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Abstract: Adequate groundwater development for the rural population is essential because
groundwater is an important source of drinking water and agricultural water. In this study,
ensemble models of decision tree-based machine learning algorithms were used with geographic
information system (GIS) to map and test groundwater yield potential in Yangpyeong-gun, South
Korea. Groundwater control factors derived from remote sensing data were used for mapping,
including nine topographic factors, two hydrological factors, forest type, soil material, land use,
and two geological factors. A total of 53 well locations with both specific capacity (SPC) data and
transmissivity (T) data were selected and randomly divided into two classes for model training
(70%) and testing (30%). First, the frequency ratio (FR) was calculated for SPC and T, and then the
boosted classification tree (BCT) method of the machine learning model was applied. In addition,
an ensemble model, FR-BCT, was applied to generate and compare groundwater potential maps.
Model performance was evaluated using the receiver operating characteristic (ROC) method. To test
the model, the area under the ROC curve was calculated; the curve for the predicted dataset of SPC
showed values of 80.48% and 87.75% for the BCT and FR-BCT models, respectively. The accuracy
rates from T were 72.27% and 81.49% for the BCT and FR-BCT models, respectively. Both the BCT and
FR-BCT models measured the contributions of individual groundwater control factors, which showed
that soil was the most influential factor. The machine learning techniques used in this study showed
effective modeling of groundwater potential in areas where data are relatively scarce. The results of
this study may be used for sustainable development of groundwater resources by identifying areas of
high groundwater potential.

Keywords: groundwater potential; specific capacity; machine learning; boosted tree; ensemble models

1. Introduction

Because groundwater has less exposure to pollution than surface water, it is considered a valuable
natural resource for agriculture in many communities [1]. Especially during the drought season,
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a continuous supply of groundwater is important in agricultural areas. The study area in this
investigation, Gyeonggi-do, has recently suffered from damage to agricultural land due to increasing
drought. In 2018, widespread damage to crops due to heat waves and drought continued throughout
the year, and the average storage rate in 339 reservoirs in Gyeonggi-do was 59% of capacity, which was
only 76% of the normal level [2].

Groundwater is a good water resource because it can stably supply the required amount of
high-quality water; thus, appropriate water conservation plans are essential for the sustainable use of
groundwater [3]. In many areas, the main causes of groundwater depletion are excessive groundwater
extraction and unsuitable aquifer recharge [4]. Therefore, accurate estimation and prediction of
groundwater recharge should be carried out to support efficient use and systematic management
of groundwater resources. From this perspective, groundwater potential mapping using yield data
is important. Yield data include extraction volume and the velocity of groundwater at various
measurement points. Groundwater yield depends on geological, topographic, and anthropogenic
factors specific to the area, and is also related to groundwater potential [5].

In practical terms, groundwater is less accessible than surface water. Groundwater can be presumed
by detecting gravity anomalies such as Gravity Recovery and Climate Experiment (GRACE) [6–8];
however, a local groundwater potential map is essential for regional management of groundwater. Thus,
studies on the distribution and prediction of groundwater resources have been limited to local scales
based on data obtained from point measurements (e.g., meteorological stations, flow measurement
points, and groundwater level monitors) [9,10]. In recent years, areal distribution analysis data obtained
through remote sensing have been used for global prediction of the water resource distribution in
combination with various machine learning techniques, albeit with high uncertainty. To overcome the
limitation of groundwater resource surveys based on local information, these data can be converted
into global distribution data using satellite imagery. Remote sensing generally produces data in the
form of grids or regions, which can be converted into distribution patterns through various processing
methods such as machine learning algorithms. By applying the characteristics of remote sensing data
to groundwater resources, point-based groundwater hydrological modeling can be extended to the
global scale. Therefore, using existing groundwater yield data, it is possible to make regional and local
predictions with remote sensing-based methods.

For groundwater potential mapping, a variety of techniques have been applied, including
direct drilling for hydrological testing and geophysical models [11,12]. Such methods are suitable
for identifying the hydrological characteristics of groundwater, but have high costs in time and
money [13,14]. In recent years, studies related to groundwater potential have been conducted
using machine learning models with available historical data on groundwater wells with geographic
information systems (GIS) [15,16]. GIS technologies have been used for quantitative analysis of
spatial distributions in environmental, geological, and hydrological studies [17–19]. One limitation of
data-based analysis of groundwater is insufficient availability of data for analysis [20]; groundwater
yield varies with hydrological conditions and recharge sources, which have been measured in a limited
number of groundwater wells [21]. Therefore, using various models to predict groundwater yield
accurately and identifying the optimal model for water resource evaluation in a given region are
essential to effective water resource management.

For this reason, studies related to groundwater potential mapping with various data models have
become increasingly common [22–24]. Numerous factors that affect groundwater potential have been
proposed based on various data modeling methodologies, including statistical models, probabilistic
models, machine learning models, and data mining models; yield and spring or well location data are
also widely used as groundwater potential indicators. Due to the characteristics of remote sensing and
groundwater, groundwater could be indirectly monitored by using remote sensing; much research has
been conducted through thematic maps related to groundwater based on remote sensing data and
groundwater potential was estimated by reducing the uncertainties [25–27].
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The frequency ratio (FR) model is a representative statistical model applied to groundwater
potential mapping [26,28,29]. The relationship between groundwater conditioning factors and
groundwater potential could be analyzed using basic statistical and probabilistic models, including
FR, weight of evidence [30], evidential belief function [31], and logistic regression [32] models.
Furthermore, the recent exponential increase in available data has led to identification of data types and
data processing techniques that can support decision-making. Several studies in this area have applied
machine learning methods such as machine learning models, while artificial neural networks [33] and
support vector machines [34] have been widely applied to groundwater potential mapping. Some
studies have also used analytical hierarchy methods, which are expertise-based methods requiring a
deep understanding of the study area [35,36]. Recently, hybrid and ensemble models that combine or
develop existing methodologies have been applied for groundwater potential mapping [37–39]. This
paper also uses a hybrid methodology in this respect.

When performing groundwater potential mapping through modeling, the results show poor
generalizability without proper training samples. In such cases, the accuracy for training data is high
but the testing results show significantly lower accuracy. To overcome the lack of data, robust models
built upon basic models have recently been developed and compared [40]. Typically, an ensemble
model using learner sequences is developed; voting, bagging, and adaptive boosting are representative
ensemble methods that can be applied to various base learners [41]. In this way, unlabeled cases are
identified via self-learning by combining information from labeled cases so that the labeled training set
is magnified in each iteration until the entire dataset is labeled. This method, which was applied in the
present study, could be effective for data-scarce areas because it allows modeling using less data than
other approaches.

