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Abstract: Satellite aerosol optical depth (AOD) products have been widely used in estimating fine
particulate matter (PM2.5) concentrations near the surface at a regional scale, and perform well
compared with ground measurements. However, the influence of limitations such as retrieval
frequency and the spatial resolution of satellite AODs on the applicability of predicted PM2.5 values
has been rarely considered. With three widely used MODIS AOD products, including Multi-Angle
Implementation of Atmospheric Correction (MAIAC), Deep Blue (DB) and Dark Target (DT), here we
evaluate the influence of their spatial resolution and sampling frequency by estimating daily PM2.5

concentrations in the Beijing-Tianjin-Hebei (BTH) region of northern China during 2017 utilizing a
mixed effects model. The daily concentrations of PM2.5 derived from MAIAC, DB and DT AOD all
have high correlations (R2: 0.78, 0.8, and 0.78) with the observed values, but the predicted annual
PM2.5 exhibits a distinct spatial distribution. DT estimation obviously underestimates annual PM2.5 in
polluted areas due to lower sampling of heavy pollution events. By contrast, the retrieval frequency
(~40-60%) of MAIAC and DB AOD can represent well annual PM2.5 in nearly all 83 sites tested.
However, MAIAC and DB-derived PM2.5 have a larger bias compared with observed values than DT,
indicating that the large spatial variation of aerosol properties can exert an influence on the reliability
of the statistical AOD-PM2.5 relationship. Also, there is notable difference between MAIAC and DB
PM2.5 due to their different cloud screening methods. The MAIAC PM2.5 with high spatial resolution
at 1 km can capture much finer hotpots than DB and DT at 10 km. Our results suggest that it is
crucial to consider the applicability of satellite-predicted PM2.5 values derived from different aerosol
products according to the specific requirements besides modeling the AOD-PM2.5 relationship.

Keywords: PM2.5; applicability; MODIS; spatial resolution; retrieval frequency

1. Introduction

Fine particulate matter (PM2.5) is a dynamic and complex mixture of particle matter with
aerodynamic diameter of 2.5 µm or less. Numerous epidemiological studies have shown a robust
correlation between exposure to PM2.5 pollution and morbidity and mortality due to respiratory and
cardiovascular diseases [1,2]. During the last decades, large amounts of anthropogenic emissions in
China have led to widespread air pollution with high concentrations of PM2.5 [3–5]. The Chinese
government has established a national air quality monitoring network since 2013, and extended it to
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nearly 1500 sites in 2015. Despite the high accuracy of ground PM2.5 measurements, the spatial coverage
of the ground network is too sparse for regional exposure studies as well as other associated applications.

With the advantage of global coverage, satellite aerosol products have been widely used in
estimation of PM2.5 concentrations [6]. Satellite-derived Aerosol Optical Depth (AOD) is the integral
light extinction of the atmosphere column, which has a good correlation with PM2.5 mass concentrations
near the surface [7]. However, its relationship with PM2.5 (hereafter AOD-PM2.5) is influenced by
several factors such as the vertical aerosol distribution, chemical composition, and hygroscopic
growth [7,8]. Thus, how to model these factors in an AOD-PM2.5 relationship is the key problem in
satellite PM2.5 estimation at different scales. In the early stage, satellite AOD-PM2.5 relationship was
constrained by aerosol components and meteorological data from the Chemistry Transport Model [8],
with less dependence on ground sites. Then, with the availability of a regular ground network, many
statistical models such as linear mixed effect model [9,10], geographically weighted regression [11,12],
deep learning approach [13] and geographically and temporally weighted regression model [14,15]
have been developed to predict PM2.5 concentrations on regional scales. These satellite-estimated
PM2.5 usually show high consistency compared with collocated ground measurements.

However, the reliability and applicability of satellite AOD is subject to a variety of uncertainties
from retrieval accuracy [16], frequency [17,18], spatial-temporal resolution [19], data record lengths and
instrument calibration [20]. MODerate Resolution Imaging Spectroradiometer (MODIS) AOD products
have been the most widely used satellite parameter in PM2.5 estimation due to its near daily global
coverage. It should be stated that MODIS products include several aerosol algorithms with distinct
capabilities in characterizing aerosol loading. Even for the operational MODIS Dark Target (DT) [20,21]
and Deep Blue (DB) [22] algorithm, the retrieval frequency of DT AOD is only half of DB’s in eastern
China [17], also with very different accuracy. In particular, recent MODIS Multi-Angle Implementation
of Atmospheric Correction (MAIAC) algorithm with AOD retrieval at 1 km can capture numerous
small pollution hotspots [19], which are missed by DB AOD at 10 km.

