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Abstract: Land surface soil moisture (SM) monitoring is crucial for global water cycle and agricultural
dryness research. The FengYun-3C Microwave Radiation Imager (FY-3C/MWRI) collects various
Earth geophysical parameters, and the FY-3C/MWRI SM product (FY-3C VSM) has been widely
applied to determine regional-scale surface SM contents. The FY-3C VSM retrieval accuracy in
different seasons was evaluated by calculating the root mean square error (RMSE), unbiased RMSE
(ubRMSE), mean absolute error (MAE), and correlation coefficient (R) values between the retrieved
and measured SM. A lower accuracy in July (RMSE = 0.164 cm3/cm3, ubRMSE = 0.130 cm3/cm3,
and MAE = 0.120 cm3/cm3) than in the other months was found due to the impacts of vegetation
and climate variations. To show a detailed relationship between SM and multiple factors, including
vegetation coverage, location, and elevation, quantile regression (QR) models were used to calculate
the correlations at different quantiles. Except for the elevation at the 0.9 quantile, the QR models of
the measured SM with the FY-3C VSM, MODIS NDVI, latitude, and longitude at each quantile all
passed the significance test at the 0.005 level. Thus, the MODIS NDVI, latitude, and longitude were
selected for error correction during the surface SM retrieval process using FY-3C VSM. Multivariate
linear regression (MLR) and multivariate back-propagation neural network (MBPNN) models with
different numbers of input variables were built to improve the SM monitoring results. The MBPNN
model with three inputs (MBPNN-3) achieved the highest R (0.871) and lowest RMSE (0.034 cm3/cm3),
MAE (0.026 cm3/cm3), and mean relative error (MRE) (20.7%) values, which were better than those
of the MLR models with one, two, or three independent variables (MLR-1, -2, -3) and those of the
MBPNN models with one or two inputs (MBPNN-1, -2). Then, the MBPNN-3 model was applied
to generate the regional SM in the United States from January 2019 to October 2019. The estimated
SM images were more consistent with the measured SM than the FY-3C VSM. This work indicated
that combining FY-3C VSM data with the MBPNN-3 model could provide precise and reliable SM
monitoring results.
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1. Introduction

Soil moisture (SM) is a key component in the global water cycle, heat transfer, and energy exchange
processes [1]. Traditional site-based methods for the acquisition of information on surface SM and
other physical properties are time-consuming, expensive, and challenging to achieve at the national or
global scale [2,3]. In recent decades, satellite remote sensing technology has greatly developed, and a
variety of remotely sensed data have been extensively employed to retrieve and map soil water content
changes over large scales and regular temporal intervals [4,5]. In recent years, microwave remote
sensing has demonstrated the potential to effectively measure spatial and temporal SM variations over
large areas due to its ability to penetrate clouds, rain and the atmosphere and its sensitivity to the
dielectric constant [6,7]. Thus, microwave-based remote sensing has generally been considered the
most promising approach for monitoring land surface SM [8].

There are two forms of microwave remote sensing, active and passive, depending on the operation
mode and sensor type [6]. Numerous studies have indicated the direct and strong correlation between
the surface SM content and signals collected by active and passive microwave sensors [9–12]. In general,
passive microwave remote sensing observes the Earth’s surface at a shorter revisit interval than active
microwave remote sensing. Additionally, passive sensors have a wider variety of mature algorithms
for the retrieval of quantitative SM data, which makes it feasible to measure SM dynamics over large
areas [3,13,14]. Currently, a large number of microwave-based satellite missions, such as the L-band
passive microwave instruments aboard the Soil Moisture Active Passive (SMAP) satellite launched
by the National Aeronautics and Space Administration (NASA) in 2015, the SM and Ocean Salinity
(SMOS) satellite launched by the European Space Agency (ESA) in 2009, the Advanced Microwave
Scanning Radiometer for Earth observation science (AMSR-E) and the Advanced Microwave Scanning
Radiometer-2 (AMSR-2) onboard the EOS-Aqua satellite, and China’s Microwave Radiometer Imager
(MWRI) onboard the FengYun-3 (FY-3) series satellites, have been frequently employed for global SM
monitoring [8,15–18].

Although passive microwave remote sensing is an effective approach for providing regional
SM estimates under all weather conditions, its monitoring accuracy is likely to be affected by land
surface features, such as vegetation coverage and roughness. Many researchers have proposed
solutions to correct for the effects of vegetation and roughness on surface emissivity by assimilating
multisource data [19], developing a microwave-based vegetation index [7], applying an iterative
algorithm [20], and enhancing the radiation transfer equation [14]. Choi and Hur [20] downscaled the
AMSR-E SM products from a spatial resolution of 25 km to 1 km, and then combined the AMSR-E and
Moderate-resolution Imaging Spectroradiometer (MODIS) data to monitor SM in Korea from May
1 to September 30, 2007. The disaggregated SM products achieved a better statistical error between
the ground-measured and AMSR-E SM values, and the integration of AMSR-E and MODIS products
appeared to be an effective method for improving microwave SM products, with the minimum root
mean square error (RMSE) values decreasing from 0.131 to 0.059, and the maximum RMSE values
decreasing from 0.179 to 0.171. Liu et al. [19] produced a merged SM product by combining AMSR-E
and Advanced Scatterometer (ASCAT) data, and the results showed that the proposed methodology
had the potential to rescale and improve the accuracy of SM retrievals. Shi et al. [14] proposed a
dual-polarization inversion technique to minimize the effects of surface roughness, and the developed
technique has been proven to be useful for achieving more accurate global SM estimations using the
available satellite instruments. Wang et al. [7] developed a microwave vegetation water index (MVWI)
by combining the vegetation water content (VWC) index and a vegetation structure parameter, making
it possible to evaluate the VWC along with the SM.