Previous studies conducted on groundwater recharge and yield have used enough field survey
data targeted at adjacent areas. However, these studies are subordinate to field surveys and are not
intended to reduce spatial uncertainty on groundwater. Therefore, the purpose of this study was to
map and test groundwater yield potential in Yangpyeong-gun, South Korea, using spatial data analysis
in a GIS environment. This study processed and analyzed officially published groundwater yield data
using remote sensing and GIS to reduce the uncertainty of the data itself. In addition, one of the latest
machine learning models, boosted tree method, was applied to predict large areas of low uncertainty
using pumping test data from 53 wells; groundwater yield potential is the major issue of this study.
The results of this study could provide a scientific basis for efficient use and systematic management of
groundwater resources.

2. Study Area

South Korea consists of eight administrative districts, labeled ‘-do’, which are made up of local
administrative districts, labeled with ‘-si’, ‘-gun’, and ‘-gu’. The study area, Yangpyeong-gun, is located
about 50 km from Seoul, in the northeastern part of Gyeonggi-do (Figure 1). Yangpyeong-gun is
surrounded by Hongcheon-gun in Gangwon-do to the northeast, Hoengseong-gun in Gangwon-do to
the east, Wonju-si in Gangwon-do to the southeast, and Gapyeong-gun to the north. Yangpyeong-gun
contains rugged mountainous areas such as Yongmunsan (1157 m), Bongmyun (856 m), and Baekunbong
(940 m), and the Namhan River flows from the south to the northwest of the district. About 90% of
the total area of Yangpyeong-gun is a green zone covering the protected headwater area of the Han
River; this area has a well-preserved and clean natural environment due to legal and institutional
regulations [42].

Yangpyeong-gun covers approximately 878 km2, and the amount of groundwater used in this area
is 41,503,946 m3/year. The groundwater use per unit area is 47,258 m3/km2 annually and 129 m3/km2

daily [43]. Groundwater in Gyeonggi-do is used primarily for agricultural purposes in numerous
agricultural areas, including Anseong-si, Yangpyeong-gun, Icheon-si, and Yeoju-si. Among all districts
in South Korea, Yangpyeong-gun (10,725) has the second highest number of groundwater facilities for
agricultural use after Anseong-si [43].
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In Yangpyeong-gun, a preliminary survey of available groundwater resources was conducted from
December 2017 to June 2018 for drought response and to prevent unplanned development. Among 35
districts prone to drought, 25 were selected based on the feasibility of surveying the target district and
the response rate of residents. A resistivity survey (vertical and dipole survey) was conducted to select
locations for large-scale groundwater storage.

In Yangpyeong-gun, Gyeonggi-do, Kyonggi massif metamorphic rocks of Precambrian age and
an intrusive body of Mesozoic Triassic gabbro and syenite are found. Precambrian Kyonggi massif
metamorphic rocks consist of the Paleozoic sequence of Yongmunsan and unconformity of Jang-Rak.
The main constituent rocks are banded gneiss, migmatitic gneiss, augen gneiss, mica schist, and
quartzite. These rocks underwent metamorphism in the Paleozoic and Mesozoic Triassic, when the
landmasses of North China and South China collided.

Groundwater development requires continuous management for sustainable supply of water
rather than short-term measures at the time of drought. Specifically, preliminary investigation is needed
in drought-prone areas and areas of high importance for agricultural water usage in Gyeonggi-do. To
mount an effective response to agricultural drought, a groundwater management plan that ensures
sustainable use of agricultural groundwater prior to drought is needed [44]. In this study, continuous
groundwater potential data in the study area were used as primary data for a groundwater abundance
survey, and could further be used to establish a groundwater development plan.
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Figure 1. Study area.

3. Data

3.1. Groundwater Potential Analysis Based on Remote Sensing Data

Various thematic maps constructed using remote sensing source data were applied to machine
learning techniques in this study. Recently, high-resolution aerial photographs were used to produce
thematic maps of spatial data. Topographic maps were produced through numerical mapping using
aerial photographs taken in 2006, with corrections and supplemental data collected through field
surveys. Forest and soil maps were also constructed using spatial data generated through field surveys
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along with aerial photography. For land use maps, aerial photographs taken in 2012 were classified
using image classification techniques, and their quality was verified using additional high-resolution
satellite images from KOMPSAT-2 and KOMPSAT-3 as well as digital topographic maps. Meanwhile,
geological maps were produced from field surveys and historical records using base maps generated
from aerial photographs. Groundwater yield is a measure of groundwater pumping capacity, which
could be stored in aquifers. In this study, groundwater yield potential modeling using machine
learning was performed with spatial data generated via remote sensing and GIS such as soil, land
cover, and geological maps, as described above.

3.2. Groundwater Well Data from in Situ Sampling

Groundwater pumped from wells in the study area is used mainly for agricultural purposes and
domestic drinking water. Groundwater well data were collected for specific capacity (SPC) (53 wells)
and transmissivity (T) (53 wells) from the basic survey report of Yangpyeong-gun [45]. The main use
of the groundwater in this area is agricultural, so groundwater surveys are conducted between spring
and summer, and our data was obtained between June and August. In the training and testing subsets,
yield values above 3.8 and 3.42 (30 m3/h) above the median value were considered for yields based
on the dependent variables of SPC and T, respectively, which are two different indexes measured in
different ways. Groundwater pumping test data used in this study were generated and published
from the national groundwater observation and survey data by local governments conducted by Korea
Water Resources Corporation (K-water).

SPC data include geographic location coordinates of individual wells and groundwater yield
derived from pumping tests. SPC often indicates well performance, because it refers to the amount
of water that a well can produce per unit of drawdown. SPC is calculated by dividing the pumping
discharge by the drawdown, in units of liters per minute (LPM) per meter, as follows:

SPC =
Q
S

(1)

where Q is discharge (unit: LPM) and S is drawdown (unit: m). A low SPC value indicates that
more energy is required for pumping. During a drawdown test to determine SPC, pumping should
be maintained at a constant speed for a certain period of time, at least 24 h, with little change in
drawdown. SPC data acquired during the pumping test can be used to estimate T and identify potential
aquifer issues.

T represents the flow rate under a unit hydraulic gradient through a unit width of aquifer of a
certain thickness [46]. Hydraulic conductivity (K) is a measure of the water transmission capacity of an
aquifer. T of an aquifer is equal to the hydraulic conductivity multiplied by the thickness of the aquifer.

