight
for pixel i. As a result, the candidate component weights for pixel i can be written as:

α∗i =
{
α∗1i, . . . ,α

∗

li, . . . ,α
∗

ki

}
=

{
α1i/(1 + α∗), . . . , (αli + α∗)/(1 + α∗), . . . ,α∗ki/(1 + α∗)

}
. (14)

Then, the set of candidate component can be written as α* = {α1, . . . , αi−1, αi
*, αi+1, . . . ,αn}. Its

acceptance rate can be obtained as:

a(α,α∗) = min

1,

n∏
i=1

k∑
l=1

α∗li

 ml∑
j=1

wl jpl ji
(
zi
∣∣∣θl j

)
n∏

i=1

k∑
l=1

αli

 ml∑
j=1

wl jpl ji
(
zi
∣∣∣θl j

) ×
exp

−β ∑
i′∈Ni

k∑
l=1

(
α∗li − αli′

)2


exp

−β ∑
i′∈Ni

k∑
l=1

(αli − αli′)
2


. (15)

2) Updating the element weight operation. Let the randomly selected element weight be wlj,
which can then be changed to wlj + w*, where w*

∈(−wlj, 1) is the increment of the weight. To satisfy
the constraints of the element weight in the component l, their normalization is implemented to
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change each element weight for the component l. Consequently, the candidate element weight for the
component l can be written as:

w∗l =
{
w∗l1, . . . , w∗l j, . . . , w∗lml

}
=

{
wl1

1 + w∗
, . . . ,

wl j + w∗

1 + w∗
, . . . ,

wlml

1 + w∗

}
. (16)

Then, the set of candidate element weights can be written as w* = {w1, . . . , wl−1, wl
*, wl+1, . . . ,

wk}. Its acceptance rate can be written as:

a(w, w∗) = min

1,

n∏
i=1

k∑
l=1

αli

 ml∑
j=1

w∗l jpl ji
(
zi
∣∣∣θl j

)
n∏

i=1

k∑
l=1

αli

 ml∑
j=1

wl jpl ji
(
zi
∣∣∣θl j

) ×
ml∏
j=1

(
w∗l j

)δ−1

ml∏
j=1

(
wl j

)δ−1

. (17)

3) Updating the parameter of the element. Let the randomly selected set of element parameters be
θlj = {µlj, σlj

2} and the candidate set of parameters be θlj
* = {µlj

*, σlj
*2}, where µlj

* (σlj
*) is randomly

generated from the Gaussian distribution with the mean µlj (σlj), and the standard deviation εµ (εσ) is
set to 0.5. The set of candidate parameters in component l can be written as θl

* = {θl1, . . . , θlj−1, θlj
*,

θlj+1, . . . , θlml
}. Then, the set of candidate element parameters can be written as θ* = {θ1, . . . , θl−1, θl

*,
θl+1, . . . , θk}. Its acceptance rate can be calculated as:

a(θ,θ∗) = min

1,

n∏
i=1

k∑
l=1

αli

 ml∑
j=1

wl jpl ji
(
zi
∣∣∣θl j
∗
)

n∏
i=1

k∑
l=1

αli

 ml∑
j=1

wl jpl ji
(
zi
∣∣∣θl j

) ×
exp

(
−
(µl j

∗
−µµ)

2

2σµ2

)
exp

−
(
σ∗l j−µσ

)2

2σσ2


exp

(
−
(µl j−µµ)

2

2σµ2

)
exp

−
(
σl j−µσ

)2

2σσ2




. (18)

4) Birth or death of an element in a component. The index of component l is randomly selected from
{1, . . . , k}, and its number of elements is ml. When adding an element in the component l, the candidate

number of elements is ml
* = ml + 1, and correspondingly add wlm∗l

∈ (0, 1) and θlm∗l
=

{
µlm∗l

, σ2
lm∗l

}
,

where the added mean and variance are generated by their prior distribution. The element weights
satisfy the condition