A number of researchers have evaluated the relationships among multisource data to enhance
SM products [21,22]. De Jeu et al. [21] researched the distribution of correlations between the SMOS
and AMSR-E products using the classic linear regression model, and high correlations were found
between the two products in moderately vegetated areas, while the correlations were low in densely
vegetated regions. Ma and Liu [22] used a back-propagation (BP) neural network model to analyze the
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potential of using optical vegetation information and a combination of polarizations (HH and HV)
for SM inversion. The results indicated that HV was more strongly related to SM than HH, and the
addition of optical vegetation information to microwave remote sensing data for SM retrieval increased
the average R value by more than 0.05.

Among these soil moisture products, the FY-3/MWRI SM (FY-3 VSM) is an official SM product
released by the National Satellite Meteorological Center (NSMC) of China and has been widely used to
record the soil moisture content in the top layer with a spatial resolution of 25 km [18,23]. The FY-3
VSM products are retrieved from observations via the MWRI onboard FY-3 series satellites, including
FY-3A, FY-3B, FY-3C, and FY-3D. Generally, the FY-3C VSM product is considered to have a better
quality than FY-3A and FY-3B, and longer available time series data than FY-3D. Zhu et al. [23] assessed
the performance of FY-3C VSM over cropland in Henan Province, China, during 2016, and the results
indicated that the SM variation patterns of the FY-3C VSM retrievals were in good agreement with the
measured SM. However, the FY-3C VSM tended to overestimate or underestimate the SM during the
year. To further improve the performance of the FY-3C VSM, various algorithms and models should be
established and applied to enhance the FY-3C VSM product and achieve more accurate SM estimations.

This paper aimed to improve the accuracy of surface SM (0–5 cm) estimates by combining
multisource data, including satellite data, optical vegetation information, elevation, and location
data. For this purpose, the FY-3C VSM product and MODIS normalized difference vegetation index
(NDVI) time series for the months from January 2019 to October 2019 were reprojected and resampled.
The international soil moisture network (ISMN) measurement database was employed as the reference
SM data. Then, a quantile regression (QR) model was used to analyze the detailed correlation between
the surface SM and multiple factors. Multivariate models, including multivariate linear regression
(MLR), and multivariate BP neural network (MBPNN), were developed to correct for the effects of
vegetation coverage and enhance the monitoring of SM over large regions. Additionally, the SM images
retrieved from FY-3C VSM, which were estimated by the best model and interpolated from the ISMN,
were compared, and statistical parameters were calculated to further validate the feasibility of using
the proposed method to enhance satellite SM products.

2. Data and Methods

2.1. Multisource Data

2.1.1. Data from the ISMN

SM measurements are a valuable resource for assuring the consistent and precise quality of various
satellite-derived SM products [24]. The ISMN is an international cooperation that has provided and
maintained globally available in situ SM measurements at various depths since 1952 [25]. Currently,
the ISMN contains information from more than 60 networks and over 2500 stations around North
America, Europe, Asia, Australia, Africa, and South America [26].

Given the widespread distribution and large number of ground-based SM observations in the
U.S. (Figure 1), this region (67◦03′W–124◦76′W and 25◦24′N–49◦39′N) was selected as the study area
in this paper. Most parts of the study area have continental and subtropical climates, with average
temperatures in January and July ranging from −3 ◦C and 24 ◦C in the northern part to 11 ◦C and 28 ◦C
in the southern part, respectively. The average annual rainfall in the area decreases from 1500 mm over
the central plain and Pacific coasts to 500 mm over the western plateau, where the highest elevation is
4187 m.

Approximately 700 SM sites operated by three SM networks, i.e., the U.S. Climate Reference
Network (USCRN), Snow Telemetry (SNOTEL), and Soil-Climate Analysis Network (SCAN), are
located in the study area (Figure 1). The hourly data sets at 0.05-m depth from January 1 at 00:00 to
October 31 at 23:00 in 2019 were collected and generated as the actual SM in this study. The sampling
interval of the original data was one hour, and the time interval of the measurements was converted
into one month using the averaging method.
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Figure 2. Interpolated ISMN values in January 2019 using the empirical Bayes kriging (EBK) method. 

2.1.2. FY-3C VSM 

FY-3 series satellites, including FY-3A, FY-3B, FY-3C, and FY-3D, are China’s second generation 
of polar-orbiting meteorological satellites and are operated by the China Meteorological 
Administration (CMA). These satellites are equipped with various instruments in the optical, 
infrared, and microwave bands and have become valuable data sources for global climate 
predictions, weather forecasting and surface SM measurements over the past decade [27,28]. The 
MWRI onboard FY-3 includes vertical and horizontal polarization modes (V/H) in the 10.65-GHz, 
18.7-GHz, 23.8-GHz, 36.5-GHz, and 89.0-GHz frequency bands [29]. The characteristics, such as the 
bandwidth, sensitivity, calibration accuracy, scanning mode, and instantaneous field of view (IFOV), 
are shown in Table 1 [23]. Among all of the frequency bands, the channels in the 10.65 GHz band are 
capable of penetrating clouds and rain and are mainly used to obtain global surface sea temperature 
(SST), wind speed, SM content, and other geophysical parameters under all weather conditions. 

