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Abstract: Accurate prediction of crop yield at the field scale is critical to addressing crop production
challenges and reducing the impacts of climate variability and change. Recently released Sentinel-2
(S2) satellite data with a return cycle of five days and a high resolution at 13 spectral bands allows
close observation of crop phenology and crop physiological attributes at field scale during crop
growth. Here, we test the potential for indices derived from S2 data to estimate dryland wheat yields
at the field scale and the potential for enhanced predictability by incorporating a modelled crop water
stress index (SI). Observations from 103 study fields over the 2016 and 2017 cropping seasons across
Northeastern Australia were used. Vegetation indices derived from S2 showed moderately high
accuracy in yield prediction and explained over 70% of the yield variability. Specifically, the red edge
chlorophyll index (CI; chlorophyll) (R? = 0.76, RMSE = 0.88 t/ha) and the optimized soil-adjusted
vegetation index (OSAVI; structural) (R%? = 0.74, RMSE = 0.91 t/ha) showed the best correlation
with field yields. Furthermore, combining the crop model-derived SI with both structural and
chlorophyll indices significantly enhanced predictability. The best model with combined OSAVI, CI
and SI generated a much higher correlation, with R? = 0.91 and RMSE = 0.54 t/ha. When validating
the models on an independent set of fields, this model also showed high correlation (R2 = 0.93,
RMSE = 0.64 t/ha). This study demonstrates the potential of combining S2-derived indices and
crop model-derived indices to construct an enhanced yield prediction model suitable for fields in
diversified climate conditions.
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1. Introduction

Wheat (Triticum aestivum L.) is the 5th largest staple crop consumed by people worldwide [1].
Global wheat consumption reached a record high of 736 million tonnes in 2016/2017, which is a growth
of 25% during the past 15 years (www.nass.usda.gov). In addition, while the rate of increase in global
cereal yields has slowed or stagnated, the demand for wheat is projected to increase in future as the
global population increases [2]. Therefore, the sustainable production of wheat will have a crucial
bearing on food security over the coming decades.

In Australia, wheat is the main winter crop and contributes significantly to the national economy [3].
Significant volatility exists in wheat production due to large fluctuations in yield and area planted
across the broad cropping region of Australia, often associated with the high climatic variability
arising from El Nifio or La Nifia events [4]. Within this context, crop prediction has proved to be a
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valuable tool in assisting decision makers at a range of scales to improve yield outcomes and enhance
profitability [5,6]. However, there are few existing systems capable of accurately predicting yield at
field or within field scales across production regions. Crop productivity influences the entire supply
chain so that accurate and timely monitoring of crops and early prediction of yield are crucial for
crop management, marketing, insurance and financial decisions. Early information on possible crop
failures and potential yield reductions could aid policy and decision making aimed at moderating
consequences of serious production shortages.

Currently, a range of techniques has been adopted for early estimation of broad-scale crop
yields. They can be broadly categorized into three groups: (1) field surveys, (2) remote sensing (RS)
methods, and (3) crop modelling (or in combination with 2). Firstly, field survey based approaches
using random sampling techniques are practiced in many countries across the world. Detailed
household data can be collated to develop forecasts at regional and national levels (e.g., HarvestChoice,
https://harvestchoice.org). However, the method has drawbacks: it is costly, time-consuming, and
has poor accuracy when there are insufficient field observations. Further, results are usually not
released until three to five years after the crop has been harvested, making them of no use for real time
issues [7,8].

RS methods for crop monitoring and yield estimation have been developed over the past four
decades due to its potential to provide accurate and timely information during the crop growth
period. Various studies have demonstrated reasonable potential for using RS within a theoretical
yield prediction framework to estimate yield and gross primary production [9]. However, direct
theoretical approaches require detailed data at daily time steps as well as assumptions on fraction of
absorbed photosynthetic radiation, radiation use efficiency, and harvest index, which limit operational
application at the field scale over large areas [10,11].

A number of studies have reported empirical yield models based on a range of RS-derived
vegetation indices (VI) [12-15]. The principle behind relating remotely sensed VI with yield is that
crop yield is a function of canopy characteristics including canopy architecture (e.g., LAI), biomass,
and chlorophyll content. RS captures the total reflectance response (reflectance, transmission, and
absorbance) at the canopy level, which can be related to canopy attributes (biochemical, physiological
and morphological). For canopy structure, the Normalized Differential Vegetation Index (NDVI),
Simple Ratio (SR), Enhanced Vegetation Index (EVI) and optimized soil-adjusted vegetation index
(OSAVI) are derived from reflectance in the red (R) and near-infrared bands (NIR), which are affected
by both pigment absorption (R) and the scattering effect (NIR) [16-19]. Zhao et al. [20] found that
canopy reflectance at flowering (measured as NDVI and EVI) was significantly correlated with irrigated
cotton yield (R? ranged from 0.56 to 0.89). Similar significant correlations of structural indices at
65-75 days after green up have been found with maize yield and at 80 days after green up in the
case of soybean yield [21]. However, these approaches have not been applied at the field scale due
to issues with spatial and temporal precision [13-15,22,23]. A number of studies have also utilized
multispectral and/or hyperspectral sensing and showed high efficacy in predicting chlorophyll and
nitrogen concentrations within the crop canopy. Such approaches enable the successful detection of
morphological, physiological and biochemical processes resulting in crop stresses that potentially affect
final crop yield [24-27].