Although satellite PM2.5 values derived from different aerosol products all correspond well with
their matched ground measurements [9–15], these predicted PM2.5 results along with satellite AOD
are only available for partial of the year due to cloud cover and algorithm limitations. For heavily
polluted regions such as northern China, PM2.5 concentrations show dramatic daily fluctuations and
large seasonal differences [3–5]. Thus, whether satellite PM2.5 can capture the temporal variations
and actual magnitude of PM2.5 in northern China can be obviously be impacted by the sampling
frequency of satellite AOD. However, previous studies mainly focused on the influence of satellite
AOD parameters such as spatial resolution on modeling of the AOD-PM2.5 relationship [23–26]. Even
the several widely used MODIS aerosol products have remarkable differences in sampling frequency
and spatial resolution [17–19]. It’s found that sampling frequency of MODIS AOD can lead to a
considerable bias compared with mean values of continuous ground PM2.5 measurements [10,18].
However, the applicability of satellite PM2.5 in characterizing particle pollution in northern China has
been rarely investigated until now.

Besides modeling the AOD-PM2.5 relationship, it’s critical to know whether the satellite aerosol
dataset used can meet the requirement of PM2.5 exposure studies and associated uncertainties. In
this study, we provide a comprehensive insight into the influence of satellite AOD products’ key
parameters, spatial resolution and retrieval frequency on applicability of the widely used MODIS PM2.5

data in China. Section 2 mainly introduces the different MODIS aerosol products and PM2.5 estimation
methods. The characterization of MODIS AOD from different retrieval algorithms is presented in
Section 3.1. Then, the influence of the spatial resolution and retrieval frequency on applicability of
the predicted PM2.5 values from MODIS AOD is analyzed in Sections 3.2 and 3.3, respectively. The
limitations and uncertainty of PM2.5 data estimated from MODIS AOD is discussed in Section 4.
Section 5 briefly summarizes our work.
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2. Data and Methods

2.1. Study area and Ground Sites

To make our study as representative as possible, we selected the most populated urban/industrial
region, Beijing-Tianjin-Hebei (BTH) in eastern China, where cloud-free days are also the most
frequent [15]. The BTH is the capital economic circle of China located in the North China Plain
with serious air pollution problems. It covers about 218,000 square kilometers with a population of
~110 million including the megacities of Beijing, Tianjin and Shijiazhuang in Hebei Province. As shown
in Figure 1, BTH is surrounded by the Taihang Mountains to the west, Yan Mountains to the north and
the Bohai Sea to the east. The terrain of BTH is high in the northwest and low in the southeast, which
is usually an adverse situation for the dispersion of atmospheric pollutants.

Figure 1. Spatial distribution of the 83 PM2.5 monitoring sites in Beijing-Tianjin-Hebei (BTH) region.
DEM denotes Digital Elevation Model.

The Environmental Protection Agency of China publishes real-time hourly PM2.5 concentration for
the major cities in China (http://106.37.208.233:20035/) with the same ambient quality-control standard
since 2013. There are altogether 83 national monitoring sites in the BTH (Figure 1), which are mainly
concentrated in large cities. Although these PM2.5 monitoring sites are sparse and located in urban
areas, their distribution generally covers all the areas of the BTH.

2.2. MODIS AOD Datasets

The MODIS sensor onboard Terra and Aqua satellites have provided the most widely used aerosol
products due to their near daily global coverage since 2000 and 2002, respectively. As shown in
Table 1, there have been several MODIS AOD products, which are driven by increasing application
requirements. The operational MODIS aerosol retrieval over land is firstly achieved over dense

http://106.37.208.233:20035/
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vegetation regions by a DT algorithm utilizing the spectral relationship in the surface reflectance
between visible and shortwave infrared bands at 10 km spatial resolution [20]. Considering the wide
applications of DT AOD in air pollution research, a 3 km DT aerosol dataset is added in Collection
(C) 6 MODIS products with the same algorithm principle but finer resolution [21]. However, the
DT aerosol retrieval is usually invalid for bright surfaces and under heavy pollution conditions
(e.g., AOD>1.0) [17], where the spectral relationship diminishes or does not exist.

