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Abstract: In February 2010 a large landslide affected the Maierato municipality (Calabria, Italy).
The landslide, mainly caused by a period of prolonged and intense rainfalls, produced a mass
displacement of about 5 million m3 and several damages to farmlands, houses and infrastructures.
In the aftermath several conventional monitoring actions were carried out. In the current post
emergency phase, the monitoring was resumed by carrying out unmanned aerial vehicles (UAV)
flights in order to describe the recent behavior of the landslide and to assess residual risk. Thanks to
the potentialities of the structure from motion algorithms and the availability of post emergency
reconnaissance photos and a previous 3D dataset, the three-dimensional evolution of the area was
computed. Moreover, an experimental multispectral flight was carried out and its results supported
the interpretation of local phenomena. The dataset allowed to quantify the elevation losses and raises
in several peculiar sectors of the landslide. The obtained results confirm that the UAV monitoring
and the structure from motion approach can effectively contribute to manage residual risk in the
medium and long term within an integrated geotechnical monitoring network.
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1. Introduction

Landslides are calamitous events that can heavily affect human communities and in the current
global change scenario, these outcomes, in the same way as others hazards, can be even worsened [1,2].
Landslide consequences can result in several damages and, in the worst case, in casualties; moreover,
the larger is the size of landslide the higher are the probabilities of occurrence of these effects [3];
equally, widespread small size landslides can have the same kind of consequences [4]. After a landslide
event the activation of monitoring procedures is mandatory, in order to investigate the kinematic of
the occurred phenomenon, to assess the possible triggering factors and to measure the evolution in
the post emergency phase with several purposes, such as coordinating the rescue teams and evaluate
the recovery actions [5–7]. In a next phase, the monitoring must be carried out to screen the residual
risks potentially increased by the evolution of the landslide. The continuation of monitoring actions,
from emergency phase to the ordinary one, for an adequate time span, is an efficient way to define the
landslide geotechnical model in order to describe its typology and identify the best solutions to deal
with residual risk like adaptation, mitigation and risk reduction [8]. Moreover, in ordinary conditions,
due to their high impact on human society, landslides need to be carefully monitored in order to
observe their evolution and potential threats with the aim of reducing their impact on properties and
persons [9,10].
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Landslide monitoring can be carried out with various techniques and approaches. They are
characterized by different temporal and spatial resolutions [11–13] and their effectiveness depends
on the contexts in which they are applied. Geotechnical monitoring can rely on conventional tools
like extensometers, inclinometer and piezometers [10,14,15] or advanced ones like fiber optics [16] or
automated inclinometers [17,18] that monitor the surficial or deep behavior of the landslide [18,19].
Geodetic techniques are based on the survey of a network of selected points in the landslide body
and displacements computation; traditionally they were carried out by optical geodetic instruments.
Nowadays, the employed ones are total stations (with integrated electronic distance meters) [20] or
GNSS [21]. Remote techniques, based on terrestrial or air- or space-borne sensors provide an extensive
survey of the investigated phenomena, usually to the detriment of temporal resolution. Sensor can be,
generally subdivided in active [22,23] or passive ones [24–27].

Unmanned aerial vehicles (UAVs), among landslide monitoring techniques, are widely
spreading [28]. Their versatility allows in fact the rapid execution of survey campaign and the
acquisition of geocoded data. They have rapidly evolved as long as the data processing technologies;
the most remarkable improvements are the development of low-cost flight control systems [29],
and the diffusion of structure from motion (SfM) based software that allows the creation of a 3D
model from a sequence of multi views captured images [30] and to reconstruct the morphology of
the investigated area in details [31]. Several authors have proven the feasibility of UAV landslide
monitoring e.g., [29,30] which provides a cheaper, and faster way for surveying of extensive surfaces [32];
which can be effectively integrated with previous conventional monitoring campaigns [33]. It also
eases repeatability of the survey as UAV are easy to deploy and allow to access rugged or unsafe areas.
The system is also adaptable to different kind of on-board sensors that can range from RGB cameras to
multispectral ones, thermal sensors or even LiDAR [28,34].