Although traditional VIs have been successfully applied for estimating yield and crop monitoring,
their accuracy and application are frequently limited by either coarse spatial resolution (e.g., 250-1000 m
of MODIS), inadequate temporal coverage (e.g., theoretically 16 days for Landsat), and limited spectral
bands and band widths. These aspects constrain the development of application-ready products from
RS platforms.

Predicting crop yields utilizing crop models has achieved some success [28]. However, due to
an even greater demand on accurate parameterization and data inputs at the local scale, potential
for predicting yield accurately at the field scale across large regions is limited [22,29]. To address the
lack of accurate input parameters at the field scale, Lobell et al. [15] proposed an integrated approach
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with some success. This approach used leaf area index (LAI) estimates from satellite imagery to select
and update the most likely crop growth and yield simulation at the pixel scale from a plethora of
simulations generated using the Agricultural Production Systems Simulator (APSIM) crop modelling
platform [15].

The launch of Sentinel 2 (S2) in 2015 provided the opportunity to overcome the identified
constraints via its high spatial (10 m to 60 m), spectral (13 bands) and temporal resolutions (five-day
return periods). S2 carries a multispectral instrument (MSI) payload that samples 13 spectral bands
(https://sentinel.esa.int). With four bands in the visible to near-infrared range at 10 m resolution,
four bands in the red edge range at 20 m resolution, two bands in the short-wave range at 20 m
resolution and three bands at 60 m, it provides opportunity to explore new frontiers in crop yield
prediction. Currently S2 can provide imagery every five days under ideal circumstances, which
facilitates characterizing the entire crop life cycle at high temporal resolution. Some studies have
utilized and validated the potential for using S2 for land cover classification [30], crop mapping [31,32],
canopy chlorophyll and nitrogen content quantification [33,34] and yield estimation of other crops,
with reasonable success [35-38].

Despite these advantages, cloud contamination on the optical images may still result in insufficient
data for capturing the stresses experienced by a crop, especially those around flowering and during
grain filling that crop will reduce grain number and weight and thus total grain yield [39]. Previous
research has successfully estimated crop stress status during these critical periods using the thermal
bands from Landsat [14] or via a simulated crop stress index derived from crop models as long as
suitable weather data are available [12]. However, the use of Landsat imagery is usually constrained
by missing data due to its low temporal frequency and cloud cover.

The aim of this study was to investigate the potential to utilize S2 MSI imagery for predicting
dryland wheat yields at the field scale in North Eastern Australia (NEAUS). Firstly, VIs and crop
growth attributes were derived from S2 time series. Secondly, the capacity of these VIs and crop growth
attributes to predict wheat yield at the field scale was assessed. Thirdly, the potential to improve yield
prediction by integrating a crop stress index simulated from the shire scale Oz-wheat model with VIs
was explored. The predictive models were developed using data from 89 fields across two diverse
cropping seasons in NEAUS. The models were contrasted quantitatively, and their robustness was
evaluated using data from 14 independent fields at different locations. The implications and utility to
industry of the findings of this study were discussed.

2. Study Area

Field data for model training was acquired from a broad acre cropping farm located in the Moree
Plains Shire in Northern New South Wales (Figure 1). Cropping systems on this farm are mixed
dryland winter cereals and irrigated summer cotton. Total area of the property is 24,000 ha—of which,
10,400 ha is winter wheat, grown in rotation with cotton. During a normal season, only half of the
irrigated area is cropped at any one time, with the other half maintained as a bare fallow. Summer
cotton is usually planted during October, while winter wheat is sown in May to June and harvested
during November.
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Figure 1. Location of training fields in the Moree Plains shire as well as the location of the independent
validation fields. The field boundaries are overlaid on the Sentinel-2 MSI image acquired on
1 August 2016 (source: Google Earth Engine).

Long-term weather records (available from 1995 to present) from the nearest meteorological station
(Moree Aero, ~30 km from the farm; latitude: 29.49°S, longitude: 149.85°E, elevation: 213 m), showed
an average rainfall of 576 mm, with substantial within- and between year variations. Annual rainfall
was 527 mm (323 mm in-crop) and 512 mm (120 mm in-crop) for 2016 and 2017, respectively. However,
the two years experienced significantly high within-season variability. During 2016, rainfall mainly
occurred during the winter crop-growing period with the highest amount recorded in September.
Conversely, for 2017, the highest rainfall amount occurred during the fallow period before sowing
(March) and significantly lower rainfall was observed during the winter crop-growing period. At the
same time, maximum temperature during 2017 was significantly higher than that of 2016 (Figure 2a).
This resulted in two significantly diverse cropping seasons and thus an ideal data set for model
calibration and training.

Additional field data from fields located in Moree Plain Shire (close to the training fields) and
Bendemere Shire in South-eastern Queensland was collected for independent model validation. Climate
records at Somerset station (next to the selected fields in Bendemere, latitude: 26.47°S, longitude:
148.97°E, elevation: 354 m) show that annual rainfall there was 628 mm (310 mm in-crop) and 465 mm
(205 mm in-crop) for 2016 and 2017 season, respectively. This variation was similar to that observed for
the training fields (Figure 2b). As a result, while model testing was done on a completely independent
data set from that of the training data set, both had similar dry land cropping environments. However,
the independent test ensures model robustness and utility in application when out scaling to different
regions and seasons.
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Figure 2. Monthly precipitation and temperature at: (a) Moree Aero Meteorological Station and (b)
Somerset Station in 2016 and 2017. (Data derived from http://www.bom.gov.au).