∑ml+1
j=1 wl j = 1. Then, the candidate set of element weights can be written as:

w∗l =
{
w∗l1, . . . , w∗lml

, w∗lml+1

}
=

{
wl1

1 + wlml+1
, . . . ,

wlml

1 + wlml+1
,

wlml+1

1 + wlml+1

}
. (19)

.
The set of candidate element parameters can be written asθl

* = {θl1, . . . , θlml
, θlm∗l

}. The acceptance

rate of adding an element can be written as a(m, m*) = min(1, R), where R is written as:

R =

n∏
i=1

k∑
l=1

αli

 m∗l∑
j=1

w∗l jpl ji

(
zi

∣∣∣∣θ∗l j

)
n∏

i=1

k∑
l=1

αli

 ml∑
j=1

wl jpl ji
(
zi
∣∣∣θl j

)


λ

m∗l
. (20)

When ml > 2, the deletion of an element can be carried out. In this case, the index of the deleted
element j is randomly selected from {1, . . . , ml}, and correspondingly delete wlj and θlj. The new
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element weights of component l can then be written as {wl1, . . . , wlj−1, wlj+1, . . . ., wlml
}. To satisfy the

constraints of element weights, the candidate set of element weights can be written as:

w∗l =
{
w∗l1, . . . , w∗l j−1, w∗l j, . . . , w∗lml−1

}
=

{
wl1

1−wl j
, . . . ,

wl j−1

1−wl j
,

wl j+1

1−wl j
, . . . ,

wlml

1−wl j

}
. (21)

The candidate set of element parameters can be written as θl
* = {θl1

*, . . . , θlj−1
*, θlj

*, . . . , θlm∗l 1}

= {θl1, . . . , θlj−1, θlj+1, . . . , θlml
}. The candidate number of elements is ml

* = ml −1. The acceptance
rate of element deletion can be written as a(m, m*) = min(1, 1/R), given that this operation is antithetical
with element addition.

In iterations, the above operations are carried out in sequence. To realize the image segmentation,
the pixel label can be obtained by maximizing the component weights, which can be written as:

ci = argmax
l∈{1,...,k}

(αli) (22)

where ci is the label of pixel i, and c = {ci; i = 1, . . . , n} is the segmented result of the given image.
The proposed HGMM based segmentation algorithm is summarized in Table 1.

Table 1. HGMM segmentation algorithm.

Input: total iteration T, error e, k, δ, εµ, εσ, λ, µµ, σµ, µσ, σσ and β
Output: ci
InitializeΨ(t), and t = 0
While |log p(z|Ψ(t+1)) − log p(z|Ψ(t))| > e and t < T

Select α*, calculate a(α, α*) using Equation (15)
If a(α, α*) = 1

α(t+1) = α*

Else
α(t+1) = α(t)

End if
Select w*, calculate a(w, w*) using Equation (17)
If a(w, w*) = 1

w(t+1) = w*

Else
w(t+1) = w(t)

End if
Select θ*, calculate a(θ, θ*) using Equation (18)
If a(θ, θ*) = 1

θ(t+1) = θ*

Else
θ(t+1) = θ(t)

End if
Generate r∈(0, 1)
If r > 0.5

ml
* = ml + 1

Calculate R using Equation (20)
Calculate a(m, m*) = min(1, R)

Else
ml

* = ml − 1
Calculate R using Equation (20)
Calculate a(m, m*) = min(1, 1/R)

End if
If a(m, m*) = 1

m(t+1) = m*
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Table 1. Cont.

Else
m(t+1) = m(t)

End if
Calculate p(z|Ψ(t+1)) using Equation (6)
Calculate ci using Equation (22)
t = t + 1;

End while

3. Results

In this section, the segmentation experiments were implemented to test the proposed algorithm
on synthetic high-resolution remote sensing images. The evaluated segmentation algorithms included
hidden MRF (HMRF) [33], fuzzy C-means (FCM) [26], Gamma distribution [15], GMM [20], SMM [23],
and GaMM-based segmentation algorithms. The comparison and implementation of the proposed
algorithms were executed in Matlab software on an Intel Core i5 computer.