K ′(x, y) =
1
b

∫ b

0
K(x, y, z)dz (2)

T = Kb, (3)

where T is transmissivity, K is hydraulic conductivity, and b is aquifer thickness. Less drawdown and
a thicker aquifer lead to higher T values. It is possible to estimate the amount of water flowing through
the unit thickness of the aquifer by combining Equation (3) with Darcy’s law.

SPC and T data were separately applied to the FR, boosted tree (BT), and ensemble models in this
study; both SPC and T are used in this study in order to consider various aspects of groundwater. The
locations of groundwater wells in the study area are shown in Figure 2. Yield data were randomly
divided into a training data subset (70%) and a testing data subset (30%), as is the usual division in
machine learning methodologies [16,47]. In the training data subset, 37 wells each were represented in
SPC and T data, respectively; 16 wells were used to test the models.
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3.3. Groundwater Conditioning Factors

Various groundwater conditioning factors were used for groundwater potential modeling in
this study (Table 1). Topographical, geological, hydrological, and land cover factors are commonly
applied to predict groundwater yield potential. Conditioning factors should be considered depending
on regional characteristics. For this reason, the correlation between the factors and groundwater
potential were analyzed preferentially through the frequency ratio model and the factors were selected;
groundwater potential was estimated using 16 factors in this study. The 16 conditioning factors were
constructed into a groundwater inventory, including nine topographic factors (convergence index,
convexity, mass balance index (MBI), slope angle, slope height, topographic texture, topographic
position index (TPI), topographic ruggedness index (TRI), and valley depth), two hydrological factors
(flow path length, and slope length and steepness (LS)), forest type, soil material, land use, and two
geological factors (lithology and distance from fault) (Figures 3 and 4). The conditioning factors were
calculated and prepared using ArcGIS 10.3 software (ESRI, Redlands, CA, USA). Each dataset was
converted into a grid format with 30-m spatial resolution for use in the groundwater inventory of the
study area.

Topographic factors were calculated from a 1:5000 scale topographic map provided by the Korean
National Geographic Information Institute. Spatial data, such as location and topography, were
structured using ground control point measurements taken from digital aerial photographs and ground
surveys. Aerial photographs were analyzed through numerical mapping, and further calibration was
carried out through field surveys to create the topographic map. A digital elevation model (DEM)
was first generated from the topographic map and then used to derive topographic factors, including
convergence index, convexity, MBI, slope angle, slope height, topographic texture, TPI, TRI, and
valley depth. Slope factor impacts groundwater recharge, with gentle slope areas having relatively
high percolation and low surface runoff rates and steep areas having high surface runoff [48]. Soil
moisture content is also related to slope, which affects precipitation direction [49]. Slope angle is
strongly related to groundwater potential; therefore, groundwater-related topographic factors derived
from DEM data with SAGA-GIS software [50] were used for modeling. Acceleration and deceleration,
as well as flow convergence and divergence of flow, are mainly affected by the curvature of the
area [51]. The hydrological factors flow path and LS factor were considered conditioning factors for
hydrological features.

A forest map was also used, which was generated from field investigations and interpretation of
aerial photographs. To construct the forest map, the near-infrared band was used for image analysis,
in addition to the red-green-blue image. Moreover, soil material characteristics can impact the rate of
surface water penetration into aquifers, which drives groundwater potential [52]. The soil material
factor was extracted from a soil map published by the National Institute of Agricultural Sciences at
1:25,000 scale. Similarly, land cover has an impact on soil conditions such that storage and movement
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of groundwater change when land cover changes; the land use factor was extracted from a digital land
cover map provided by the Korea Ministry of Environment at 1:25,000 scale. Land use maps were
classified into 22 medium-level categories through application of automatic image classification to
aerial photographs, and the accuracy was enhanced using additional high-resolution satellite images
from KOMPSAT-2 and 3. The land cover map was reclassified into seven land cover categories: urban,
farmland, forest, grassland, wetland, bare land, and water.

Geological factors, including lithology and distance from a fault, were also considered in relation
to groundwater characteristics. The lithology factor was extracted from a digital geological map
produced by the Korea Institute of Geoscience and Mineral Resources at 1:50,000 scale. The study area
was composed of 22 lithological units differing in lithology type and geological age. Distance from a
fault was also calculated based on the geological map.

Table 1. Data layers describing groundwater potential.

Category Factor Scale Data Type Source Data (Year)

Pumping
Test data

Specific capacity (SPC)
Transmissivity (T) - Point Field Survey (2008)

Topography

Convergence index

Aerial Photography
(2006–2016)

Convexity
Mass balance index (MBI)

Slope angle
Slope height

Topographic texture
Topographic position index (TPI)

Topographic ruggedness index (TRI)
Valley depth

Hydrology Flow path 1:50,000 Polygon Field Survey (2008)
Slope length and steepness (LS) factor

Forest Forest type 1:25,000 Polygon Aerial Photography,
Field Survey (2004–2006)

Soil Soil 1:25,000 Polygon Aerial Photography,
Field Survey (1998–2006)

Landcover Landcover 1:5000 Polygon Kompsat 2, 3 and Aerial
Photography (2012)

Geology Geology 1:250,000 Polygon Aerial Photography,
Field Survey (2004)Distance from fault
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Figure 3. Groundwater conditioning factors I: (a) Convergence Index, (b) Convexity, (c) Mass balance
index (MBI), (d) Slope angle, (e) Slope height, (f) Texture, (g) Topography position index (TPI) and (h)
Topography ruggedness index (TRI).
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Figure 4. Groundwater conditioning factors II: (a) Valley depth, (b) Flow path, (c) Slope length and
steepness (LS) factor, (d) Forest type, (e) Soil, (f) Land cover, (g) Geology and (h) Distance from fault.
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4. Methodology

To be more specific, the purpose of this study was to map and test groundwater yield potential in
Yangpyeong-gun, South Korea, using spatial data analysis in a GIS environment. This was performed
by four main steps: First, groundwater yield data of specific capacity (SPC) and transmissivity (T)
collected from 53 well locations were used. For the training data, 70% of each groundwater yield
dataset was selected randomly, and FR and boosted tree (BT) models with classification were applied
to the groundwater inventory using Statistica software (Dell Software, Aliso Viejo, CA, USA). Second,
the inventory was constructed from nine topographic factors, two hydrological factors, forest type,
soil material, land use, and two geological factors. All factors used in this study were generated and
processed from remote sensing-based data, such as aerial photographs or imagery from KOMPSAT-2
and -3. Third, this study involved probabilistic analysis of FR, and two machine learning models: the
boosted classification tree (BCT) and FR-BCT ensemble models, which were applied to groundwater
yield data. Comparative analysis was conducted to compare the models used in this study. Finally, to
quantitatively evaluate the performance of the models, the receiver operating characteristics (ROC)
and area under the curve (AUC) were used. The study was conducted, as shown in Figure 5.