3. Data and Processing

3.1. Yield Data

The wheat yield data at the field scale was acquired from the Sundown Pastoral Company Pty.
Ltd. This data was collated by yield monitors mounted on a combine harvester. Field-scale yield was
aggregated from point-scale recordings at approximately 2 m intervals. In total, yield data (t/ha) for
46 fields (total area 5013 ha, field area ranging from 8 to 832 ha) in the 2016 crop season and 43 fields
(total area 4714 ha, field area ranging from 6 to 554 ha) in the 2017 crop season constituted the training
data set for model development and calibration (Figure 1). Yield ranged from 2 to 6 t/ha in 2016 and
0.2 to 2.3 t/ha in 2017.

The calibrated model was then validated on a completely independent data set that had a total of
14 fields for the 2016 and 2017 seasons. Eight of these fields with yield data collected in 2016 (total area
1312 ha, field area ranging from 44 to 379 ha) were located in Moree Plains Shire (30 km away from the
training fields). The remaining six fields for 2017 season (total area 572 ha, field area ranging from
18 to 215 ha) were located 320 km away in Bendemere Shire in Queensland (Figure 1). Averaged yield
was 1.3 t/ha and 4.3 t/ha for the 2016 and 2017 fields, respectively.

3.2. Satellite Imagery and Atmospheric Corrections

All available 52 Top-Of-Atmosphere (TOA) reflectance scenes covering the farms (29.34°5-29.56°S,
149.42°E-149.66°E) for 2016 and 2017 were downloaded through Google Earth Engine (GEE). Scenes
with cloud coverage greater than 30% were excluded from the analysis. The time series encompassed
14 and 25 scenes for 2016 and 2017 winter crop seasons, respectively (Table 1).

The collected S2 TOA reflectance were corrected to surface reflectance using a 6S (Second
Simulation of the Satellite Signal in the Solar Spectrum) atmospheric correction approach [40]. Py6S, an
interface to the 6S through Python programming language, was implemented to perform the correction
within GEE [41,42]. The atmospheric condition for each image scene (i.e., water vapor, ozone and
aerosol optical thickness values) were determined using data products that are available in GEE.
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Table 1. List of Sentinel-2 MSI imagery * dates used for the model calibration and validation sets.

Cropping Season Date/Month

Calibration

2016 14/01, 23/02, 14/03, 13/04, 13/05, 02/06, 01/08, 21/08, 10/09,
20/10, 19/11, 09/12, 19/12, 29/12

2017 18/01, 07/02, 17/02, 09/03, 18/04, 08/05, 28/05, 17/06, 02/07,

22/07, 27/07, 11/08, 16/08, 31/08, 05/09, 20/09, 10/10, 30/10,
04/11,09/11, 24/11, 09/12, 14/12, 19/12, 29/12

Validation
2016 13/05, 01/08, 21/08, 20/10
2017 02/07, 22/07, 27/07, 11/08, 16/08, 31/08, 05/09, 20/09

* Images that were 70% or more cloud free were used in this analysis.

3.3. Selection of Vegetation Indices

A total of 14 spectral VIs were explored to determine their efficacy in accounting for wheat yield
variability among fields (Table 2). VIs are transformations of multiple spectral bands and wavelengths
that allow the interpretation of variations in canopy structural and photosynthetic activities [16]. Here,
we grouped the 14 selected indices into two categories as “canopy structural indices” (VIgrr) and
“chlorophyll indices” (VIcy), based on their differences in wavelengths used (Table 2).

Six VIgrR indices were used to test the contribution of canopy structure to final yield. These indices
are mainly known for their ability to capture light properties within the visible and near-infrared
spectral regions. The Simple Ratio (SR) is sensitive to green vegetation and is highly correlated
with LAI and leaf biomass [43]. NDVI is widely known for its capacity for assessing regional and
global vegetation fluctuations. However, it is more sensitive to reflectance from soil background
and also tends to saturate for high biomass canopies [16]. The Difference Vegetation Index (DV]) is
a simple index but very sensitive to changes in soil background [44]. The optimized soil-adjusted
vegetation index (OSAVI) is a soil-adjusted vegetation index optimized for agricultural monitoring,
which has been applied to estimate crop canopy cover and monitor crop growth [45]. The Enhanced
Vegetation Index (EVI) is an optimized vegetation index that shows improved sensitivity for measuring
terrestrial vegetation that has high biomass or LAL while better accounting for canopy background
and atmosphere influences [16]. Lastly, the Enhanced Vegetation Index 2 (EVI2) is a transformation of
the EVI, but without blue band [46].

Eight V¢ indices and their ability to predict final wheat yield were also tested. Canopy
chlorophyll content is strongly related to nitrogen supply and is therefore a strong predictor for
crop yield [47]. Most chlorophyll-related indices focus on capturing reflectance in regions of the
electromagnetic spectrum where (1) chlorophyll absorption is greatest, i.e., red band (R) region,
(2) reflectance drastically increases towards the near-infrared band, i.e., red edge (RE) band region, and
(3) the leaf cell structure produces strong reflection, i.e., near-infrared band region (NIR). Details of all
indices tested in this study are listed in Table 2.
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Table 2. Details of selected canopy structural- and chlorophyll-related spectral indices tested in this

study. The term “Rp;” in the equations denotes the surface reflectance at corresponding Sentinel-2

bands used for calculating the indices.