Table 1. Comparison of three primary MODIS AOD datasets. The AOD-PM2.5 matchup denotes
number of matchups for available AOD with ground measurements from the 83 sites in northern China
during 2017.

Algorithm Spatial
Resolution Retrieval Principle Application

Area
Latest

Collection
AOD-PM2.5
Matchups

DT 3 km, 10 km Spectral relationship of
surface reflectance Vegetation C6.1 10811

DB 10 km Surface reflectance database All
snow/ice-free C6.1 21356

MAIAC 1 km Minimal ratio of spectral
surface reflectance

All
snow/ice-free C6 16547

To fill the data gap of DT AOD, the MODIS DB algorithm was developed to retrieve aerosols
over bright surfaces such as deserts and urban regions utilizing a pre-calculated surface reflectance
database [22], and extends to all cloud-free and snow/ice-free areas from the C6 products. Ground
validations show reliable accuracy of both C6 MODIS DT and DB AOD with most retrieval errors
being better than ±(15%AODAERONET+0.05). By now, the current C6.1 MODIS DT and DB aerosol
products have a similar algorithm principle as C6 with only some slight improvements. However, the
performances of MODIS DT and DB aerosol retrievals show notable differences in eastern China [17],
which is characterized by high aerosol loading and diverse emission sources.

Besides regular atmospheric aerosol products, the MODIS MAIAC algorithm can simultaneously
retrieve aerosols and bidirectional surface reflectance by using multi-angle information from time series
observations [27]. Moreover, with the multi-angle advantage, MAIAC aerosol retrieval is available over
both dark and bright surfaces as DB. By gridding MODIS to a fixed 1 km grid, the recent C6 MODIS
MAIAC algorithm has realized global aerosol retrieval at a high resolution of 1 km. MAIAC AOD
shows very consistent distribution with MODIS DT and DB retrievals with much finer features [19].

In this study, C6.1 MODIS 10 km DT and DB, and C6 1 km MAIAC AOD are selected to estimate
PM2.5 concentrations in the BTH region. Considering the lower retrieval frequency of 3 km DT AOD
that 10 km [17,19], we only use the 10 km DT AOD dataset here. While utilized Level (L) 2 MODIS
DT and DB AOD products have a spatial resolution of 10 km at nadir, L2 MAIAC AOD is gridded to
fixed grids at 1 km resolution. To minimize the interference of AOD errors, only MODIS AOD with the
best quality is selected. Despite the different spatial resolution, the mean value of satellite AOD in a
window of 5×5 pixels is usually used to match up with ground monitoring site [11–15]. It’s found
that the selection of window size has no obvious influence on ground validation of MAIAC AOD [20].
Thus, here we match daily averaged PM2.5 concentrations with mean value of MODIS AOD all in 5×5
pixels during the whole year of 2017. After screening out mean AOD values with few available pixels
(<30%), there are 10,811 pairs of AODDT-PM2.5 matched values, 21,356 pairs for DB AOD and 16,547
pairs for MAIAC AOD in the BTH (83 sites), respectively.

2.3. Statistical Model and Validation

Satellite estimation of PM2.5 is used to obtain regional PM2.5 concentrations by modeling the
relationship between satellite AOD and PM2.5 concentrations at ground sites. Sometimes, auxiliary
data such as meteorological variables are also used to improve the accuracy of the AOD-PM2.5

relationship. A mixed effects model is chosen to estimate PM2.5 concentrations in the BTH, which has
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been widely used in other regions of the world [9–11]. This model can consider day-to-day changes
of the AOD-PM2.5 relationship through calculating daily random intercepts and slopes of the AOD
variable. Since our study focuses on evaluation of different satellite AOD products in PM2.5 prediction,
other common variables such as meteorological fields, land use and populations information were not
used in this model. The mixed effect model can be expressed by the following equation:

PMij = (α+ µi) + (β+ νi) ×AODi j + εi j (1)

where PMij is the daily averaged PM2.5 concentration on day i at monitoring site j. The parameters
α and µi are the fixed and random intercept of this model, respectively; β and νi are the fixed and
random slope of AOD; AODij denotes MODIS AOD value at monitoring site j on day I; εij is the
random error at site j on day i. The fixed slope and intercept of AOD denote averaged effects on PM2.5,
and the random components represent daily variability of AOD-PM2.5 relationship.