Table 1. Characteristics of FY-3 Microwave Radiation Imager (MWRI) channels. 

Figure 1. The location of the study area and the distribution of SM stations.

Then, the empirical Bayes kriging (EBK) method and ArcMap software were employed for spatial
interpolation and to achieve the monthly SM over the study area (Figure 2). Here, the output size of the
cell was set as 0.27756061◦ to assure the same spatial resolution as the microwave remote sensing data.
The mean prediction error and RMSE of the spatial interpolation using EBK were 0.0025 cm3/cm3 and
0.096 cm3/cm3, respectively, which indicated high accuracy between the ground-based and interpolated
SM in the study area. According to Figure 2, the SM content in the midwestern part was significantly
lower than that in the eastern and northwestern parts of this region, which is basically consistent with
the patterns of rainfall variations and climate types.
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2.1.2. FY-3C VSM

FY-3 series satellites, including FY-3A, FY-3B, FY-3C, and FY-3D, are China’s second generation of
polar-orbiting meteorological satellites and are operated by the China Meteorological Administration
(CMA). These satellites are equipped with various instruments in the optical, infrared, and microwave
bands and have become valuable data sources for global climate predictions, weather forecasting and
surface SM measurements over the past decade [27,28]. The MWRI onboard FY-3 includes vertical and
horizontal polarization modes (V/H) in the 10.65-GHz, 18.7-GHz, 23.8-GHz, 36.5-GHz, and 89.0-GHz
frequency bands [29]. The characteristics, such as the bandwidth, sensitivity, calibration accuracy,
scanning mode, and instantaneous field of view (IFOV), are shown in Table 1 [23]. Among all of the
frequency bands, the channels in the 10.65 GHz band are capable of penetrating clouds and rain and
are mainly used to obtain global surface sea temperature (SST), wind speed, SM content, and other
geophysical parameters under all weather conditions.
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Table 1. Characteristics of FY-3 Microwave Radiation Imager (MWRI) channels.

Frequency (GHz) 10.65 18.7 23.8 36.5 89

Polarization V/H V/H V/H V/H V/H

Band width (MHz) 180 200 400 900 4600
Sensitivity (K) 0.5 0.5 0.8 0.5 1.0

Calibration accuracy (K) 1.5 1.5 1.5 1.5 1.5
IFOV (km × km) 51 × 85 30 × 50 27 × 45 18 × 30 9 × 15

Pixel size (km × km) 40 × 11.2 40 × 11.2 20 × 11.2 20 × 11.2 10 × 11.2
Dynamic range (K) 3~340
Sampling number 240

Beam efficiency ≥90%
Beam error (◦) <0.1

Scanning mode Conical scanning
Orbit width (km) 1400
Viewing angle (◦) 45 ± 0.1

Scanning period (s) 1.7 ± 0.1
Scanning period error (ms) 0.34 ms (between scanning lines)/1 ms (in 30 min)

FY-3C was launched in September 2013 and has been recognized as the first official service satellite
and a suitable replacement for FY-3A as the new forenoon satellite [30]. FY-3C VSM products are
retrieved from the L1 brightness temperature (BT) data collected by MWRI using a new inversion
technique, i.e., the Qp model, which was built using advanced integral equation (AIE) model
simulations of microwave emissions [14]. Compared with the single channel SM retrieval algorithm,
both the vertical and horizontal polarizations of the X-band (10.65 GHz) were applied in the Qp

model to decrease the effects of roughness and vegetation coverage [23]. Also, the pixels covered
with snow, frozen soil, and coastal waters were removed from the FY-3C VSM retrievals. These
products are classified into ascending (A) and descending (D) products at daily, 10-day, and monthly
time intervals, and have been widely used to detect the global land surface soil volumetric water
content (cm3/cm3) with a spatial resolution of 25 km. In this study, the monthly FY-3C VSM products
(FY3C_MWRIX_GBAL_L3_VSM.HDF) data from January to October 2019 were downloaded from the
website of the NSMC (satellite.nsmc.org.cn/) and reprojected from the equal-area scalable earth (EASE)
grid 2.0 to the WGS-84 grid.

2.1.3. MODIS NDVI

The NDVI products derived from MODIS are the most mature and widely used source for
monitoring vegetation status and estimating soil water contents at the regional scale as supplemental
data in many previous studies [20,23]. Here, 14 tiles (h08v04, h08v05, h08v06, h09v04, h09v05, h09v06,
h10v04, h10v05, h10v06, h11v04, h11v05, h12v04, h12v05, and h13v04) of monthly MODIS NDVI
products (MOD13A3, v006) from the Terra satellite from January 2019 to October 2019 were downloaded
from the NASA website (https://ladsweb.modaps.eosdis.nasa.gov/). The MODIS NDVI products were
reprojected from sinusoidal to WGS-84, and their spatial resolutions were resampled from 250 m to
25 km to be consistent with the FY-3C VSM.

Apart from the FY-3C VSM and MODIS NDVI, the elevation was derived from the GMTED2010
elevation dataset and resampled to 25 km as well. Then, the values of ISMN, FY-3C VSM, MODIS
NDVI, elevation, latitude, and longitude of the study area were extracted pixel by pixel for multivariate
correlation analysis and comprehensive monitoring of SM.