Table 2 lists the constants used in the HGMM algorithm, which can be applied in segmentation
experiments of simulated and real high-resolution remote sensing images. When δ is more than 1,
the Dirichlet distribution is the centralized distribution. With the value of δ increasing, the pdf of the
Dirichlet distribution becomes more centralized. Hence, δ can be set to 10, which is appropriate to
constrain the weight of the element. The values of εµ and εσ should be small to generate the candidate
parameter around the current parameters. If the values are too large, the appropriate candidate
parameters will be missed. The coefficient β∈(0, 1) controls the smoothing degree for image noise.
When the value of β increases, the smoothness of the proposed algorithm becomes stronger for image
noise. Hence, β was set to 0.8, which can obtain optimal results in many experiments. The value ÿ was
set by the histogram of the image, and it is greater than 2, which is enough to model the complicated
distributions of pixel intensities in high-resolution remote sensing images. The smaller the value
ÿ is, the less the estimated parameters are. Hence, the value ÿ was set to be 3 in the experiments.
For convenience, the values µµ and σµ were set by the half-interval and quarter-interval values of
the intensity range, respectively. The values µσ and σσ were set by the quarter value of µµ and
σµ, respectively.

Table 2. Setting constants of the HGMM algorithm.

T e δ εµ εσ β λ µµ σµ µσ σσ

300,000 0.001 10 0.5 0.5 0.8 3 128 64 32 16

The initial parameters can be generated as follows. The weights of components and elements
were randomly generated that satisfy their constraint conditions. Means and variances were randomly
generated by their prior distributions.

3.1. Simulated Image

Figure 2a is the template image for the standard segmentation image, in which 1–3 are the labels
of the different object regions. Figure 2b is the simulated image to test the proposed algorithm. Table 3
summarizes the pixel intensities of each object region that are randomly generated by two Gaussian
distributions with different parameters.
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Figure 2. The template image and the simulated image. (a) The template image, (b) the simulated image.

Table 3. The setting parameters of the simulated image.

Element
Region 1 (l = 1) Region 2 (l = 2) Region 3 (l = 3)

j = 1 j = 2 j = 1 j = 2 j = 1 j = 2

wlj 0.4 0.6 0.4 0.6 0.4 0.6
µlj 50 70 120 160 190 220
σlj 7 10 20 9 8 10

Figure 3a–c are the histograms of each region of the simulated image, where the horizontal
axis is the pixel intensity, and the vertical axis is the pixel frequency. The histogram of Region 1 is
asymmetric, Region 2 is heavy tailed and bimodal, and Region 3 is bimodal. Hence, the simulated
image is applicable to test the modeling ability of the proposed algorithm.
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Figure 3. Histograms of each region of the simulated image: (a) Region 1, (b) Region 2, and (c)
Regions 3.

Figure 4a–g shows the segmentation results of the simulated image using the HMRF, FCM,
Gamma distribution, GMM, SMM, GaMM, and HGMM-based segmentation algorithms. In Figure 4a,
the HMRF algorithm is able to obtain slightly good segmentation results with few wrongly segmented
pixels. In Figure Figure 4b, the FCM algorithm is unable to segment Regions 1 and 2. In Figure 4c,d,
plenty of wrongly segmented pixels can be found for Regions 1 and 2. In Figure 4e,f, wrongly
segmented pixels are mainly located in Region 2. In Figure 4g, the proposed algorithm is able to more
accurately segment each region, and very few wrongly segmented pixels can be found.
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Figure 4. The segmentation results of the simulated image. (a) HMRF algorithm, (b) FCM algorithm, (c)
Gamma distribution-based algorithm, (d) GMM algorithm, (e) SMM algorithm, (f) GaMM algorithm,
and (g) the proposed algorithm.
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To verify the modeling ability of the proposed algorithm, a non-linear curve fit was performed
on the histogram of the simulated image, as shown in Figure 5, where the blue region indicates
the histogram of the simulated image. The red curves show the fitting curves of the GMM, SMM,
GAMM, and HGMM in Figure 5a–d, respectively. The green curves correspondingly present the
components of each mixture model. In Figure 5a–c, the fitting curves do not accurately fit the histogram
of the simulated image, where the components are presented in a single distribution. In Figure 5d,
the proposed HGMM can more accurately fit the complex histogram (red lines), and the component
curves (green lines) are able to fit each peak of the histogram.
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Figure 5. The fitting results of the histograms of the simulated image. (a) GMM algorithm, (b) SMM
algorithm, (c) GaMM algorithm, and (d) HGMM algorithm.