We use 10-fold cross validation (CV) method to evaluate performance of the mixed effect model.
Firstly, ground PM2.5 measurements in the 83 sites of BTH are randomly divided into ten subsets. One
of them is selected at random as the test set, and the remaining sets are used to train the AOD-PM2.5

statistical model. Then, the predicted PM2.5 is validated by the test set. This process is repeated until
all the sets are used as test set once. Some statistical indicators such as the root mean square error
(RMSE) and coefficient of determination (R2) are used to assess reliability of the predicted results. The
RMSE is calculated as follow equation:

RMSE =

√√√
1
n

n∑
j=1

[Z(s j,t j) − Ẑ(s j, t j)]
2 (2)

3. Results and Analysis

3.1. Descriptive Statistics

Table 2 shows descriptive statistics of the dependent variables in our PM2.5 predication. The annual
mean, maximum (max), minimum (min) and standard deviation (Std. Dev.) of PM2.5 concentration in
the 83 sites that matches with MODIS AOD are compared. PM2.5 and AOD Days denote the number of
days when PM2.5 (>5 sites) and AOD observations both have values. Since clouds usually only cover
a partial region in northern China [19], there are more than 300 days with available daily matchups
in establishing AOD-PM2.5 relationships for all the three MODIS AOD datasets. The annual mean
of AOD-matched PM2.5 concentration for DT is much lower than that for MAIAC and DB, with a
smaller standard deviation. Also, the AODDT-PM2.5 matched days are obviously fewer, which can be
associated with lower frequency of DT AOD [17]. The smaller Max values of AODDT-matched PM2.5

could miss extreme pollution events. By contrast, the standard deviation of DB AOD (0.66) is obviously
higher than that of MAIAC and DT AOD, demonstrating larger variability of DB AOD values.
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Table 2. Descriptive statistics of variables. The term Days here denotes the number of days with
available AOD-PM2.5 matchups.

Mean Std. Dev. Min Max Days

MAIAC
AOD 0.49 0.51 0.02 3.27

329
PM2.5

(µg/m3) 59.31 52.58 1.54 488.08

DB
AOD 0.56 0.66 0.002 3.88

344
PM2.5

(µg/m3) 60.49 52.33 1.54 488.08

DT
AOD 0.55 0.5 0.02 3.5

305
PM2.5

(µg/m3) 51.62 35.78 1.54 375.83

To have a direct view of the spatial pattern of aerosol loading in the BTH region, annual mean
values of MAIAC, DB and DT AOD during 2017 are shown and inter-compared (Figure 2). It’s
worth noting that MAIAC 1 km AOD shows much finer features than DB and DT. Despite their good
performance in their respective ground validation [19], the three MODIS AODs from different retrieval
algorithms exhibit distinct spatial distributions. The annul mean of MAIAC AOD is much lower than
that of DB and DT. Although inter-comparison of MAIAC, DB and DT AOD is consistent in case
events [19], the retrieval frequencies of satellite AOD can be very different due to their differences in
cloud screening and algorithm applicability to bright surfaces and heavy pollution conditions, which
can be the main cause of their distinct mean values. Additionally, the abnormal high values of MODIS
DT AOD along the Bohai Sea can be caused by retrieval errors.

Figure 2. Annul mean of MAIAC (a), DB (b) and DT (c) AOD data in BTH during 2017.

The retrieval frequency of satellite AOD determines the number of matchups available for
modeling the AOD-PM2.5 relationship. In particular, large daily fluctuations and high-AOD values
are prevalent in northern China [5]. It’s found that PM2.5 estimation with C6 MODIS 3 km DT AOD
obviously underestimates the annual PM2.5 concentration in Beijing due to missing AOD on frequently
polluted days [17]. Figure 3 displays the retrieval frequency of the three MODIS AOD products in
the BTH during 2017. While the annual frequencies of MAIAC and DB AOD generally have a similar
distribution, notable differences still exist in the detailed scales. The frequency of MAIAC AOD is a
little lower than DB’s. It’s striking that frequency of DT AOD is much lower (~80 days) than that of
MAIAC and DB (~160-200 days), especially in the urban regions. There are very few DT retrievals in
Tianjin close to the Bohai Sea, which may lead to a poor representativity for annual AOD. It’s necessary
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to examine how these substantial differences among the three MODIS aerosol products influence
PM2.5 predictions.

Figure 3. Observed frequencies of MAIAC (a), DB (b) and DT (c) AOD data in BTH during 2017.