2.2. Multivariate Models

2.2.1. Quantile Regression Model

A key objective of this paper was to indicate the detailed relationship between SM measurements
and remotely sensed surface features and other potential impact factors, such as vegetation and

https://ladsweb.modaps.eosdis.nasa.gov/
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location information. In previous studies, regression models were extensively applied to quantitatively
analyze the relationships among various factors. However, most regression models were conducted
based on the correlation between dependent and independent variables at the mean level. Therefore,
the information reflected by those models is limited [31]. In addition, the distribution characteristics of
random errors are strictly required when ordinary least squares (OLS) method is used for regression
analysis. Thus, the linear assumption of least squares may be too harsh when applying the OLS to
some practical problems [32].

The quantile is the proportion of dependent variables which are lower than a certain element in
the sorted array. For example, the quantile 0.1 represents for the first 10 elements in the array with 100
elements arranged from the lowest to the highest, which makes it possible for quantiles to represent
any location in the distribution. QR theory was developed by Koenker and Bassett [33] as a tool for
overcoming the limitations of classic OLS and comprehensively reflecting the conditional distribution
characteristics under different quantiles. The QR model was built based on the conditional quantile of
dependent variables, which makes it capable of describing the impacts of independent variables on
the shapes and variation ranges of the conditional distributions of dependent variables. A number of
researchers have applied QR in many fields, including economics, medicine, education, and social and
environmental sciences, to achieve steady and robust regression results [34,35].

Compared with the OLS-based model, the QR model provides an in-depth view of the relationship
between independent and dependent variables [34]. Let the distribution function of the random
variable Y be F(y) = P(Y ≤ y). The quantile function of Y at the τ (0< τ <1) quantile can be defined as

Q(τ) = inf
{
y : F(y) ≥ τ

}
(1)

The loss function, which is a piecewise function (Figure 3), is defined as

ρτ(z) = z(τ− I
z<0

(z)) =
{

τz z ≥ 0
(τ− 1)z z < 0

(2)

where I(·) is the indicative function.
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Let z equal y− ŷ, and ρτ(z) can be represented by

ρτ(y− ŷ) = τ(y− ŷ)I
(y−ŷ≥0) + (τ− 1)(y− ŷ)I

(y−ŷ<0) (3)

Then, the τth QR of y (ŷ) can be estimated by minimizing the expected loss:

min
ŷ∈R

E[τ(y− ŷ)I
(y−ŷ≥0) + (τ− 1)(y− ŷ)I

(y−ŷ<0) ] (4)

Assume that the linear regression equation is described as
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Y = X′β+ ε (5)

where Y is the dependent variable, X’ is the transpose of independent X, β is the regression coefficient,
and ε is the error term. The regression coefficient β in a conditional QR is estimated by minimizing the
sum of absolute deviation [32]:

min
β∈R

[
n∑

(i:yi≥xi
′β(τ))

τ|yi − xi
′β(τ)|+

n∑
(i:yi<xi

′β(τ))

(1− τ)
∣∣∣yi − xi

′β(τ)
∣∣∣] (6)

Currently, the simplex algorithm, interior point algorithm, and smoothing algorithm are commonly
used to estimate the regression efficiency β(τ). Among those algorithms, the smoothing algorithm
is suitable for processing datasets with a large number of observations and variables and was thus
applied in this study. Then, the τth (0 < τ < 1) quantile function of y can be represented by

Qy(τ
∣∣∣x) = x′β(τ) (7)

where β(τ) is the solution to the minimizing problem in Equation (6). Thus, many regression lines
at different quantiles can be obtained to examine the behavior of the response variable beyond the
average of the Gaussian distribution [36].

2.2.2. Back-Propagation Neural Network Model

Neural networks (NNs) are flexible and intelligent computing frameworks for solving large-scale
and nonlinear problems over a broad range of applications, such as time series data forecasting and
soil property estimation [3,22,37,38]. The back-propagation neural network (BPNN), developed by
Rumelhart et al. [39] in 1985, has been recognized as the most mature and widespread method in the
field of NNs and usually demonstrates superior simulation capability [5,40]. The learning process of the
BPNN consists of forward propagation of the data stream in the “input layer→hidden layers→output
layer” direction and back propagation of the error signal in the “output layer→hidden layers→input
layer” direction, as shown in Figure 4.
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Figure 4. Basic structure of a three-layer back-propagation neural network (BPNN).

Suppose a three-layer BPNN has n inputs, m neurons in the hidden layer, and one output (Figure 4).
The weights and thresholds from the input to hidden layer are wjk and θk (j = 1, 2, . . . , n; k = 1, 2, . . . ,
m), and the weights and thresholds from the hidden to output layer are wk (k = 1, 2, . . . , m) and θ,
respectively. Then, the kth unit of the hidden layer (yk) and the output of the output layer (b) can be
given as Equations (8) and (9), respectively.
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yk = f (
n∑

j=1

w jkr j − θk) (8)

b = f (
m∑

k=1

wkyk − θ) (9)

where f represents the sigmoid function, which is described as

f (x) = [1 + exp(−x)]−1 (10)