Index Equation Reference
Canopy structural-related indices ( VIgTR)
Normalized Difference Vegetation Index (NDVI) NDVI = (Rps — Rpy)/ (Rps + Rps) [44]
Optimized soil-adjusted vegetation index (OSAVI) OSAVI = 1.16 X (Rps — Rpa)/ (Rps + Rps + 0.16) [48]
Simple ratio (SR) SR = Rpg/Rpy [49]
Difference Vegetation Index (DVI) DVI = Rpg — Rpy [44]
Enhanced Vegetation Index (EVI) EVI=25X%(Rpg —Rpy)/(Rpg + 6 X Rpg —7.5X Rpp + 1) [16]
Enhanced Vegetation Index 2 (EVI2) EVI2 =25x (Rps —Rps)/(Rpg + 24X Rps + 1) [46]
Chlorophyll-related indices (VIchL)
Chlorophyll Index red edge (CIrededge) Cliededge = Rp7/Rps — 1 [50]
};:Zr;)s(fz);xgzcliu C)hlorophyll Absorption in Reflectance TCARI = 3 x [(Rgs - Rga) — 0.2 X (Rgs — Rgs) X (Rus/Rps)] 51]
TCARI/OSAVI (TO) TO = TCARI/OSAVI [51]
Green chlorophyll vegetation index (GCVI) GCVI = Rpg/Rpz —1 [52]
Green Difference Vegetation Index (GDVI) GDVI = Rpg — Rp3
Normalized difference red edge 1 (NDRE1) NDRE1 = (Rpe — Rps)/ (Rps + Rps) [53]
Normalized difference red edge 1 (NDRE2) NDRE2 = (Rg7 — Rps)/(Rp7 + Rps) [53]
Canopy Chlorophyll Content Index (CCCI) CCCI = NDRE1/OSAVI [54]

4. Methods

4.1. Quverview

Here, we employed a three-step approach: (i) construction of indices, (ii) analysis and model
calibration and (iii) model validation. The first step was used to derive VI time series and to calculate
attributes reflecting crop canopy development (e.g., canopy green up, senescence and peak) using the
VI time series. During this step, we also simulated the crop stress index. The second step involved the
development of the field-scale model. The model validation step was used to test model robustness and
predictive ability for an independent set of fields. For creating the VI time series, we reconstructed the
time sequential images acquired from the atmospheric corrected S2 MSI imageries. Metrics associated
with peak canopy values and metrics relating to rates of green up and senescence (based on the
regression slopes) before and after the peak were then calculated. Two crop stress indices (water stress
and canopy temperature) were calculated using the biophysical crop model (Oz-Wheat, for water
stress) and Landsat 8 imagery (for canopy temperature), respectively. The yield prediction model was
developed using statistical analysis of variance (ANOVA) and a multivariate analysis incorporating all
derived metrics and indices.

4.2. Extraction of Canopy Development-Related Metrics

Metrics derived from the S2 VI time series included peak, rate of green up (Rgy) and rate of
senescence (Rgey). Peaks of canopy values were derived by calculating the maximum value of each
VI index derived from S2 time series between end of May and early November each year. May to
November encapsulated the full crop growth period for winter crops in the study and training sites.
The VIs were calculated according to their definitions outlined in Table 2 using GEE. Field-scale VIs
were aggregated from the pixels within each field, as defined by field boundaries. The boundaries
were provided by the field data producer and their accuracy was visually checked against S2 images
showing clear field extensions. The derived VI series were then analyzed with the ArcGIS platform
(Esri Inc., Version10.6.1).

The NDVI time series was divided into two portions before and after the date at which peak
NDVIwas observed. All available dates between start to the peak NDVI and peak to end were used
to fit regression lines between NDVI values and date. The slopes of the fitted lines constituted the
Rgu (before peak) and the Rgry (after peak). These metrics enabled the accurate detection of the
growth rates (before and after peak), and magnitude and exact timing of full canopy for each field
crop. These three metrics (peak, Rgy and Rspn) closely mimic crop phenology attributes and therefore
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likely increase the discriminative power in predicting crop yield responses (e.g., timing of flowing and
vegetative and grain filling phases) to environmental conditions.

4.3. Calculation of Crop Stress Using Biophysical Model

We investigated the ability of two crop stress-related metrics to predict variations in field-scale
wheat yields. These were (i) the simulated Crop Stress Index (SI), which relates strongly to stress due
to water limitation in dryland cropping regions, and (ii) land surface temperature (LST), which is a
surrogate for crop stress and a measure of transpiration restriction at the canopy level.

SI was determined via an existing optimization calibration approach to determine the level of
water supply to demand ratio experienced during crop growth [3,55] given as:

SI = E,/E; (1)

Here, E, is the actual evapotranspiration and E; is the potential evapotranspiration. This ratio
qualifies crop water stress and relates well to the physiological responses of a crop to water deficit.
This index is simulated with the Oz-wheat model on a daily time step and averaged over an optimized
critical period during crop growth around flowering. SI has values ranging from 0 to 1, where a SI
value of 1 (E; = E;) indicates no water limitation and values below 1 indicate increasing water stress
experienced by the wheat crop [3,55].