As explained above, following a rainfall induced landslide event occurred on 15 February 2010 in
the Maierato municipality (Calabria, southern Italy; Figure 1A) [35–40] survey campaigns were carried
out and a preliminary monitoring network was established [7]. The landslide, that affected the left slope
of the Scotrapiti Torrent (Figure 1A), destroyed a part of the S.P. 55 provincial road (about 800 m length)
that allow the access to the municipality, moved a building of about 100 m and caused a loss of about
18 ha of farmland. The landslide, that involved a volume of about 5 million cubic meters, represents the
reactivation of a preexisting one [35]. It is classified as a complex movement consisting of a very rapid
slide of rock and earth and of flow of debris and earth [35]. After the 2010 activation, the landslide
showed a subvertical main scarp of about 50 m (Figure 1B) and an overall length of about 1400 m;
the main failure surface developed within the hemipelagic marls at a maximum depth of 50 m. During
the landslide paroxysmal phase, a significant portion of the Calcare di Base Formation, close to the
failure surface, collapsed so changing its mechanical characteristics and assuming a viscous fluid
behavior (Figure 1B). This destructured and fluidized limestone allowed a rafting of large rocky blocks
without severe disturbance [35].

On 20 February 2010, the main scarp of the Maierato landslide was affected by a retreat of about
80 m (Figure 1B) that affected a surface of about 2 × 104 m2 and a volume of about 4 × 105 m3.
The landslide, during the 2010 paroxysmal phase, was filmed by an cameraman of a private broadcast
company, and is still available online (https://www.youtube.com/watch?v=oWHjBsvmyLc).

In this paper, by the use of landslide map, photo time series and, in particular, UAVs we were able
to: (i) describe the geometry of the Maierato landslide; (ii) assess the morphological/topographical
changes linked to the landslide evolution over the last ten years; (iii) exploit the SfM algorithm to
salvage post event pictures and quantify landslide magnitude; (iv) assess the effectiveness of the UAV
and the structure from motion approach in order to contribute to manage residual risk in the medium
and long term within an integrated geotechnical monitoring network.

https://www.youtube.com/watch?v=oWHjBsvmyLc
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Figure 1. Location (A) and panoramic view (B) of Maierato landslide occurred on 15 February 2010 
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Figure 1. Location (A) and panoramic view (B) of Maierato landslide occurred on 15 February 2010
(helicopter photo taken on 16 February 2010, by G.G.).

2. Methods and Materials

The workflow of the proposed methodology is shown in Figure 2 and used as main tool
a periodic monitoring by UAV [41]. The monitoring of the landslide was initiated after the event
with a conventional approach [35,39], particularly the geomorphological study of the area (Figure 1B)
was performed through analyses of Google Earth™multi-temporal high-resolution satellite images
and detailed multi-temporal field surveys performed between 2010 and 2019. The updated landslide
inventory was mapped on a 1:5000 topographic base map and implemented in a geographic information
system (GIS).

Type and state of activity of mapped landslides were attributed following the classification
proposed by [42], and using geomorphological criteria based on field reconnaissance of gravity-related
landforms, including scarps, conjugate scarps, irregular slope profiles, ground cracks, changes in the
drainage network, and damages to infrastructures (Figures 3 and 4). Afterwards, the comparison of
photos taken at different times (in the last 10 years) has allowed us to qualitatively evaluate, by visual
inspection, the morphological variations in the area affected by the 2010 landslide (Figure 5).
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Figure 4. Photographs representing landslides (red arrows) activated in 2018 (P1–P6) and the current 
deepening action with local stream bank erosion along the Scotrapiti Torrent (P7–P9) (photo locations 
in Figure 3). 

Figure 3. Landslide map and locations of the available photographs (shown in Figure 4). Legend:
(1) 20 February 2010 landslide scarp; (2) 20 February 2010 landslide body; (3) 20 February 2010 secondary
landslide scarp; (4) Draga active block-slide delimited by active graben-like trench; (5) dormant trench;
(6) dormant slide; (7) ancient landslide scarp; (8) ancient block-slide with uncertain boundary; (9) 2018
landslide body; (10) active landslide body; (11) 2018 landslide scarp; (12) trace of 15 February 2010
main scarp; (13) toe of the 15 February 2010 sliding surface; (14) Scotrapiti Torrent (present course).
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in Figure 3).