Table 4 lists the accuracies of the segmentation results in Figure 4, which includes the user accuracy,
production accuracy, overall accuracy, and the Kappa coefficient. The accuracies were calculated
using the confusion matrix, which can be obtained by comparing each segmentation result with the
template image. In comparing the accuracies of the algorithms, the following results were obtained:
For the HMRF algorithm, while the accuracies are above 96%, they are lower than the accuracies
of the proposed algorithm. The lowest accuracies for the FCM, Gamma distribution, GMM, SMM,
and GaMM-based algorithms are 28.28%, 51.13%, 76.50%, 76.50%, and 32.91%, respectively. For the
proposed algorithm, the accuracies are all above 99%. The overall accuracy of the proposed algorithm
is 1.64%, 33.03%, 18.69%, 12.57%, 6.7%, and 20.41% higher than the FCM, Gamma distribution, GMM,
SMM, and GaMM-based algorithms, respectively. Moreover, the Kappa coefficient of the proposed
algorithm is also higher.
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Table 4. Accuracy evaluation of the synthetic image.

Algorithm Accuracy Region 1 Region 2 Region 3

HMRF algorithm

Users 97.41 96.62 99.97
Product 98.87 96.67 98.21
Overall 98.00
Kappa 0.97

FCM algorithm

Users 68.57 28.48 99.64
Product 55.81 43.11 95.34
Overall 66.61
Kappa 0.56

Gamma distribution-based
algorithm

Users 88.37 51.13 99.83
Product 99.72 77.92 68.72
Overall 80.95
Kappa 0.73

GMM algorithm

Users 84.44 76.50 99.95
Product 99.34 79.41 82.56
Overall 87.07
Kappa 0.81

SMM algorithm

Users 99.91 76.50 99.97
Product 93.29 99.81 88.25
Overall 92.94
Kappa 0.89

GaMM algorithm

Users 98.02 32.91 100
Product 97.96 92.89 62.59
Overall 79.23
Kappa 0.71

HGMM algorithm

Users 99.78 99.52 99.63
Product 99.78 99.54 99.60
Overall 99.64
Kappa 0.99

3.2. High-Resolution Remote Sensing Image

Figure 6 presents the various high-resolution remote sensing images. Figure 6a–c are 128×128
pixels at a 0.5-m resolution and are from Worldview-1. Figure 6d–f are 256×256 pixels at a 2.5-m
resolution, which are from Cartosat-1. The images include buildings, farmland, road, and bare land,
which means these images can effectively be used to test the proposed algorithm. The number of
object regions were set to be 3, 3, 4, 3, 3, and 4 visually, which is based on the number of peaks in
the histograms.
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Figure 7 presents the segmentation results of high-resolution remote sensing images employing
HMRF, FCM, Gamma distribution, GMM, SMMM, GaMM, and HGMM-based segmentation algorithms.
In Figure 7a1–a6,b1–b6, the HMRF and FCM algorithms were unable to obtain good results, and some
pixels were wrongly segmented. In Figure 7c1–c6, many pixel blocks were wrongly segmented using
the Gamma distribution-based algorithm. In Figure 7d1–d6,e1–e6,f1–f6, segmentation using the GMM,