Figure 5. Data flow of this study.

4.1. Frequency Ratio (FR) Model

FR is an effective stochastic method for evaluating the effects of various factors on the occurrence
of a particular event [53]. Thus, the FR value represents the ratio of occurrence of a particular event
to the area ratio for each class [54]. A larger FR value represents a stronger relationship between the
probability of occurrence and the specific variable [55,56]. This method allows for the clear and simple
analysis of the relationship of each factor to the event [57].

To carry out spatial FR analysis, factors related to groundwater potential were classified into ten
classes. Among numerous available classification techniques, factors in this study were classified
using the quantile technique, which divides classes into equal areas. FR values were calculated using
training data for each factor. Each class of each modulator was weighted. Higher FR values represent
a stronger relationship between the class of each factor and groundwater potential, whereas for lower
FR values, the effect of the class of each factor on groundwater potential is small. If FR is greater than 1,
the effect is significant; if FR is less than 1, the effect is not significant [56]. To construct a groundwater
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potential map using FR to represent the relative magnitude of the groundwater potential, the FR values
calculated for each factor were determined as follows:

FR =
Ptrn

Ptotal
(4)

where Ptrn is the ratio of the number of SPC data points above a certain level and Ptotal indicates
the ratio of the number of pixels in a certain class to the total number of pixels in the study area.
A greater FR value for potential indicates higher groundwater potential; a lower value indicates a
lower groundwater potential. In this study, FR values for each conditioning factor were used to weight
the ensemble FR-BCT model.

4.2. Boosted Classification Tree

In recent years, decision tree models have been used in various fields as a machine learning
method [58], including for groundwater potential mapping [52]. Decision tree models perform attribute
tests on non-terminal nodes to represent the results on the terminal node, using a tree-like hierarchy
that constructs a classification tree of a simple structure [59]. One of the benefits of this method is that
the classification process can be graphically represented. However, the results cannot be formed into
multiple outputs and the performance of the model depends on the type of data. Many algorithms
have been developed from decision trees: classification and regression tree [60], chi-square automatic
interaction detector decision tree [61], Iterative Dichotomiser 3 [62], and J48 (C4.5 decision tree) [63]. In
addition, ensemble models using sequences of classifiers have been widely developed. Representative
ensemble methods such as voting, bagging (sub-sampling), and boosting have also been applied to
the decision tree method, including BT algorithms. Therefore, in this study, representative decision
tree algorithms of BT models were used to compare the performance of each model’s groundwater
potential modeling and prediction accuracy.

The BT model is a tree-based machine learning model using the stochastic gradient boosting
method. In the last few years, this algorithm has become one of the most powerful machine learning
techniques used for prediction. In the BT algorithm, continuous or categorical input factors can be
used for classification and regression problems [64].

The BT algorithm is implemented by applying a boosting method to the regression tree. The basic
method involves calculating a simple tree sequence in which each successive tree is built against the
prediction residual of the preceding tree. This method creates two trees of data for two samples at
each split node. Even if the relationship between predictive and dependent variables is nonlinear, the
weighting of such trees can support high accuracy of the predicted value. Thus, the gradient boosting
method for weighted expansion of simple trees is one of the most common and powerful machine
learning algorithms.

All machine learning algorithms are prone to overfitting, which involves a good fit for learning
data but a lack of improvement in the predictability of each model. In other words, this is a common
problem that applies to most algorithms used for predictive machine learning. A common solution to
this problem is to evaluate the quality of the model fit by predicting observations from test samples of
“used” data before evaluating each model [65,66]. The accuracy of each solution can be measured in
this way to determine when the overflow occurred.

To overcome this difficulty, which is a major problem facing most machine learning algorithms
used in predictive models, a specific approach was selected for the BT models. A continuous
simple tree is generated using only subsamples selected randomly from the entire dataset. That is,
each successive tree is created for the predicted residuals of an independently extracted random
sample. Randomness can be added to any degree to protect against overfitting and can provide good
predictability. Continuous boosting calculations for independently sampled input samples are known
as probabilistic gradient boosting techniques.
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4.3. Ensemble Modelling

Using the two methodologies described above, ensemble methods of FR and BCT were applied in
this study. The probabilistic method FR was used to assess the impact of all types of regulatory factors
and assign appropriate weights to each class according to their impact on groundwater yield. Using
the FR method, individual weights were derived for each factor. Each conditioning coefficient was
then reclassified using the derived weight values, and the reclassified dataset was analyzed using the
BCT tree-based machine learning models. Finally, a groundwater potential map was constructed using
the BCT and FR-BCT ensemble techniques for comparative analysis.

4.4. Assessment on Model Performance

The performance of groundwater potential classification was assessed using two statistical
indicators: sensitivity and specificity. Sensitivity is the percentage of correctly classified pixels in
areas with high groundwater potential; specificity is the percentage of pixels classified as having a low
groundwater potential. Sensitivity and specificity are calculated as follows [67]:

Sensitivity =
TP

TP + FN
, (5)

Speci f icity =
TN

FP + TN
, (6)

The numbers of correctly classified pixels are denoted as true positives (TP) and true negatives
(TN). Conversely, the numbers of misclassified pixels are expressed as false positives (FP) and false
negatives (FN).

In this study, ROC curves were used to evaluate the overall performance of the groundwater
potential model. The ROC curve has been applied in various fields as a standard method for evaluating
the general performance of a model [68]. This curve is plotted using sensitivity as the x-axis and 100 −
specificity as the y-axis. The general performance of the model can be quantitatively assessed based on
the AUC value, representing the area under the ROC curve. AUC values range from 0.5 to 1. A value
of 0.5 represents a model with very low accuracy. In contrast, 1 represents a perfect model with the
highest possible accuracy, and an AUC close to 1 indicates good performance. Generally, when the
AUC value is greater than 0.8, the model shows adequate performance [69].

5. Results

5.1. Results from the Frequency Ratio Model

Table A1 presents the correlations of FR values between groundwater data (SPC or T) and
groundwater conditioning factors derived from the FR model. The FR is a representative value of the
statistical proportional position of well locations with SPC values above a specific level. Correlation
between groundwater well data and each factor could be shown from the distribution of values
biased according to each class. Areas with high FR values are of great importance for groundwater
management because they have high groundwater potential. The characteristics of land cover in
the area of this study are high in forest area and agricultural area, and relatively low in urban area.
Although there are many groundwater wells in urban areas, the urban area is mixed with rural areas,
so it requires a different approach from metropolis.