The monitoring was resumed recently in order to quantitatively assess the landslide evolution
and its residual risk. The depicted geomatic approach entailed several steps. In the first one, in order
to evaluate the differences between the pre and post event phases, a pre-failure Digital Terrain Model
(DTM) was retrieved from the Maierato municipal administration; the DTM was interpolated from
a 1:5000 scale topographic map surveyed in 1996. In the second step, thanks to the availability of a post
event image set, taken from a helicopter-borne (Figure 1B), executed immediately after the landslide
event (on 16 February 2010), an attempt to reconstruct the geometry of the landslide and its DTM in its
aftermath was carried out by using computer vision approach. In the third step, the entire landslide
area was surveyed (on December 2017 and November 2018) with a DJI Phantom 4 Pro™ with the
purpose of obtaining digital elevation models and orthoimages. The two UAV photogrammetric (PG)
flights were planned according to Table 1. Finally, to test the capability of multispectral sensor and
to provide additional information in the interpretation of the landslide evolution [43] an additional
UAV multispectral (MS) flight was carried out with the same quadcopter equipped with a Micasense
RedEdge™ Sensor [44].

Table 1. Unmanned aerial vehicle (UAV) flights characteristics.

Date Type Sensor

05 Dember 2017 PG 1” CMOS (20 MPixel)
Lens FOV 84◦ 8.8 mm/24 mm (35 mm format equivalent)

f/2.8–f/11 auto focus
ISO Photo: 400

Shutter Speed: 1/1000 s
Shutter mode: time priority

27 November 2018 PG

27 November 2018 MS Micasense RedEdge (5 bands)
3.6 MPixel/band



Remote Sens. 2020, 12, 1039 6 of 18

During every flight, in order to allow their geocoding, several targets were deployed in the
surveyed area and their coordinates determined by a GNSS, Leica 1200™ receiver, in VRS mode [45],
assuring a centimetric accuracy. Each image set (UAV or salvaged) was then post processed with Agisoft
Metashape™. In the software images were aligned and geocoded by surveyed target collimation. Finally
thanks to the SfM algorithm [46–48] a 3D model was reconstructed. Additionally, for hypothetical
visual interpretation purposes RGB orthoimages were computed, too.Remote Sensing 2019, 19, x FOR PEER REVIEW 6 of 18 
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The salvaged images, 49 photos taken from a Panasonic DMC-FZ50, were processed through the
same procedure adopted with PG and MS, too. The co-registration was performed by the collimation
of feature recognizable in the November 2018 orthoimage and by entering the coordinates as extracted
by the relative orthoimage and Digital Elevation Model (DEM). The processing allowed to compute
a DEM and an orthoimage of the landslide area. Concerning the MS flight, the multiband dataset was
processed in the same way obtaining a 3D model and a multiband orthoimage. The obtained raster
layers (Table 2) were then processed in an open source GIS environment [49] where, through a raster
algebra approach, several DEM of differences (DoD) were computed with the purpose of quantifying
the morphological variation induced by the landslide in the last 10 years.

Table 2. DTM technical features.

Year Source Methodology Ground
Resolution [m]

Point Density
[points/m2] Image Type

1996 Technical map Interpolation 5.00 NA NA

2010 Reconnaissance SfM 0.60 2.85 RGB

2017 UAV SfM 0.05 402 RGB

2018 UAV SfM 0.05 419 RGB

3. Results

The monitoring actions provided information concerning the landslide evolution. They can
be subdivided in two main categories as the conventional approach mainly supplied qualitative
description of the landslide state, while the other one gave quantitative data describing the evolution
of the monitored phenomenon.