Oz-wheat is a simple daily time-step model adapted from an agro-climatic wheat stress index
model [56-58], which is sensitive to a water deficit or excess during the growing season. The model
input parameters for each shire (i.e., potential available water content, planting rain and stress index
period) have been selected based on the best fit when calibrated against actual shire wheat yields from
the Australian Bureau of Statistics for the period 1976-2000, 2005, 2010 and 2015. More details on
the development and function of the SI within Oz-wheat can be found in Potgieter et al. [56]. This
study used the Oz-wheat model to simulate aggregated SI values for Moree Plains (total cropping
area 1.1 x 10° ha, data derived from www.agriculture.gov.au) and Bendemere (total cropping area
4.2 x 10* ha) over the 2016 and 2017 cropping seasons. The daily SI was simulated for each of the
15 and 4 climate stations within the cropping area for the Moree Plains (approximately 72,000 ha per
station) and Bendemere (approximately 10,000 ha per station) shires, respectively. The model integrates
information from each station to a shire level driven by water deficits, historical climate data, three
fixed crop maturities (i.e., late, medium, quick; derived from APSIM [59]) and a dynamical sowing
date criteria triggered by a rainfall threshold of 15 mm in a five day period.

4.4. Calculation of Crop Stress Using Thermal Imagery

The second crop stress approach involves calculating the land surface temperature, which is
known to be highly correlated to crop stress at canopy and field levels. High temperatures during
grain filling are known to reduce potential wheat yields [60,61]. We used available Landsat thermal
band to characterize canopy thermal conditions during a critical period around peak canopy cover
(+/— 20 days). Canopy surface temperature during the period was determined using the Planck

function:
Klxe

CVg
Here, LST is the land surface temperature in degrees Kelvin, CVy is the cell value as radiance, and
¢ is the emissivity, which was set as 0.95 in this study [62]. K1 (774.89) and K2 (1321.08) are thermal
conversion constants. Maximum (LSTay), minimum (LST,;,,) and average (LSTean) temperatures
during the period were then determined by an overlay analysis in ArcGIS (Esri Inc., Version10.6.1).

LST = K2/ ln( + 1) 2)
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4.5. Approaches for Estimating Wheat Yield at the Field Scale

We investigated the ability of S2 VI time series-derived canopy development-related metrics and
the proposed SI to determine the variance explained and accuracy of wheat yields at the field scale.
The metrics and SI were related to field-scale yields using a linear regression model (Equation (3)).

Furthermore, we analyzed the ability when combining the structural and chlorophyll indices
to predict field-scale wheat yield. (Equation (4)). Finally, SI was included with and without the VIs
models to determine the likely contribution of crop water stress status during flowering and grain
filling at the field scale (Equation (5)).

Yield = a+ b X [peak Visrr, VIcur, Rou, RSen] 3)
Yield = a + b X peak VIsTr + c X peak Vicyy 4)
Yield = a+ b X peak VIstr + ¢ X peak VIcyy +d x SI (5)

where 4, b, c and d are the regression coefficients for each predictor. The coefficient of determination
(R?), the prediction error (root mean square error, RMSE) and statistical significance of the model were
computed to assess the performance of each index and phenological metric. Yield data for the 89 fields
(46 in 2016, 43 in 2017) were used to calibrate the models.

4.6. Model Validation and Accuracy

A cross-validation approach was employed to determine the robustness and goodness of fit of the
yield models. Yield data for the 89 fields was randomly partitioned into 10 “folders”. A single “folder”
was retained as the cross-validation data for testing the model, with yield data in the remaining nine
folders used as training data to fit the model. This cross-validation procedure was repeated 10 times to
constitute the cross-validated R? and RMSE [63].

Model accuracy was determined for each model by using the Mean Absolute Percent Error (MAPE)
metric. MAPE was then transformed into a percentage as follows:

|At — Fy|

MAPE = ——
A4l

% 100% (6)
where A; represents the actual yield and F; is the predicted yield.

For validation, we applied the best derived model to predict observed yields for the independent
validation dry land cropping data set (14 fields).

5. Results

5.1. Simulated Crop Stress and Observed Yield across Seasons

The simulated SI values for the training data set located in Moree Plains Shire were 0.95 (little
stress) and 0.59 (moderately stressed) for 2016 and 2017, respectively. These values varied between the
two years and reflected the crop stress experienced by the crop at flowering and grain filling due to
water limitation. The simulated stress aligned well with the total rainfall recorded during the in-crop
period. Specifically, rainfall from May through October (323 mm) was 46% above the average (221 mm)
and accounted for 61% of the total annual rainfall received during 2016. Conversely, 77% of the rainfall
occurred during the non-cropping period (fallow), while extremely low rainfall occurred during the
booting to flowering period in 2017 (Figure 2).

Consequently, large differences in wheat yields were observed between the two cropping seasons
across fields. The average wheat yield (46 fields) for 2016 was 4.12 t/ha, while much lower yields
were observed in the 2017 cropping season, with an average of 1.14 t/ha (Figure 3). The wide
distribution of yields across fields and between the two seasons provided an ideal training data set for
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developing a predictive yield model that can be used across diverse environmental conditions and
crop management practices.

Yield (t/ha)

| —

02016 02017

IS
fo-soometo 000 i catoo-enee]

Figure 3. Wheat field yields for the 2016 and 2017 winter cropping seasons. The box plots show
the interquartile range (25-75 percentiles), with whiskers indicating the high and low extremes in
wheat yields.