The mean square error (e) between the actual output (b) and target vector (T) is calculated as
follows:

e =
1
N

N∑
k=1

(bk − Tk)
2 (11)

where N represents the number of samples in the target vector.
The weights and thresholds are continuously adjusted to meet the error limit during the BP

process of the error signal. In general, the gradient descent with momentum (GDM) method is helpful
to speed up the learning process and prevent it from being trapped in poor local minima. Thus,
this method has been widely applied as the training method in BPNNs [38,39]. The training efficiency
and accuracy are highly relevant to the initial setting of parameters, such as the learning rate (η),
iterations (t), and momentum term (α), when the GDM method is used in the training process of
BPNN [5]. The regulating rules of weights and thresholds are shown in Equations (12)–(15). After
the adjustment of weights and thresholds, the well-trained BPNN is used to map SM based on the
inputs provided.

wk(t−1) = wk(t) + ηδyt + α[wk(t) −wk(t−1)] (12)

w jk(t−1) = w jk(t) + ηδky j + α[w jk(t) −w jk(t−1)] (13)

θ(t−1) = θ(t) + ηδ+ α[θ(t) − θ(t−1)] (14)

θk(t−1) = θk(t) + ηδk + α[θk(t) − θk(t−1)] (15)

In this study, three multivariate BPNN (MBPNN) models with one, two, and three input variables
were established using the MATLAB Neural Network Toolbox for estimating SM in the U.S. For this
purpose, the FY-3C VSM and MODIS NDVI, together with the location information, were generated
and extracted as the input variables of the MBPNN models. The measured SM from the ISMN data
was set as the target vector in these models. The “newff” function was used to design a BPNN, the
“sim” function was used to calculate the output of the network, and the “mse” function was applied to
calculate the performance errors. Additionally, the GDM method was employed to train the samples,
and the learning rate, momentum coefficient, iteration and error limit were set as 0.05, 0.95, 10,000,
and 0.00001, respectively, based on the comparison experiments. Of the samples, 80% and 20% were
set as the training and testing sets, respectively, and the model yielded the best training and testing
accuracies to simulate the SM values of each pixel.

2.2.3. Linear Regression Model

The linear regression model has been extensively used for interpretation of the change in the
dependent variable using one or more independent variables in various fields, and it can be defined as

Y = β0 + β1 × 1 + β2x2 + . . . + βnxn + ε (16)

where x1, x2, . . . , xn are independent variables, Y is the dependent variable, β0 is a constant, βi (i = 1, 2,
. . . , n) are coefficients of xi (i = 1, 2, . . . , n), and ε is the residual error.
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In this study, three linear regression models (MLR-1, MLR-2, and MLR-3) with 1~3 influence
factors as independent variables and ground-based SM from ISMN as the dependent variable were
established for SM estimation. The types of independent variables in each MLR model and inputs in
each MBPNN model are listed in Table 2.

Table 2. Independent/input variables of the multivariate linear regression (MLR) and multivariate
back-propagation neural network (MBPNN) models.

Model Independent/Input Variable

MLR-1, MBPNN-1 FY-3C VSM
MLR-2, MBPNN-2 FY-3C VSM, MODIS NDVI
MLR-3, MBPNN-3 FY-3C VSM, MODIS NDVI, location

2.3. Statistical Indicators

To evaluate the accuracies of FY-3C VSM products and the monitored SM using multivariate
models, five statistical indicators, including the correlation coefficient (R), RMSE, unbiased RMSE
(ubRMSE), mean absolute error (MAE), and mean relative error (MRE), were adopted in this study.

The R and MRE represent the relative accuracy between the FY-3C VSM retrievals or the estimated
SM and the SM measurements, respectively. To evaluate the FY-3C VSM accuracy, R and MRE can be
defined by Equations (17) and (18).

R =

∑N
i−1 (VSMi −VSM)(SMi − SM)√∑N

i−1 (VSMi −VSM)
2
√∑N

i−1 (SMi − SM)
2

(17)

MRE =
1
N

N∑
i=1

|VSMi − SMi|

SMi
× 100% (18)

where VSMi represents the FY-3C VSM retrievals (cm3/cm3), SMi represents the SM measurements
(cm3/cm3), VSM represents the average of FY-3C VSM retrievals (cm3/cm3) across all pixels in the
study area, SM indicates the average of SM measurements (cm3/cm3), and N represents the total
number of valid samples and varies for each month.

The RMSE, ubRMSE, and MAE evaluate the absolute difference of FY-3C VSM product or SM
estimations from the measured SM via the ISMN, which can be calculated by the following equations.

RMSE =

√∑N
i=1 (VSMi − SMi)

2

N
(19)

ubRMSE =
√

RMSE2
−MD2 (20)

MAE =
1
N

N∑
i−1

|VSMi − SMi| (21)

where MD is the abbreviation of the mean deviation, which can be calculated as

MD =
1
N

N∑
i=1

(VSMi − SMi) (22)
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3. Results and Analysis