3.1. Conventional Monitoring

Multitemporal geomorphological field surveys, performed between 2010 and 2019 (whose results
are summarized in Figure 3), showed that the Maierato landslide during this period of time has
not undergone substantial modifications. Only minor and localized instability phenomena occurred
along the main scarp and the margins of the landslide body during the last few years. Specifically,
some debris slides of modest size affected the crown of the Maierato landslide (Figure 4, red arrows in
photo P1–P4), linked to the attainment of the geostatic balance of the main scarp. Two phenomena
typologically related to roto-translational active slides were detected in the Bosco area (Figure 4,
photo P6), while a larger slide with an uncertain body, also in a state of activity, was detected in the
Giardino area (Figure 4). This slow-moving landslide causes a lowering of the roadway point out by
shear or tensile fractures (Figure 4, P5).

In the same period of time, the geomorphological field surveys also show, along the new course
of the Scotrapiti Torrent, in the middle and low portion of the 2010 landslide body, a progressive
deepening action of the river bed associated with local riverbank erosion phenomena (Figure 4, P7–P9).

The multitemporal comparison of panoramic photos (time span from 26 February 2010 to 23 May
2018) of the upper portion of the landslide phenomenon does not show any remarkable retreat of the
main scarp and its crown (Figure 5), while it allows to observe a variation of the soil coverage mainly
determined by the regrowth of vegetation (trees and shrubs) in the area affected by the landslide.
Moreover, in the same time interval, the comparison of the photos shows a generalized lowering of the
topographic surface in the landslide body mainly linked to the disintegration and compaction of the
lithotypes involved in the mass movement (Figure 5).

3.2. Geomatic Monitoring

Concerning UAV surveys, the SfM algorithm has proved its effectiveness by providing reliable
results in processing surveyed imagery (RGB and multispectral). It has also allowed taking advantage
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even of the salvaged dataset, acquired with completely different purposes (Figure 6) and, to compute
an unprecedented DEM. The registration and co-registration procedures provided results as much
accurate as the SfM performance as shown in Table 3.
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Figure 6. Examples of reconnaissance photographs taken from helicopter (on February 16, 2010),
characterized by obstacles in the frame (A) or very oblique shot (B).

Table 3. Registration/co-registration errors.

Year GCP XY Error [cm] Z Error [cm] Total Error [cm]

2010 8 63.09 14.29 64.69

2017 11 2.67 2.25 3.49

2018 13 1.12 0.54 1.24

By exploiting the pre-failure 1996 DTM, and the 16 February 2010 DTM, it was possible to quantify
the variations occurred immediately after the landslide (Figure 7, DoD 1996–2010). The obtained DoD
highlighted the formation of a scarp of up to 54 m and of a deposition area of comparable height.
The DoD 2010–2017 highlights both the landslide scarp retrogression (which took place on 20 February
2010), which produces a lowering of the topographic surface of about 40 m, and emphasizes several
evolution phenomena in the deposit sector of the landslide (Figure 7, DoD 2010–2017); it is, in fact,
clearly evident the onset of an erosion process in the riverbed of Scotrapiti Torrent which was channeled
through the landslide deposit. The DoD 2017–2018 highlights small topographical variations within
the landslide affected area. In particular, the channel sector is characterized by the growth of poplar
and willow trees, while the upper part of the deposit sector is characterized by erosion processes
that bring to light large rock blocks (where the original stratigraphy is preserved), characterized by
higher density, showing an initial onset of pioneer vegetation (Figure 7, DoD 2017–2018). Finally,
the overall topographical/morphological changes of the landslide affected area are shown in the DoD
1996–2018 (Figure 7).

To provide additional information in the interpretation of the landslide evolution, the experimental
MS flight was successfully carried out [49]. The UAV set-up with customized supports (Figure 8,
inset), crafted with a 3D printer, allowed to perform the survey without remarkable influence on UAV
flight stability and duration. The preliminary result, a Color-infrared (CIR) composite [50] orthoimage
(Figure 8), provided an identification of some sectors characterized by dense tree cover in clear stress
(Figure 8A–C) or by several trees in healthy condition (Figure 8D). These results offer the opportunity
for additional insights into the interpretation of the current state of the landslide deposit.
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4. Discussion