5.2. Field-Scale Yield Prediction Approaches

5.2.1. Predicting Yield Using Single Canopy Development-Related Metrics

Overall, both VIgrg- and VIcpyp -derived peaks showed moderately strong linear relationships with
field-scale wheat yields, while Rgy; and Rggny showed slightly weaker relationships. Specifically, both
Peakpsayr and Peakynpy had similar and moderately high linear correlations in predicting field-scale
wheat yields (R? =0.74, RMSE = 091 t/ha, p < 0.001, Table 3 & Figure 4a). Peakgyy, Peakgyyn, Peakgg and
Peakpy showed slightly lower correlations and higher RMSE compared to Peakpgay and Peaknpyr.

The best chlorophyll model was obtained when using Peakcy (R? = 0.76, RMSE = 0.88 t/ha).
Equally, Peaknprp1 and Peaknprpz showed similar correlation coefficients. TCARI, which is specifically
designed for detecting chlorophyll status, did not show improved prediction accuracy, nor did its
combination with OSAVI (i.e., TCARI/OSAVI). The metrics capturing the rates of canopy development
before (Rgyr) and after (Rgpy) full canopy had moderate correlation with yield (R% < 0.56). The Ry
metric had much lower skill (R? = 0.49) than the peak VI metrics (R? > 0.91) in predicting final yield.
Further research is required if better prediction of yield at the field scale is required well in advance
of flowering.

Table 3. Linear regression statistics for structural, chlorophyll and phenological metrics to predict
actual wheat yields at the field scale.

2 2 RMSE
Index R RMSE (t/ha) p Index R (t/ha) P
Canopy structural-related indices Chlorophyll-related indices

Peakosavi 0.74 091 5.81 x 107% Peakcy 0.76 0.88 255 x 10728
Peaknpyr 0.74 0.91 8.11x107%  Peaknpre: 0.76 0.88 2.83 x 10728
Peakgg 0.73 0.92 2.07 x 10726 Peaknprez 0.74 0.91 443x107%
Peakgyp 0.72 0.93 5.76 x 10726 Peakgcyy 0.72 0.93 493 x 10726
Peakgy; 0.72 0.94 8.19 x 10726 Peakycar; 0.55 1.19 1.20 x 10716
Peakpy; 0.70 0.96 9.69 x 1072 Peakcpyy 0.68 0.99 155 x 1073
Peakro 0.34 1.44 1.70 x 1079

Crop development metrics
Green up rate 0.49 1.22 1.26 x 10713
Senescence rate 0.56 1.14 4.05x 10710
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Figure 4. Scatter plots showing the relationships of aggregated field-scale wheat yield with (a) Peakosayr,
(b) Peaknpyy, (¢) Peakcy, and (d) Peaknprer- Black dots indicate field-scale yield data collected in 2017
and open dots indicate data collected in 2016.

5.2.2. Predicting Wheat Yield Using Combined Model

A multivariate analysis was conducted to determine the best combination of VIgrg and VIcyy,
to predict field-scale wheat yields. Overall, “Peakosayr + Peakcr” and “Peaknpyr + Peaker” were
the two combinations showing highest correlations with field yields. All models showed similar
RMSEs between 0.84 to 0.86 t/ha (Table 4). The strongest relationship was observed for the model
using Peaknpyr and Peakcy to predict wheat yield (R? = 0.78, RMSE = 0.84 t/ha). Auto-correlations
between indices (at peak) ranged from R? = 0.70 (NDVI~SR) to R? = 0.99 (EVI ~ EVI2), and R? = 0.29
(TCARI ~ TCARI/OSAVI) to R? = 0.99 (NDRE1 ~ NDRE2) for structural and chlorophyll indices,
respectively. The correlation between Peakosayr and Peakcy was 0.90, while correlation between
Peakynpyr and Peakcr was 0.85.

Adding SI to the models generated above further improved the correlations (R?) by more than 12%
across all models. Typically, either Peakogayy or Peaknpyy with Peakcr and SI showed substantially
higher R? of 0.91 for predicting wheat yields - including SI as a covariate improved the model strength
(in terms of R?) by more than 18% compared to omitting it. At the same time, the error decreased by
around 37% from 0.86 t/ha to 0.54 t/ha. Adding crop stress derived from Landsat LST (LST s and
LST ean) during the critical period around peak canopy resulted in lower R? and larger RMSE when
combined with the other main structural and chlorophyll indices (Table 4). The R? values between
actual yield and LST sy and mean of LST eqn around peak canopy were 0.76 and 0.47, respectively.
Hence, LST was not included for final model development and validation.
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Table 4. Multivariate linear regression analysis for combined models. The models including SI are

highlighted in grey.
Index Combinations R? RMSE (t/ha) p
Canopy structural-related index + chlorophyll-related index
Peakosayr + Peaker 0.77 0.86 2.56 x 10728
Peakosayr + Peaknpre: 0.76 0.86 475 % 10728
Peaknpyr + Peakcy 0.78 0.84 6.82 x 1072
PeﬂkNDV] + PeakNDRE1 0.76 0.88 1.05 x 10_27
Canopy structural-related index + chlorophyll-related index + SI (or LST)
Peakpg vy + Peakcy + SI 0.91 0.54 2.10 x 107#2
Peakosayt + Peaknpres + SI 0.86 0.66 8.53 x 10736
Peaknpyr + Peakcr + SI 0.91 0.54 3.80 x 10742
Peaknpyr + Peaknpres + SI 0.88 0.61 2.54 x 10738
Peakosayr + Peakcr + LSTyax 0.85 0.71 5.68 x 1072
Peakogayy + Peakcp + LSTean 0.69 1.04 1.87 x 10719

5.3. Model Calibration and Validation

Predicted versus observed yield relationships for the calibration field data are shown in Figure 5
for the field-scale wheat yield models with best fit (Equations (7) and (8)).