The topographic factor convexity showed a strong correlation with groundwater potential in the
1.1–43.19 class for FR values of over 1.89 and 2.63 for SPC and T, respectively. Similarly, MBI showed a
high correlation with SPC (2.16) and T (1.84) in the -0.33 to 0.1 class. The highest FR values of 4.32 for
SPC and 4.21 for T were observed when the slope angle was greater than 0 m and less than 0.05 m,
indicating that this factor is strongly correlated with groundwater potential. FR values tended to
decrease with increasing slope angle and slope height. For topographic texture, the 0.04–29.08 class
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exhibited the highest FR values with SPC (2.97) and T (3.95). Low flow path values also led to FR
values over 1, indicating that this factor was correlated with groundwater potential.

Among land cover types, urban area showed the strongest relationship with groundwater potential
(SPC: 6.66; T: 7.92), followed by wetlands. These results could also be interpreted as showing that the
use frequency of wells in urban areas is high. Meanwhile, distance from a fault had FR values of 2.16
for SPC and 3.16 for T in the 0–530.75 class. Among geological factors, alluvium showed a strong
correlation with the groundwater data (SPC: 2.93; T: 3.80), followed by granite porphyry (SPC: 1.45;
T: 1.01).

5.2. Construction of Groundwater Potential Maps

The groundwater potential map was modeled using training datasets of SPC and T. The
performance of a groundwater potential model depends on the selection of factors. The groundwater
potential map was constructed by training the groundwater potential model. First, a groundwater
potential value was generated for each pixel in Yangpyeong-gun. Each pixel was indexed by its
predicted groundwater potential value. The results of groundwater potential were reclassified using
the 1.0 standard deviation method, which is based on the distribution of individual values in the results
for each model. In the groundwater potential map, areas with high (low) groundwater potential are
shaded red (blue) (Figure 6). All models showed similar distributions of groundwater potential, and
the north, southwest, and southeast areas surrounding the central valley region of the study area all
showed low potential.Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 24 
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Figure 6. Groundwater potential maps based on (a) boosted classification tree (BCT) and (b) frequency
ratio (FR)-BCT models with specific capacity (SPC) data, and (c) BCT and (d) FR-BCT models with
transmissivity (T) data.

Furthermore, the predictor importance values of each factor were calculated from the BCT modeling
results by summing the decreases in node-impurity values (Table 2). All predictor importance values
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were scaled to a maximum of 1.0, as the value assigned to the largest sum among all factors, indicating
the most strongly related factor, relatively. For both SPC and T, soil showed the highest predictor
importance values in all models, with a value of 1.0. Topographic texture was the second most important
factor in the BCT models, with values of 0.3101 and 0.4206, for SPC and T data, respectively. Meanwhile,
FR-BCT models showed that forest type and land cover were the second strongest predictors, with
importance values of 0.1704 and 0.2295 for SPC and T data, respectively. The importance of TPI, MBI,
and valley depth were low in all FR models; convergence index, valley depth, and distance from a
fault fell into the third lowest positions based on the FR-BCT models.

Table 2. Predictor importance values of each factor for the BCT and FR-BCT models.

Factor
Predictor Importance Values

SPC T
BCT FR-BCT BCT FR-BCT

Topography Convergence index 0.1689 0.0400 0.1518 0.0494
convexity 0.1285 0.1223 0.1913 0.1698

Mass balance index (MBI) 0.0566 0.1345 0.0703 0.1680
Slope angle 0.1909 0.1443 0.2734 0.1850
Slope height 0.1245 0.1393 0.1711 0.1750

Topographic texture 0.3101 0.1196 0.4206 0.1975
Topographic position index (TPI) 0.0387 0.0990 0.0565 0.1246

Topographic ruggedness index (TRI) 0.1967 0.1658 0.2917 0.2003
Valley depth 0.0887 0.0696 0.0929 0.0513

Hydrology Flow path 0.1123 0.0917 0.1819 0.1407
Slope length and steepness (LS) factor 0.1835 0.1466 0.2747 0.1935

Forest Forest type 0.1821 0.1704 0.2084 0.1694
Soil Soil 1.0000 1.0000 1.0000 1.0000

Landcover Landcover 0.1946 0.1572 0.3285 0.2295
Geology geology 0.1002 0.0996 0.1619 0.1386

Distance from fault 0.1271 0.0497 0.3105 0.1061

5.3. Model Performance Evaluation

In this study, the groundwater potential model was evaluated based on statistical indices; AUC was
used to quantitatively assess the mapping accuracy. As aforementioned, testing was performed based
on the 30% of the groundwater well data collected by field investigation; and since groundwater has
less seasonal change than surface water, this study did not consider seasonal change for groundwater.
Figure 7 presents the model accuracy rate for the SPC (BCT model: 80.48%; FR-BCT model: 87.75%) and T
(BCT model: 72.27%; FR-BCT model: 81.49%) well data. In general, all groundwater potential mapping
results and modeling of groundwater potential showed good performance; however, the ensemble
models showed improved accuracy by approximately 6%. Figure 7 also shows the performance of
the groundwater potential models using the ROC curve method. All groundwater potential models
performed well in terms of groundwater potential evaluation results (AUC > 0.7). The testing results
of the BCT ensemble model show that 20% of the groundwater potential area includes approximately
80% of the valid groundwater wells for SPC, whereas the testing results of the ensemble model for T
show that 30% of the groundwater area includes over 80% of the valid groundwater wells. Compared
to groundwater potential mapping with the single machine learning model, BCT, all groundwater
potential models using the ensemble method with both FR and BCT showed better performance, with
7.27% and 9.22% higher accuracy, respectively, than the BCT model alone. The difference in AUC
results showed that the ensemble model provided better results than the individual modeling process.
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6. Discussion

In this paper, the relationship between conditioning factors and groundwater was first analyzed
through the stochastic method of FR. By applying the ensemble technique to the BCT model based on
the stochastic weighting, it showed effectiveness in the study of groundwater with high uncertainty. In
terms of data, this study was based on data created by governments and public institutions and released
to the public; at the same time, it is bound by limitations in data collection. Since the importance of
data used for training in data-based learning is very high, model accuracy will be improved if more
well data is used in future studies.