Remote Sens. 2020, 12, 1219 13 of 18

SMM, and GaMM-based algorithms yielded slightly better results than the Gamma distribution-based
algorithm. However, some pixels were still incorrectly segmented. Figure 7g1–g6 show that the
proposed algorithm was able to obtain better results compared with the other techniques. Each region
was properly segmented, with only a few pixels wrongly segmented.
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Figure 7. The high-resolution remote sensing images and their segmentation results: (a1)–(a6) HMRF
algorithm, (b1)–(b6) FCM algorithm, (c1)–(c6) Gamma distribution based algorithm, (d1)–(d6) GMM
algorithm, (e1)–(e6) SMM algorithm, (f1)–(f6) GaMM algorithm, and (g1)–(g6) the proposed algorithm.

To quantitatively evaluate the above segmentation results of high-resolution remote sensing images,
the segmentation accuracies were calculated and are shown in Table 5. These values were obtained
using the confusion matrix generated by comparing the segmentation results (shown in Figure 7) with
the template image (shown in Figure 8). The estimated accuracies of the various algorithms for each of
the high-resolution images were above 85%, 53%, 62%, 82%, 66%, and 57% using the HMRF, FCM,



Remote Sens. 2020, 12, 1219 14 of 18

Gamma, GMM, SMM, and GaMM algorithms, respectively. For the proposed algorithm, the accuracies
were above 88%, which is comparatively higher than those from the other algorithms.

Table 5. Accuracy evaluation of remote sensing images.

Algorithm
Overall Accuracy (%)

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6

HMRF 92.23 86.10 86.40 86.60 85.72 88.19
FCM 53.61 74.16 75.34 76.05 85.67 86.08

Gamma 62.82 87.30 59.61 64.57 66.88 62.84
GMM 82.04 88.49 85.49 84.92 82.56 85.59
SMM 75.89 66.06 69.81 88.28 68.43 78.56

GaMM 82.22 82.86 81.14 71.83 69.23 57.51
HGMM 95.43 96.28 90.44 93.48 88.90 88.94
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Figure 9 shows the fitting curves of the various histograms that were used to assess the
modeling ability of the proposed algorithm, particularly for high-resolution remote sensing images.
The histograms of high-resolution remote sensing images show asymmetric, heavy-tailed, and
multimodal features. As shown in Figure 9a, the green curves are able to accurately fit each peak for
the different object regions: The first curve is heavy tailed, the second curve is multimodal, and the
last curve is asymmetric. Furthermore, the proposed HGMM can accurately fit the histograms, as
displayed by the red curves.
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To test the efficiency performance of the proposed algorithm, the segmentation times of the
various algorithms were calculated and are summarized in Table 6. The segmentation times for the
HMRF and FCM algorithms were between 70 and 130 s; between 110 and 1600 s for the GMM and
SMM-based algorithms; and between 720 and 3700 s for the Gamma distribution and GaMM-based
algorithms. For the proposed algorithm, the segmentation times were between 630 and 2400 s.

Table 6. The efficiency performance of the segmentation algorithms.

Algorithm
Times (Seconds)

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6

HMRF 74 76 86 85 98 96
FCM 63 71 89 99 108 124

Gamma 721 745 770 3012 29976 3060
GMM 134 116 148 364 463 494
SMM 238 275 388 895 1218 1523