The presented results and methodology (Figure 9) showed that the repeated geomorphological
surveys (Figure 3) constitute the basis for the next monitoring operations, including UAV flights.
The surveys, indeed, highlighted, besides those pointed out by the geomatic monitoring, the absence
of remarkable evolutionary phenomena during the investigated time span. Additionally, the helicopter
borne reconnaissance photos (February 2010) have provided supplementary data for the processing
and the subsequent analyses. In fact, the capabilities of the SfM algorithm have allowed to exploit the
availability of images taken immediately after the landslide occurrence and to compute unprecedented
3D data of landslide aftermath. In particular, the availability of previous 3D public dataset allowed
to quantify the evolution of the landslide deposit and morphological features, i.e., scarp evolution
(Figure 7, DoD 1996–2010). With respect to the aftermath surveys [39,46] the results obtained from the
proposed methodology allowed to quantify variations from the original topography ranging from
−54.8 m, in the main scarp sector, to 37.1 m in the deposit sector. Moreover, the mobile targets combined
with the GNSS-VRS allow to register the images in a quick mode optimizing the positioning phase, with
the aim of co-registering the survey time series in a repeatable way. Additionally, the adopted method
avoids fixed targets installation thus reducing field work and the risk of target damaging. On the other
hand, UAV survey is heavily affected by tree canopy cover that can mask ground portion [51,52] thus
preventing their measurements, the final 3D model will, in fact, represent, in these areas, the canopy
surface instead of the terrain. Concerning the comparison between the first UAV survey (2017) and the
2010 3D model (Figure 7, DoD 2010–2017), the remarkable topographic changes, occurred between 15th
and 20th February 2010, are pointed out. In the scarp sector an additional collapse caused a retreat of
the crown of up to 96.7 m and an elevation reduction of 54.0 m. On the other hand, in the central sector
a residual deposition of 18.7 m occurred. In the southern landslide border an elevation reduction,
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ranging from 1.7 to 9.9 m, is observable. Moreover, the onset of the erosion of the non-channeled
segment of the Scotrapiti Torrent is distinctly represented.
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The evaluation of the differences between the two UAV 3D models (Figure 7, DoD 2017–2018) at
a homogeneous scale color reveals non-substantial changes. However, an additional representation
with a customized color scale (Figure 10) has provided insights of the local variations of the investigated
areas. Particularly the progress of the erosive processes in the lower stretch of the Scotrapiti Torrent is
visible. A diffuse, yet shallow, erosive dynamic can be noticed in the main scarp sector, too. The areas
still featuring an elevation increase show the growth of vegetation in the channeled part of the Scotrapiti
Torrent and in other sector of the deposit.
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Generally, the UAV survey allowed to quantify the modification occurred from the event until the
last flight. In the DoD 1996–2018 of Figure 7, the elevation reduction in the crown sector reached values
up to −46.7 m, conversely in the deposit sector the maximum increase in elevation resulted as 35.5 m.

Concerning DTM accuracies and resolutions the three datasets (pre-failure, salvaged and UAV) are
characterized by different orders of magnitude. The heterogeneous spatial resolution and registration
errors of the analyzed 3D models could constitute an issue for the correct evaluation of landslide
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modifications. However, concerning the pre failure DTM, it was the only available one and the scale
and resolution are comparable or better than similar dataset used in regional cartographic datasets in
Italy [53,54]. UAV DEMs are the best products, among the analyzed dataset, and are, currently, the
state of the art of airborne mapping. The salvaged dataset is the critical one because of its uniqueness.
Without it, the computation of the aftermath modifications would not be feasible and the whole
reconstruction would have been incomplete. The computation of DoD 1996–2010 compared analogous
datasets in terms of resolution and accuracy. Conversely, the following one (i.e., DoD 2010–2017)
evaluated differences between two DEM characterized by remarkably different features. As mentioned
above, the salvaged dataset was exploited thank to the SfM capabilities and without them it would
have been remained a series of pictures taken from the helicopter to document the landslide aftermath
without any metric attribute. Moreover, the magnitude of the investigated phenomenon is, by far,
greater than the characteristic of the worst DEM used. The same matter concerns the 1996–2018 DoD
where the comparison is computed between 2018 and 1996 DEMs and equally the scale of the computed
differences exceeds the rasters resolution and accuracy issues. Lastly, concerning 2017–2018 DoD the
two DEM are comparable both in resolution and accuracy.