Few case studies have applied ensemble models from machine learning algorithms in South
Korea. The results of this study confirm that the performance of a groundwater potential model can be
improved using an existing probability model and machine learning ensemble. Model performance was
evaluated based on the ROC, and the prediction rate of the BCT model showed an improvement of 6.1%
with FR-BCT for SPC and 6.0% for T compared to the single machine learning model, BCT, indicating
that the ensemble method greatly improved model performance. This improvement occurred because
the ensemble model could reduce bias using the BT model and improve its predictive ability by
avoiding the overfitting problem of basic classification [70]. This finding is consistent with other studies
that concluded that the predictive performance of models was improved with a machine learning
ensemble model [71].

Remote sensing is a powerful data source that is widely used for monitoring environmental
issues; however, since groundwater does not exist on the surface, groundwater can only be indirectly
estimated by using remote sensing. Heretofore, many studies have attempted to reduce the uncertainty
of groundwater spatially. As a result of applying the proposed FR-BCT model with existing probability
models and the machine learning method of the BCT model, the accuracy was relatively improved
or similar to previous studies [3,25,34,68]. In addition, by showing accuracy improvements in
single and composite models, it has shown potential for reducing the uncertainty of groundwater
potential mapping.

7. Conclusions

The modern global water shortage requires effective water management and planning. Indiscreet
use of water resources and inadequate water management can disrupt the continuous and reliable
supply of water. The first step in properly planning water resource usage is to accurately predict
and respond to the current status of critical resources. Groundwater represents an excellent water
source, especially in water-scarce regions. However, the uncertainty of groundwater availability is
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high; therefore, estimation of groundwater potential is essential. Mapping of groundwater potential is
an essential challenge facing effective groundwater resource management and conservation planning.

Various methods of groundwater potential mapping have been proposed. Improvement of the
groundwater potential model is one method for estimating the uncertainty of a groundwater model.
Although new machine learning technologies are continually improving in predictive performance, not
all methods can be effectively applied in areas where data are scarce, because it may not be possible to
generalize from a small labeled dataset. Therefore, FR analysis and the BCT model were applied along
with the proposed FR-BCT model, which is an ensemble model of these two machine learning models.
For this purpose, 16 groundwater control factors based on remote-sensing data were applied to the
models: nine topographic factors, two hydrological factors, forest type, soil material, land use, and
two geological factors. The model was trained and tested using groundwater well data; 53 wells were
separated into training (70%) and testing (30%) datasets. The proposed FR-BCT model was compared
with existing probability models and the machine learning method of the BCT model.

These results are useful for supporting comprehensive management of groundwater exploration
and groundwater recharge. The method used in this study can be applied to other areas reliant on
groundwater use. Managers and policymakers can effectively analyze groundwater potential modeling
results to maximize the benefits of management. However, further testing is required in other research
areas to determine how reliably the proposed ensemble model reflects groundwater potential.
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Appendix A

Table A1. Results of the frequency ratio model.

Factor Class No. of
SPC

% of
SPC

No. of
T % of T

No. of
Pixels in
Domain

% of Pixels
in Domain

Frequency
Ratio of SPC

Frequency
Ratio of T

Convergence
index

−100–−29.9 7 18.92 6 16.22 97,261 10.00 1.89 1.62
−29.9–−16.77 2 5.41 2 5.41 97,262 10.00 0.54 0.54
−16.77–−8.98 5 13.51 4 10.81 97,261 10.00 1.35 1.08
−8.98–−3.72 5 13.51 5 13.51 97,262 10.00 1.35 1.35
−3.72–0 5 13.51 3 8.11 89,697 9.22 1.47 0.88
0–3.67 4 10.81 6 16.22 104,826 10.78 1.00 1.50

3.67–8.59 2 5.41 2 5.41 97,261 10.00 0.54 0.54
8.59–15.79 2 5.41 4 10.81 97,262 10.00 0.54 1.08

15.79–28.28 2 5.41 3 8.11 97,261 10.00 0.54 0.81
28.28–100 3 8.11 2 5.41 97,262 10.00 0.81 0.54

Convexity

1.1–38.72 12 32.43 9 24.32 97,260 10.00 3.24 2.43
38.72–41.31 7 18.92 12 32.43 97,263 10.00 1.89 3.24
41.31–43.19 11 29.73 10 27.03 97,261 10.00 2.97 2.70
43.19–44.89 1 2.70 1 2.70 97,262 10.00 0.27 0.27
44.89–46.43 3 8.11 4 10.81 97,258 10.00 0.81 1.08
46.43–47.93 0 0.00 0 0.00 97,263 10.00 0.00 0.00
47.93–49.47 0 0.00 0 0.00 97,263 10.00 0.00 0.00
49.47–51.24 1 2.70 0 0.00 97,262 10.00 0.27 0.00
51.24–53.52 1 2.70 1 2.70 97,260 10.00 0.27 0.27
53.52–79.32 1 2.70 0 0.00 97,263 10.00 0.27 0.00
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Table A1. Cont.

Factor Class No. of
SPC

% of
SPC

No. of
T % of T

No. of
Pixels in
Domain

% of Pixels
in Domain

Frequency
Ratio of SPC

Frequency
Ratio of T

Mass balance
index (MBI)

−0.89–−0.62 1 2.70 0 0.00 97,261 10.00 0.27 0.00
−0.62–−0.48 1 2.70 0 0.00 97,262 10.00 0.27 0.00
−0.48–−0.33 0 0.00 1 2.70 97,261 10.00 0.00 0.27
−0.33–−0.17 9 24.32 7 18.92 97,262 10.00 2.43 1.89
−0.17–−0.02 10 27.03 10 27.03 97,261 10.00 2.70 2.70
−0.02–0.1 8 21.62 12 32.43 97,262 10.00 2.16 3.24
0.1–0.33 3 8.11 3 8.11 97,261 10.00 0.81 0.81
0.33–0.52 3 8.11 2 5.41 97,262 10.00 0.81 0.54
0.52–0.68 1 2.70 0 0.00 97,261 10.00 0.27 0.00
0.68–1.09 1 2.70 2 5.41 97,262 10.00 0.27 0.54

Slope angle
(rad)