3.1. Comparison between FY-3C VSM and Measured SM

To assess the consistency between the FY-3C VSM and the measured SM in different seasons,
pixel values were extracted from FY-3C VSM images and the measured SM from the ISMN in January,
April, July, and October 2019. Considering the periodic change of SM curves between different
rows, the pixels in one cycle were representative and should be selected to describe the over- and
underestimation issues of FY-3C VSM directly. Here, 150 pixels were selected randomly from the
central rows with the latitude ranging from 32.19◦N to 32.74◦N in each month for comparison between
the FY-3C VSM product and measured SM. The variation curves of FY-3C VSM (red line) and measured
SM (green line) are displayed in Figure 5. Generally, the varying patterns of the FY-3C retrievals were
basically consistent with the in situ SM values in most samples during the four months, especially in
January (Figure 5a), whose pixel values from both sources were distributed between 0.10 cm3/cm3

and 0.45 cm3/cm3. In February 2019 (Figure 5b), the FY-3C VSM sample values from 10 to 50 were
basically lower than the SM measurements, and the sample values from 70 to 130 were mainly higher
than the measured SM values. It was obvious that the FY-3C satellite retrievals in July 2019 (Figure 5c)
overestimated the SM in almost of the samples, and the estimation error was significantly greater
than that in the other months, which was possibly due to the potential impacts caused by factors such
as deep and widespread vegetation coverage in summer. The curves for October 2019 (Figure 5d)
indicated a similar situation to that in July, although the proportion and degree of overestimation were
slightly decreased compared with those in July. To further evaluate the vegetation impact on the FY-3C
VSM retrieval accuracy in July, the SM deviations between the FY-3C VSM and the measured SM were
calculated and compared to the MODIS NDVI by plotting the variation curves and evaluating the
correlation between the two sources. The plot could be found in the Appendix A, where the curves of
the MODIS NDVI (red line) and the SM deviations (green line) showed a similar variation pattern and
the R value was 0.666, which indicated a strong correlation between the NDVI and SM deviation.

To further analyze the SM monitoring accuracy using the FY-3C VSM product, the values of R,
RMSE, ubRMSE, and MAE between the FY-3C VSM and the in situ SM measurements in different
months were calculated pixel by pixel, as shown in Table 3. All valid pixels from the FY-3C VSM
products in January (4464), April (8870), July (7446), and October (8852) were included in the statistical
error metrics in Table 3. The values of R were distributed between 0.467 and 0.621, indicating a
moderate or strong correlation between FY-3C VSM and the actual SM in all seasons. The SM
estimation accuracies in January (RMSE = 0.116 cm3/cm3, ubRMSE = 0.113 cm3/cm3, and MAE = 0.092
cm3/cm3) and April (RMSE = 0.114 cm3/cm3, ubRMSE = 0.112 cm3/cm3, and MAE = 0.094 cm3/cm3)
were significantly higher than those in July (RMSE = 0.164 cm3/cm3, ubRMSE = 0.130 cm3/cm3, and
MAE = 0.120 cm3/cm3) and October (RMSE = 0.147 cm3/cm3, ubRMSE = 0.121 cm3/cm3, and MAE =

0.113 cm3/cm3). Among these months, despite the high correlation between the estimated and actual
SM, the SM inversion in July yielded the worst accuracy due to overestimation.

Table 3. Root mean square error (RMSE), unbiased RMSE (ubRMSE), mean average error (MAE), and
correlation coefficient (R) values between the measured SM and FY-3C VSM retrievals in different months.

Month

Error Metrics
R RMSE

(cm3/cm3)
ubRMSE
(cm3/cm3)

MAE
(cm3/cm3)

January 0.467 0.116 0.113 0.092
April 0.500 0.114 0.112 0.094
July 0.621 0.164 0.130 0.120

October 0.558 0.147 0.121 0.113
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(a)–(d) show the comparison curves for January, April, July, and October 2019, respectively.

3.2. Relationship between Multiple Variables and SM Measurements

By evaluating of the FY-3C VSM and multiple related factors, such as vegetation, slope, and
location, against the measured SM using the QR model, we aimed to correct for bias and improve the
SM inversion accuracy that was described in Section 3.1.
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In Figure 6, the dependent variable, i.e., the measured SM, was plotted against quantiles from 0.05
to 0.95 for five independent variables, including the FY-3C VSM retrievals, MODIS NDVI, latitude,
longitude, and elevation, and an intercept using the “quantreg” package in R (https://www.R-project.
org/). The plots depicted the variation pattern of coefficient estimates and 95% confidence intervals
of all independent variables and intercept. According to Figure 6, the FY-3C VSM had a positive
correlation with the measured SM at all quantiles, and the QR coefficient estimates increased from 0.01
in the lower quantile to 0.22 in the upper quantile. The estimate from the OLS method was constant at
approximately 0.14, which suggested that the estimated SM using OLS was likely to be overestimated
in areas with low soil water contents (dry) and underestimated in areas with high soil water contents
(wet). Apart from the FY-3C VSM, the MODIS NDVI had negative estimates at quantiles from 0 to 0.2
and positive estimates at quantiles from 0.2 to 0.95. The coefficient estimates showed an increasing
trend before reaching their peak (0.06) at quantile 0.8 and then slightly decreased to 0.04. The latitude
and elevation had both negative (quantiles 0.8–0.95) and positive (0.05–0.8) effects on SM, and the
latitude was more significant than elevation at all quantiles. The longitude had a positive correlation
with SM at all quantiles, and its coefficient estimates decreased from the lower to upper quantiles.

The QR models were created at five quantiles (0.1, 0.3, 0.5, 0.7, and 0.9), and their coefficient
estimates and significant P values were calculated, as presented in Table 4. Table 4 indicates that the
linear relationship between the measured SM and the abovementioned multiple independent variables
varied at different quantiles. For FY-3C VSM, latitude and longitude, the p values were lower than
0.001 at all quantiles, which indicated a high and stable correlation between the SM measurements and
those input variables. At the 0.1 quantile, the larger p value was found in the NDVI, which indicated
a lower correlation between the NDVI and the ground-based SM measurements than between that
and the other variables. The p values of elevation at quantiles 0.7 (0.001) and 0.9 (0.992) were greater
than those of the other inputs, indicating a lower correlation between elevation and measured SM at
high quantiles. All of the regression models passed the significance test at the 0.005 level except for
the elevation at the 0.9 quantile. Thus, the FY-3C VSM, MODIS NDVI, latitude, and longitude were
selected as the input variables for improving the accuracy of SM monitoring.