Yield = —2.18 — 2.39 X Peakpgayr + 0.82 X Peakcy + 5.13 x SI (7)

Yield = —2.15 — 1.69 X Peakypy; + 0.74 X Peakcy + 5.15 x SI (8)

Both models showed significantly high cross-validated correlation for predicting field-scale wheat
yield. For Peakogayr and the Peakcy in combination with the SI, the correlation was high (R? = 0.90),
with a small prediction error (RMSE = 0.56 t/ha). The MAPE ranged from close to 0% to 273% and
averaged 33% across all fields and years. Average MAPE was 10% and 59% for the 2016 and 2017
cropping season, respectively. It is important to note that fields showing high MAPE% values had
small portions within the fields with extremely low observed yields. For example, there are four fields
(in 2017) with observed yields less than 0.3 t/ha and the MAPEs for these fields ranged from 146% to
273%. These fields had extremely low peak values in OSAVI and NDVI but were not excluded for
completeness (data not shown). When excluding these fields with high MAPE%s (e.g., MAPE > 50%),
the average yield for 2017 fields was recorded at 1.2 t/ha and the MAPE averaged 28%. Conversely,
for the 2016 season, MAPEs for the fields ranged from 0.2% to 47% with most of the fields (40 out of
46 fields) showing MAPE values well below 20% at the field scale.

Similarly, the modelled yields using Peaknpyy, Peakcy and simulated SI was consistent with the
observed values (R? = 0.90, RMSE = 0.57 t/ha). The MAPE ranged from close to 0% to 316% across
fields and years. Average MAPE were 11% and 57% for the 2016 and 2017 cropping season, respectively.
Again, larger predict errors (i.e., high MAPE values) were associated with fields that had extremely low
observed yields. This was evident for the 2017 cropping season (d). The relative poorer performance in
predicting fields that have extremely low yields (< 1 t/ha) does not necessarily suggest that the sensing
indices are unable to detect those lower peaks (at pixel scales). The phenomenon is more likely related
to poor crop emergence (crop cover) or completely failed crops within a field due to various biotic
(pests and diseases) or abiotic stresses (water, high temperatures, soil constraints) [54]. Operationally,
such pixels with low peak values will be excluded when aggregating to a field level. However, for
exemplifying the sensitivity of indices and completeness of our analysis, pixels with low peak values
in crop canopies were retained.
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Figure 5. Cross-validation scatterplots for the two selected wheat yield models at the field scale. (a)

Predicted yield versus observed yield using Peakogayi, Peakcr and SI; (b) Mean Absolute Percent Error
(MAPE) values using model “yield = f(OSAVI, CI, SI)’; (c) predicted yield versus observed yield using
Peaknpyr, Peakcr and SI; (b) MAPE values using model “yield = f(NDVI, CI, SI)'. Filled circles in (b,d)
indicate yield data collected in 2017 and open circles indicate data collected in 2016.

Predictive models were tested using an independent data set. Both models showed significantly
high correlations in predicting wheat yield for the independent test data set (Figure 6). Specifically,
the OSAVI based model in combination with Cl and SI showed high correlation coefficient (R> = 0.93,
RMSE = 0.64 t/ha). Similarly, the NDVI, CI and SI model had an R? of 0.93, RMSE of 0.63 t/ha and
an average the MAPE of 20%. Although both models had predictions close to the 1:1 line (broken
line Figure 6a,c), there was a slight underestimation for observed yields less than 2 t/ha. Furthermore,
relatively large aggregated errors, greater than 30% (MAPE), were mainly related to field with observed

yields less than 1 t/ha.
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Figure 6. Predicted field-scale yield using (a) Yield = f(OSAVI, CI, SI) and (c) Yield = f(NDVI, CI, SI)
versus field yield observations for independent test data set. Panels (b,d) indicate the associated MAPE
for the two models, respectively. Filled circles in (b,d) indicate field-scale yield data collected in 2017
and open cycles indicate data collected in 2016.

5.4. Within-Field Scale Application of Combined Model

The NDVI-based model (Equation (7)) was applied to the time series of S2 imagery for each pixel.
Figure 7 shows the predicted yields for each pixel and the MAPE of aggregated predicted yield versus
observed yield for each field. Substantial within-field variation was captured using the predictive yield
model at the pixel scale. A pixel-scale yield map for the 2017 wheat fields is include as Figure S1.