0–0.05 16 43.24 16 43.24 97,261 10.00 4.32 4.32
0.05–0.12 8 21.62 11 29.73 97,262 10.00 2.16 2.97
0.12–0.2 5 13.51 4 10.81 97,261 10.00 1.35 1.08
0.2–0.26 3 8.11 3 8.11 97,262 10.00 0.81 0.81
0.26–0.32 3 8.11 1 2.70 97,261 10.00 0.81 0.27
0.32–0.37 0 0.00 0 0.00 97,262 10.00 0.00 0.00
0.37–0.42 0 0.00 1 2.70 97,261 10.00 0.00 0.27
0.42–0.48 1 2.70 1 2.70 97,262 10.00 0.27 0.27
0.48–0.56 1 2.70 0 0.00 97,261 10.00 0.27 0.00
0.56–1.05 0 0.00 0 0.00 97,262 10.00 0.00 0.00

Slope height
(m)

0.09–6.39 4 10.81 2 5.41 97,261 10.00 1.08 0.54
6.39–8.36 13 35.14 13 35.14 97,262 10.00 3.51 3.51

8.36–11.05 11 29.73 11 29.73 97,261 10.00 2.97 2.97
11.05–14.61 4 10.81 6 16.22 97,262 10.00 1.08 1.62
14.61–19.86 1 2.70 2 5.41 97,261 10.00 0.27 0.54
19.86–26.58 3 8.11 2 5.41 97,262 10.00 0.81 0.54
26.59–35.51 0 0.00 0 0.00 97,261 10.00 0.00 0.00
35.51–48.23 0 0.00 1 2.70 97,262 10.00 0.00 0.27
48.23–71.03 0 0.00 0 0.00 97,261 10.00 0.00 0.00
71.03–418.84 1 2.70 0 0.00 97,262 10.00 0.27 0.00

Topographic
texture

0.04–18.87 11 29.73 14 37.84 97,261 10.00 2.97 3.78
18.87–29.08 11 29.73 15 40.54 97,259 10.00 2.97 4.05
29.08–36.08 7 18.92 2 5.41 97,264 10.00 1.89 0.54
36.08–41.43 4 10.81 3 8.11 97,261 10.00 1.08 0.81
41.43–46.05 1 2.70 1 2.70 97,262 10.00 0.27 0.27
46.05–50.12 0 0.00 0 0.00 97,262 10.00 0.00 0.00
50.12–53.76 1 2.70 0 0.00 97,261 10.00 0.27 0.00
53.76–57.58 1 2.70 1 2.70 97,262 10.00 0.27 0.27
57.58–62.07 1 2.70 1 2.70 97,261 10.00 0.27 0.27
62.07–78.55 0 0.00 0 0.00 97,262 10.00 0.00 0.00

Topographic
position

index (TPI)

−44.45–−9.66 1 2.70 0 0.00 97,261 10.00 0.27 0.00
−9.66–−6 2 5.41 2 5.41 97,262 10.00 0.54 0.54
−6–−3.74 6 16.22 4 10.81 97,261 10.00 1.62 1.08
−3.74–−2.04 2 5.41 2 5.41 97,262 10.00 0.54 0.54
−2.04–−0.68 6 16.22 8 21.62 97,261 10.00 1.62 2.16
−0.68–0.34 11 29.73 14 37.84 97,262 10.00 2.97 3.78
0.34–2.78 4 10.81 4 10.81 97,261 10.00 1.08 1.08
2.78–6.38 4 10.81 1 2.70 97,262 10.00 1.08 0.27

6.38–11.46 0 0.00 1 2.70 97,261 10.00 0.00 0.27
11.46–73.57 1 2.70 1 2.70 97,262 10.00 0.27 0.27

Topographic
ruggedness
index (TRI)

0–1.16 17 45.95 18 48.65 97,261 10.00 4.59 4.86
1.16–3.02 7 18.92 10 27.03 97,262 10.00 1.89 2.70
3.02–4.78 3 8.11 3 8.11 97,261 10.00 0.81 0.81
4.78–6.14 6 16.22 3 8.11 97,262 10.00 1.62 0.81
6.14–7.31 2 5.41 1 2.70 97,261 10.00 0.54 0.27
7.31–8.45 0 0.00 0 0.00 97,262 10.00 0.00 0.00
8.45–9.66 1 2.70 1 2.70 97,261 10.00 0.27 0.27
9.66–11.1 1 2.70 0 0.00 97,261 10.00 0.27 0.00

11.1–13.06 0 0.00 1 2.70 97,262 10.00 0.00 0.27
13.06–68.75 0 0.00 0 0.00 97,262 10.00 0.00 0.00

Valley depth

0–9.29 2 5.41 1 2.70 97,261 10.00 0.54 0.27
9.29–14.41 5 13.51 3 8.11 97,262 10.00 1.35 0.81

14.41–20.19 0 0.00 2 5.41 97,261 10.00 0.00 0.54
20.19–26.88 2 5.41 3 8.11 97,262 10.00 0.54 0.81
26.88–34.55 5 13.51 7 18.92 97,261 10.00 1.35 1.89
34.55–43.68 6 16.22 5 13.51 97,262 10.00 1.62 1.35
43.68–54.86 3 8.11 6 16.22 97,261 10.00 0.81 1.62
54.86–69.7 3 8.11 3 8.11 97,262 10.00 0.81 0.81
69.7–93.65 4 10.81 1 2.70 97,261 10.00 1.08 0.27

93.65–351.98 6 15.79 6 16.22 97,262 10.00 1.89 1.62
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Table A1. Cont.

Factor Class No. of
SPC

% of
SPC

No. of
T % of T

No. of
Pixels in
Domain

% of Pixels
in Domain

Frequency
Ratio of SPC

Frequency
Ratio of T

Flow path

0–60 12 32.43 12 32.43 93,864 9.65 3.36 3.36
72.42–144.85 6 16.22 5 13.51 100,271 10.31 1.57 1.31

150–229.7 7 18.92 8 21.62 92,423 9.50 1.99 2.28
234.85–330 4 10.81 4 10.81 101,044 10.39 1.04 1.04

332.13–434.55 3 8.11 4 10.81 95,153 9.78 0.83 1.11
434.55–556.69 4 10.81 3 8.11 100,626 10.35 1.04 0.78
556.69–704.55 1 2.70 1 2.70 96,887 9.96 0.27 0.27
704.55–896.98 0 0.00 0 0.00 97,622 10.04 0.00 0.00
896.98–1193.96 0 0.00 0 0.00 96,752 9.95 0.00 0.00
1193.97–3802.2 0 0.00 0 0.00 97,973 10.07 0.00 0.00

LS factor

0–1.6 14 37.84 16 43.24 97,261 10.00 3.78 4.32
1.6–4.63 10 27.03 11 29.73 97,262 10.00 2.70 2.97
4.63–7.78 5 13.51 5 13.51 97,261 10.00 1.35 1.35