Table 4. Coefficients and significance tests for the QR.

Variable

τ 0.1 0.3 0.5 0.7 0.9

β(τ) P β(τ) P β(τ) P β(τ) P β(τ) P

Intercept 0.207 <0.001 0.311 <0.001 0.336 <0.001 0.339 <0.001 0.361 <0.001
FY-3C VSM 0.024 <0.001 0.070 <0.001 0.094 <0.001 0.125 <0.001 0.201 <0.001

NDVI
(×10−1) −0.136 =0.005 0.116 <0.001 0.304 <0.001 0.523 <0.001 0.470 <0.001

Latitude
(×10−2) 0.568 <0.001 0.318 <0.001 0.235 <0.001 0.077 <0.001 −0.207 <0.001

Longitude
(×10−2) 0.323 <0.001 0.321 <0.001 0.310 <0.001 0.248 <0.001 0.135 <0.001

Elevation
(×10−5) 0.891 <0.001 0.667 <0.001 0.591 <0.001 0.399 =0.001 −0.001 =0.992

https://www.R-project.org/
https://www.R-project.org/
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3.3. SM Estimation Using Multivariate Models

3.3.1. Multivariate Models for SM Estimation

The issue with SM overestimation was relatively more serious in summer (July) among all of the
seasons, as demonstrated in Section 3.1. Six multivariate models (MLR-1, MLR-2, MLR-3, MBPNN-1,
MBPNN-2, and MBPNN-3) were built and compared to improve the SM estimation accuracy in July.
The R, RMSE, MAE, and MRE values between the actual and estimated SM using those models were
calculated pixel-by-pixel and are shown in Table 5. It is obvious that the performances of the models
with two (MLR-2 and MBPNN-2) or three (MLR-3 and MBPNN-3) independent or input variables were
improved compared with the models with only FY-3C VSM (MLR-1 and MBPNN-1) as the independent
or input variable. The MLR-1 and MLR-2 models obtained higher monitoring accuracy than the
MBPNN-1 and MBPNN-2 models, which was possibly due to the disadvantages of the BPNN, such as
the limited sample number, overfitting, and trivial linear case inclusion. The addition of location
information significantly enhanced the accuracy of SM estimates in models MLR-3 and MBPNN-3,
and the performance of MBPNN-3 (R = 0.871, RMSE = 0.034 cm3/cm3, and MAE = 0.026 cm3/cm3,
MRE = 20.7%) was the best among all of the models, followed by MLR-3 (R = 0.694, RMSE = 0.047
cm3/cm3, MAE = 0.035 cm3/cm3, and MRE = 27.3%).

To further validate the accuracy of the SM estimations using MLR-3 and MBPNN-3, the distribution
of absolute error and relative error between the actual and estimated SM in the pixels are depicted in
Figure 7. Generally, MBPNN-3 demonstrated better performance than MLR-3, with lower median values
of the absolute (0.00 cm3/cm3) and relative (14.0%) errors than MLR-3. Additionally, the distribution
ranges of the MLR-3 errors between the 25% (Q1) and 75% (Q3) quantiles, which were [−0.02, 0.02] for
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absolute errors and [11.0%, 28.0%] for relative errors, were both wider and overall larger than those
for the MBPNN-3, whose absolute and relative errors between Q1 and Q3 were distributed between
[−0.01, 0.02] and [7.5%, 25.0%], respectively. The results indicate that the multivariate nonlinear model
is a suitable and promising approach for achieving SM estimation results with high accuracy.

Table 5. Correlation coefficient and error metrics between the estimated and actual SM values using
the MLR and MBPNN models.

Model

Error Metrics
R RMSE

(cm3/cm3)
MAE

(cm3/cm3)
MRE (%)

MLR-1 0.640 0.050 0.039 32.0
MBPNN-1 0.690 0.056 0.044 38.0

MLR-2 0.661 0.049 0.038 30.4
MBPNN-2 0.708 0.054 0.041 35.2

MLR-3 0.694 0.047 0.035 27.3
MBPNN-3 0.871 0.034 0.026 20.7
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3.3.2. Regional SM Monitoring Results

Here, the MBPNN-3 model was applied to estimate the regional SM in the study area from
January to October 2019, as shown in the middle column of Figure 8. The images in the left and right
columns are the FY-3C VSM retrievals and the measured SM from the ISMN. In general, the FY-3C
VSM products overestimated the SM in the eastern part and underestimated the SM in the midwestern
part of the U.S. during the 10 months. It was evident that the spatiotemporal variation patterns of the
SM estimations using the MBPNN-3 model were more consistent with the in situ SM measurements
than those using the FY-3C VSM products. The over- and underestimation issues were reduced in the
estimated SM images throughout the study area, especially the overestimation problem in the western
and northeastern parts, indicating that the MBPNN-3 model with the FY-3C VSM and supplementary
information (vegetation and location) as inputs was applicable for providing reliable SM estimations.
Dry areas with SM values lower than 0.20 cm3/cm3 were found in the southwestern part, and the
proportion of dry areas gradually increased from January to July and slightly decreased from August
to October. The wet areas with SM values greater than 0.30 cm3/cm3 were mainly located in the
mideastern region, and the proportions of wet area during January to July were slightly greater than
those from July to October.
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3.3.3. Accuracy Assessment between the Estimated and Actual SM