Predicted vield (2016)
with NDVI, CL, SI (t/ha)
703

i

Figure 7. Applying the field-scale yield model to pixels within each field. The values for each field
indicate the MAPE (%) of predicted vs. actual yield at the whole-field scale.
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6. Discussion

This study investigated potential of combining high-resolution S2 imagery and crop modelling to
predict wheat yield at the field scale. Here, we analyzed the sensitivity of VI and remotely sensed
crop development metrics to predict actual wheat yields. The chlorophyll-related indices (Peakc and
Peaknprg) had similar or slightly higher R? than the structural VIs. Previous studies have reported
similar findings, i.e., changes in red edge-based indices had a strong linear correlation with canopy
chlorophyll content and thus better ability to predict yield [34,64,65]. While time series Cl-derived
metrics are useful indicators of crop canopy health and nitrogen status that can have large effects
on biomass accumulation, grain formation and ultimate final yield [34], our results indicate similar
predictive skill with better structural- and chlorophyll-related indices.

Combining VIs related to structural and chlorophyll content resulted in a small increase in overall
predictive skill for actual yields at the field scale compared to using only structural VIs. Because both
structural and chlorophyll Vls respond to different aspects of plant processes during crop growth
(i.e., morphological and physiological), both were included in the final models. Further, for considering
regions outside the calibration location and diverse crop management practices (such as modern
cultivars with targeted stay-green traits [66]), a more comprehensive model was desirable.

The final model incorporated crop stress-related metrics (i.e., temperature and SI) with structural
and chlorophyll VIs. Inclusion of temperature from Landsat imagery and the simulated crop stress (SI)
increased the overall performance of the wheat yield model, with the latter being more effective. Such
indices are known to be able to mimic crop stresses due to high temperature and/or water limitation,
specifically around flowering and during grain filling, where they cause a reduction in final wheat
yield [60,61]. Furthermore, the SI lends itself to higher utility in an operational sense for predicting
crop yields well before peak canopy, which is not at all possible with a “pure” RS approach using LST
and vegetation indices. In addition, acquisition of LST data on a regular time scale can be limited due
to cloud cover and missing data.

Previous studies have indicated that changes in climate and farm management practices, causing
local variations in crop canopies and ensuing crop yields [67,68], would likely affect the applicability
of any yield prediction models to other regions and seasons [7,69]. The model developed in this study
integrated both structural- and chlorophyll-related indices that are main contributors to final crop
potential, with simulated crop stress index that incorporates effects on yield driven by environmental
factors such as rainfall and temperature. Part of the model’s discriminative power is driven by the
magnitude in the peak of the selected structural and chlorophyll indices. The timing of when the peak
occurs can differ between regions mainly due to the interaction between varieties (maturity types) and
growing degree days (temperature) [70]. Unfortunately, variety type and sowing date data were not
available in this study due to data privacy laws and could therefore not be analyzed. However, it is
likely to have little to no effect on the accuracy and application of the derived model since timing is
not a covariate of the model. Furthermore, by incorporating the SI as covariate, we accounted for
some of the differences in phenology (flowering) and temperature across regions. It is anticipated
that utilizing SI at the station level closest to the field will enhance the specificity and accuracy of
the yield prediction. Therefore, the method for developing models utilized in this study provided a
robust operational framework that could be easily adapted to yield prediction across other regions and
seasons. This approach, however, is only applicable to dryland wheat cropping. For irrigated wheat
crops that are not water limited, other yield-environment indices such as the photo thermal quotient
(PTQ) would need to be explored [71].

Finally, this study exemplified the clear advantage of utilizing the fine spatial resolution of 52
(10 m to 20 m) to predict yield within a field. When applying the field-scale models to predict yield
at the pixel level, we found appreciably low MAPEs across the training data set (Figure 7). This
approach will have considerable utility for precision agriculture. For example, by identifying the
low/medium/high-yield regions within a field (e.g., Figure 7), and their distribution across seasons,
it is possible to support approaches to specifically targeted management that might result in higher
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profitability. Although this study is not exhaustive, it showed high predictability of wheat yields at
field and within-field scales from remotely-sensed and modelled indices. Further targeted research
will be pursued to explore the utility of these enabling digital technologies to the agricultural industry
and government agencies to aid decision making.

7. Conclusions

In this study, we assessed the potential for integrating high-resolution satellite imagery (52)
with crop stress-related indices to predict wheat yield at the field scale. Yield prediction models
were developed by deriving the indices relating to canopy structure, chlorophyll canopy status and
simulated crop stress. The models were calibrated and validated across a diverse set of environments
during the 2016 and 2017 winter cropping seasons in north-eastern Australia.

The final selected model integrating structural, chlorophyll and SI indices showed significant and
high cross-validated correlation (R? = 0.90) for predicting field-scale wheat yield. When using the
derived model to predict wheat yield for independent fields the correlation remained significantly high
(R% =0.93). From this study, it is clear that a predictive model using a VI or more than one VI (structural
and/or chlorophyll) is less accurate than a model combining VIs (structural and chlorophyll) with the
simulated SI (crop stress around flowering) to predict final harvested wheat yield. The biophysical
index, such as the SI used here, provides an innovative avenue to enhance yield prediction from remote
sensing approaches. This is mainly due to SI's ability to capture crop stress during flowering and
grain filling periods in these water-limited environments. It is anticipated that producers, as well as
related agricultural industries (e.g., bulk handlers, grain storage, transportation), will be able to utilize
these enhanced predictive technologies to achieve reliable and accurate estimates of yield at field and
within-field scales. Having access to spatial information on likely crop yields before harvest will not
only aid in tactical decisions regarding precision agriculture but will likely aid government and private
agencies responsible for commodity market forecasts, crop insurance products, and the collation of
commodity forecast information at regional and national scales.
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