Definitely, the UAV surveys resulted in an effective spatial representation of the studied area,
allowing a continuous analysis of the investigated phenomenon. The repeated survey highlighted,
contemporarily, several evolutionary processes dynamics in different landslide sectors (Figure 11),
mainly in the scarp and in the main body: (i) retrogressive evolution of the scarp; (ii) erosion of the
main body; (iii) onset of pioneer vegetation; (iv) erosion in the non-channeled riverbed of the Scotrapiti.
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Figure 11. Cross section comparison depicting landslide evolution, the dotted lines represents the
hypothetical profile outside the landslide border connecting with the undisturbed one.

Concerning residual risk assessment, the retrogressive dynamic, that represent the most critical
phenomenon, as it can endanger area previously unaffected by the landslide, is also confirmed by
qualitative comparison of homologous features recognizable in the reconnaissance image set and in
the UAV imagery (e.g., Figure 12 clearly show the scarp evolution in correspondence of a manure-heap
located in the crown area). Moreover, Figure 12C shows the pre- and post-landslide position of
a building located in the landslide area and the displacement of 98.4 m measured from the comparison
between 2010 and 1996 DTMs, confirmed by the same analysis carried out on 2018 and 1996 DTMs
which did not highlight further shift.
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Figure 12. Evaluation of retrogressive evolution of the landslide: qualitative comparison between the
terrestrial reconnaissance photograph (A) and the UAV survey (B); (C) measurement of the displacement
of a building moved by the landslide.

The experimental MS survey provided additional hints for the interpretation of the phenomena in
the post emergency phase. Particularly (Figure 13), sector A identifies a stretch of Scotrapiti Torrent
featuring a dense tree cover in clear stress [55]; the same condition is present in sectors B and C where
pioneer vegetation struggle to colonize landslide displaced materials characterized by scarcely evolved
soils. On the other hand, in some sectors close to the landslide crown (sector D) there are several trees
in healthy condition, due to the translation of large mixed blocks, preserving the integrity of roots and
topsoil. The execution of a second flight could add further elements and allow the accomplishment of
a change detection analysis for an in deep investigation.
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5. Conclusions

The peculiar kinematic features of the Maierato landslide make long-term monitoring of the
surrounding area necessary, in order to identify any instability directly connected to the 2010 landslide
and, although unlikely, the occurrence of morphological and/or kinematic “indicators” that highlight
the possible activation of instability conditions similar to those that led to the 2010 landslide. In the
area of interest, an integrated monitoring was carried out immediately after the landslide activation,
which allowed the management of the residual risk in the immediacy of the event (emergency phase),
in the post-emergency one and for a significant period in ordinary conditions.

The remarkable photographic documentation acquired in the immediate post-event phase,
from helicopter and ground surface, provided useful qualitative indications in the analysis of the
results of the conventional integrated monitoring. Additionally, in the subsequent ordinary phase,
the multi-temporal geomorphological surveys were carried out to qualitatively monitor the post
emergency evolution of the landslide and to assess future actions.

The need to obtain monitoring data for long term management of residual risk suggested the
opportunity to experiment UAV surveys and image processing algorithms (i.e., SfM), in order to
acquire quantitative and more detailed data concerning geometrical/morphological changes between
the condition prior to the 2010 landslide, immediately after the landslide event and several years after
its occurrence. The obtained results indicate that the store of knowledge improve the experimental
processing of the post event photographs and the comparison with previous data. Indeed, the analyses
carried out have allowed to better comprehend the post event evolution of the Maierato landslide and
to confirm the capabilities of UAV and SfM in landslide monitoring. The methodologies have provided
promising results, as their features (accuracy, resolution, etc.) are compatible with the magnitude of the
investigated event, and insights which have confirmed the validity of the approach and the possibility
of the integration with conventional ones, in order to better monitor and comprehend the studied
phenomenon’s dynamics and evolution in the medium-long period. Definitely, the proposed UAV
monitoring (Figure 9) confirmed its validity by assuring a cost-effective methodology, as it reduces
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survey time (i.e., every campaign is executable in one day) and, contemporarily, ensures the quality of
the final results.
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