To further validate the SM estimation accuracy, the R, RMSE, MAE, and MRE values between the
estimated and actual SM, as well as the number of samples in each month from January to October
2019, were calculated, as shown in Table 6. The R values in each month were distributed between
0.787 and 0.943, and the RMSE, MAE, and MRE values in each month in 2019 were all lower than
0.063 cm3/cm3, 0.054 cm3/cm3, and 46.7%, respectively, indicating that the SM estimation accuracy
in the U.S. was generally high during all months. The SM estimation accuracy varied in different
months. The highest SM estimation accuracy was found in February (R = 0.943, RMSE = 0.030 cm3/cm3,
MAE = 0.022 cm3/cm3, and MRE = 10.4%), followed by January (R = 0.913, RMSE = 0.040 cm3/cm3,
MAE = 0.031 cm3/cm3, and MRE = 15.4%). The worst accuracy was found in September (R = 0.862,
RMSE = 0.063 cm3/cm3, MAE = 0.054 cm3/cm3, and MRE = 46.7%), followed by October and August.
In conclusion, the established MBPNN-3 model yielded accurate and acceptable SM estimations in all
seasons and can be employed to improve the monitoring accuracy of regional surface soil moisture.

Table 6. Correlation coefficient and error metrics between the estimated and actual SM values from
January to October 2019 using the MBPNN-3 model.

Month

Error Metrics
R RMSE

(cm3/cm3)
MAE

(cm3/cm3)
MRE
(%)

Number of
Samples

January 0.913 0.040 0.031 15.4 4464
February 0.943 0.030 0.022 10.4 5501

March 0.787 0.056 0.043 21.7 6690
April 0.893 0.032 0.024 11.0 8870
May 0.824 0.047 0.039 18.1 8391
June 0.863 0.035 0.027 15.1 7701
July 0.871 0.034 0.026 20.7 7446

August 0.870 0.052 0.042 36.3 7366
September 0.862 0.063 0.054 46.7 8001

October 0.844 0.053 0.043 44.3 8852
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4. Discussion

The enhancement of the FY-3C VSM product using SM measurements and multivariate models
improved its feasibility for land surface SM monitoring. In this study, the in situ SM measurements
from ISMN played an important role during processes such as the retrieval accuracy evaluation of
FY-3C VSM, the relationship analysis of various input variables, the establishment of multivariate
models, and the validation of SM estimation accuracy. A large number of representative stations in
the U.S. made it possible to map the SM measurements across the whole study area and adequate
training and testing samples for the MLR and MBPNN models. Therefore, widespread and accurate
SM measurements are crucial and indispensable data sources for enhancing satellite products. The
interpolation method allows the spatial resolution consistency between the satellite and in situ SM
data. However, the SM prediction accuracy needs to be further improved.

Although the established MBPNN-3 model with FY-3C VSM, MODIS NDVI, latitude, and
longitude as inputs enhanced the SM retrievals from the pure satellite products, the estimation accuracy
varied in different seasons due to the seasonal variations in land surface features and the impacts of
other factors. The seasonal differences in the relationships between SM and vegetation coverage and
in the climate distribution should be studied to further improve the accuracy of SM estimations in
future research.

5. Conclusions

Assessing the consistency between the FY-3C VSM and measured SM indicated an issue with
overestimation due to the impacts caused by factors such as vegetation. Thus, a comprehensive
evaluation of multiple factors is necessary to improve the SM inversion accuracy from the FY-3C VSM.
In this case, QR models were applied to provide a detailed depiction of the relationship between SM
and multisource factors, including the FY-3C VSM, MODIS NDVI, elevation, latitude, and longitude.
The results showed that the FY-3C VSM and longitude had a positive correlation with SM in all
quantiles, and the MODIS NDVI, latitude, and elevation had both positive and negative effects in the
different quantiles. The coefficient estimates of those factors all passed the significance test at the 0.005
level at each quantile between [0.1, 0.9], except for the elevation at quantile 0.9.

In this study, six multivariate models, including MLR-1, MLR-2, MLR-3 MBPNN-1, MBPNN-2,
and MBPNN-3, were employed to estimate regional SM in July. The assessment of model performance
showed that the SM estimation accuracy was improved with the increase in the number of independent
or input variables for both linear and nonlinear models. The MBPNN-3 achieved the highest SM
estimation accuracy and was thus used to estimate SM in the U.S. from January to October 2019.
The FY-3C VSM retrievals, estimated SM using MBPNN-3 and the measured SM images, were compared,
and the R values and estimation errors between the actual SM measurements and SM estimations
in each month were calculated. The results showed that the spatiotemporal characteristics of the
estimated SM using MBPNN-3 were more consistent with the actual SM than those estimated using
the FY-3C VSM retrievals. The values of R were distributed between 0.787 and 0.943, and the RMSE,
MAE, and MRE values were less than 0.063 cm3/cm3, 0.054 cm3/cm3, and 46.7%, respectively, which
demonstrated the feasibility of using the MBPNN-3 model to improve the SM monitoring accuracy at
the regional scale.
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