GaMM 867 843 916 3286 3472 3646
HGMM 634 658 738 2245 2192 2375

4. Discussion

The results from the experiments using simulated images show that many pixels were incorrectly
segmented by comparative segmentation algorithms, particularly in Region 2, while the proposed
algorithm performed better visually. The comparative algorithms were not able to accurately fit the
histograms for each region. For instance, in Figure 5a, the second green curve over-fits the histogram
for Region 3. Since the Gaussian distribution is asymmetric, and the GMM components have difficultly
fitting in asymmetric and other complex histograms, many pixels, particularly those found in Region
2, are wrongly segmented. Given that the student’s t-distribution is heavy tailed, the component of
SMM is unable to accurately fit the asymmetrical, heavy-tailed, and bimodal histograms in Figure 5b.
The gamma distribution is right-skewed, but the GaMM-based algorithm does not fit the bimodal
histogram for each region in Figure 5b,c. Thus, many white pixels are wrongly segmented into Region
2. The component of HGMM is defined by the weight sums of two Gaussian distributions, which can
accurately fit the histograms for each region in Figure 5d. Hence, the proposed algorithm is able to
obtain the best results and can achieve higher accuracy than the comparative algorithms.

In the experiment of high-resolution remote sensing images, the comparative algorithms were
not able to segment the high-resolution image, even when the difference of the pixel intensity was
clearly noticeable (such as farmlands). The proposed algorithm obtained better segmentation results
and produced much higher segmentation accuracy compared with the other algorithms because it was
able to accurately fit each histogram of the remote sensing images. The proposed algorithm has the
capability of accurately modeling complicated distributions of pixel intensities and is able to obtain
better segmentation, particularly for high-resolution remote sensing images.

The results of the efficiency performance evaluation show that the HMRF and FCM algorithms
had the fastest segmentation times. However, the HMRF and FCM algorithms are sensitive to the initial
parameter and easily obtain the local solution. The gamma distribution and GaMM-based algorithms
are slower because of the H-M algorithm sampling parameters in a number of iterations, while the
GMM and SMM-based algorithms showed better segmentation efficiency than the Gamma distribution
and GaMM-based algorithms. The proposed algorithm registered a slightly faster segmentation
time than the Gamma distribution and GaMM-based algorithms but was slower than the GMM and
SMM-based algorithms. This is because the BDMCMC algorithm is used for sampling parameters in
numerous iterations. Additionally, with the size of the image increasing, the segmentation time also
increases. Though the efficiency of the proposed algorithm is worse, its accuracy is better than the
other compared algorithms.



Remote Sens. 2020, 12, 1219 16 of 18

5. Conclusions

This paper proposed a novel HGMM-based high-resolution remote sensing image segmentation
algorithm. First, to accurately model the asymmetric, heavy-tailed, and multimodal distributions of
pixel intensities, HGMM is defined to build the statistical model of high-resolution remote sensing
images. Instead of a single distribution as a component, the components of HGMM are defined by
the weighted sums of elements, which can accurately model the complicated distributions of pixel
intensities in object regions. Accurately modeling the distribution of pixel intensities can more fully
utilize the information of the pixel intensity, which is an effective way to obtain good segmentation.
Second, the number of elements is viewed as a random variable to flexibly model the statistical
distribution of pixel intensities. The prior distribution of the component weight is defined by the Gibbs
distribution, which considers the locally spatial relations of pixels to improve the robustness to image
noise. Finally, a new BDMCMC is designed to simulate the segmentation model. The algorithm can
optimize the model parameters and determine the number of elements.

The experimental results showed that the proposed algorithm is able to model complex
distributions of pixel intensities and shows a better modeling ability than traditional statistical
model-based algorithms for high-resolution remote sensing image segmentation. Hence, the proposed
algorithm can obtain better results. However, one limitation of the proposed algorithm is that the
number of components is fixed by the user, which is a common problem in current segmentation
algorithms. Another limitation is that the constants of prior distributions are set using prior knowledge
and experiments. Additionally, the proposed algorithm has comparatively low segmentation efficiency
due to its usage of BDMCMC algorithm sampling parameters. In the future, the above problem will be
resolved. In order to improve the efficiency, the sampling processes can be modified to prevent the
numbers of candidate parameters from being rejected. Moreover, some constants or coefficients can be
estimated or defined by maximizing the posterior distribution, such as β.
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