7.78–10.72 4 10.81 2 5.41 97,262 10.00 1.08 0.54
10.72–13.52 1 2.70 1 2.70 97,261 10.00 0.27 0.27
13.52–16.34 1 2.70 1 2.70 97,262 10.00 0.27 0.27
16.34–19.42 1 2.70 0 0.00 97,261 10.00 0.27 0.00
19.42–23.18 1 2.70 1 2.70 97,262 10.00 0.27 0.27
23.18–29.11 0 0.00 0 0.00 97,261 10.00 0.00 0.00
29.11–304.73 0 0.00 0 0.00 97,262 10.00 0.00 0.00

Forest type

Deciduous pine tree (PL) 3 8.11 3 8.11 240,329 24.71 0.33 0.33
Pine forest (PK) 2 5.41 1 2.70 133,782 13.75 0.39 0.20

Broadleaved forest (H) 0 0.00 0 0.00 181,244 18.63 0.00 0.00
Mixed forest of soft and

hardwood (M) 0 0.00 1 2.70 51,415 5.29 0.00 0.51

Chestnut forest (Ca) 1 2.70 0 0.00 3168 0.33 8.30 0.00
Non−forest (ND) 28 75.68 30 81.08 241,742 24.85 3.04 3.26

Pine forest (D) 0 0.00 0 0.00 20,816 2.14 0.00 0.00
Pinus rigida forest (PR) 3 8.11 2 5.41 75,341 7.75 1.05 0.70

Farmland (L) 0 0.00 0 0.00 5653 0.58 0.00 0.00
Needleleaf artificial

forest (PD) 0 0.00 0 0.00 9602 0.99 0.00 0.00

Left−over area (R) 0 0.00 0 0.00 6189 0.64 0.00 0.00
Dentuded land (E) 0 0.00 0 0.00 119 0.01 0.00 0.00

Broadleaved artificial
forest (PH) 0 0.00 0 0.00 1664 0.17 0.00 0.00

Poplar forest (Po) 0 0.00 0 0.00 244 0.03 0.00 0.00
Grassland (LP) 0 0.00 0 0.00 877 0.09 0.00 0.00
Oak forest (Q) 0 0.00 0 0.00 225 0.02 0.00 0.00

Fine−grained wood (O) 0 0.00 0 0.00 31 0.00 0.00 0.00
Coniferous forest (C) 0 0.00 0 0.00 174 0.02 0.00 0.00

Soil

Water 4 10.81 2 5.41 13,501 1.39 7.79 3.89
Alluvium 7 18.92 8 21.62 97,462 10.02 1.89 2.16
Regosol 2 5.41 2 5.41 76,862 7.90 0.68 0.68

Red−yellow 4 10.81 6 16.22 107,414 11.04 0.98 1.47
Lithosols 11 29.73 10 27.03 600,412 61.73 0.48 0.44
Sierozem 7 18.92 7 18.92 60,429 6.21 3.05 3.05
Planosol 1 2.70 1 2.70 245 0.03 107.29 107.29

Other 1 2.70 1 2.70 16,290 1.67 1.61 1.61

Landcover

Urban 9 24.32 11 29.73 35,546 3.65 6.66 8.13
Agriculture 15 40.54 14 37.84 179,578 18.46 2.20 2.05

Forest 9 24.32 7 18.92 703,777 72.36 0.34 0.26
Grass/Shrub 1 2.70 1 2.70 14,721 1.51 1.79 1.79

Wetlands 1 2.70 1 2.70 4522 0.46 5.81 5.81
Bare 0 0.00 0 0.00 13,032 1.34 0.00 0.00

Water 2 5.41 3 8.11 21,465 2.21 2.45 3.67

Geology

Non 1 2.70 1 2.70 11,000 1.13 2.39 2.39
Alluvium (Qa) 12 32.43 15 40.54 107,636 11.07 2.93 3.66

Ganite−bearing granitic
gneiss (PCEkgrtgn) 0 0.00 0 0.00 30,231 3.11 0.00 0.00

Leucocratic gneiss
(PCEklgn) 0 0.00 0 0.00 4314 0.44 0.00 0.00

Migmatitic gneiss
(PCEkmgn) 0 0.00 0 0.00 34,178 3.51 0.00 0.00

Granite porphyry (Kgp) 0 0.00 0 0.00 9432 0.97 0.00 0.00
Banded gneiss

(PCEkbgn) 9 24.32 10 27.03 261,108 26.85 0.91 1.01

Schists (PCEccs) 0 0.00 0 0.00 74,084 7.62 0.00 0.00
Porphyroblastic gneiss

(PCEpgn) 0 0.00 0 0.00 38,778 3.99 0.00 0.00

Amphibolite (am) 0 0.00 0 0.00 1261 0.13 0.00 0.00
Granite porphyry (Jgr) 14 37.84 10 27.03 253,162 26.03 1.45 1.04

Quartzite (Q) 0 0.00 0 0.00 25,512 2.62 0.00 0.00
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Table A1. Cont.

Factor Class No. of
SPC

% of
SPC

No. of
T % of T

No. of
Pixels in
Domain

% of Pixels
in Domain

Frequency
Ratio of SPC

Frequency
Ratio of T

Yangpyeong Igneous
Complex (yic) 1 2.70 1 2.70 40,910 4.21 0.64 0.64

Gneiss (PCEccgn) 0 0.00 0 0.00 73,955 7.60 0.00 0.00
Diorite (Jdi) 0 0.00 0 0.00 3383 0.35 0.00 0.00
Acidic (kad) 0 0.00 0 0.00 3671 0.38 0.00 0.00

Distance
from fault

0–530.75 8 21.62 12 32.43 97,236 10.00 2.16 3.24
531.6–1081.66 1 2.70 1 2.70 96,925 9.97 0.27 0.27

1082.08–1611.36 1 2.70 3 8.11 97,419 10.02 0.27 0.81
1612.2–2130.21 6 16.22 4 10.81 97,264 10.00 1.62 1.08
2130.63–2673.2 3 8.11 4 10.81 97,368 10.01 0.81 1.08

2674.21–3317.13 6 16.22 6 16.22 97,271 10.00 1.62 1.62
3318.08–4440.4 3 8.11 0 0.00 97,341 10.01 0.81 0.00

4440.91–7620.53 6 16.22 3 8.11 97,268 10.00 1.62 0.81
7620.7–11187.71 2 5.41 2 5.41 97,259 10.00 0.54 0.54

11187.91–17310.08 1 2.70 2 5.41 97,264 10.00 0.27 0.54
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