The different accuracies of satellite AODs can also contribute to their discrepancy in modeling
the AOD-PM2.5 relationship. Despite substantial differences in retrieval frequency and error patterns,
MODIS AODs from MAIAC, DB, and DT algorithms have similar accuracies in ground validation [16,17].
Figure 4 displays an inter-comparison of MODIS MAIAC, DB, and DT AOD on April, 29, 2017, a
typical cloud-free day without extreme pollution events. It can be seen that variations of the three
MODIS AODs exhibit very consistent spatial trends. MAIAC AOD is slightly higher than DB and DT,
especially in some small hotspots. Spatial average of retrieved 500 m or 1 km pixels into 10 km AOD of
DB and DT can smooth high-resolution hotspots as in MAIAC retrievals [19]. Compared with the well
spatial coverage of MAIAC and DB, DT AOD has much fewer values in bright surfaces such as the
northwestern part. In the other hand, the statistical modeling process of AOD-PM2.5 relationship can
narrow the discrepancy in absolute accuracies of these MODIS AOD datasets.

Figure 4. MODIS MAIAC (a), DB (b) and DT (c) AOD in northern China during Aril 29, 2017.

3.2. Model Fitting and PM2.5 Prediction with Different MODIS AOD Products

The fixed intercept and slope of linear mixed effects model are shown in Table 3. All of the slopes
are positive and the results are statistically significant (P-Value < 0.0001), indicating that MODIS
AOD have a positive relationship with PM2.5 in the BTH region. Figure 5 gives PM2.5 model fitting
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results for the three MODIS AOD products. Their coefficient of determination (R2) is similar and
relatively high (MAIAC: 0.78, DB: 0.8, DT: 0.78), while their RMSEs have large difference. The RMSE
of DT-derived PM2.5 (14.55 µg/m3) is about 7 µg/m3 and 6.5 µg/m3 lower than that of MAIAC and
DB results, respectively. The lower RMSE of DT-derived PM2.5 can be caused by missing AOD in
heavy pollution conditions [17]. Corresponding to the range of 200-500 µg/m3 for ground PM2.5,
there are some notable abnormal predicted values that seems have no correlation with actual PM2.5

concentration. Such poor prediction only account for a very small fraction, and can be caused by
special conditions such as extreme contrast with high AOD but low PM2.5 in some days.

Table 3. Fixed intercept and slope of the linear mixed effects model.

Intercept Slope P-Value

MAIAC 35.48 48.54 <0.0001

DB 33.63 41.18 <0.0001

DT 29.21 38.43 <0.0001

Figure 5. Predicted PM2.5 vs Observed PM2.5 for model fitting from MAIAC (a), DB (b) and DT(c) AOD.

As shown in the CV (Figure 6), the R2 decreased 0.03, 0.02 and 0.02, and RMSE increased 1.38µg/m3,
0.77 µg/m3 and 0.86µg/m3 for MAIAC, DB and DT, respectively. Although we only use one dependent
variable of AOD for PM2.5 predication, our CV R2 and RMSE are close with or even better than that of
previous studies. For example, our CV R2 is higher than 0.72 from a two-stage statistical model in
the BTH [28] and 0.73 from a random forest model in South Korea [29], but is lower than 0.84 in an
improved geographically and temporally weighted regression (iGTWR) model [15]. The very similar
CV results show robust performance of our selected mixed effects model in PM2.5 estimation.

Figure 6. Predicted vs Observed PM2.5 for cross validation from MAIAC (a), DB (b) and DT(c) AOD.

Figure 7 shows the annual mean PM2.5 concentration derived from MAIAC (1 km), DB (10 km)
and DT (10 km) AOD in the BTH during 2017. Unlike the large difference in MODIS AOD, the MAIAC-
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and DB-derived PM2.5 concentrations have similar spatial pattern, and ranges in 60-80 µg/m3 in most
parts of the BTH except the mountain areas, which is highly consistent with the ground measurements.

Figure 7. The annual mean satellite predicted PM2.5 in the BTH during 2017 from (a) MAIAC, (b) DB,
and (c) DT AOD.

Owing to the continuous emission control measures of the Chinese government, there has been a
large decrease in PM2.5 concentration in Beijing and surrounding areas, and the PM2.5 hotspots have
moved to southern Hebei. By contrast, DT PM2.5 is only concentrated in ~40-60 µg/m3, much lower
(~20 µg/m3) than MAIAC and DB PM2.5. Although there is a high R2 in AODDT-PM2.5 relationship,
the low retrieval frequency and missing retrievals in most heavy pollution can largely limit the
representativity of DT AOD in predicting annual mean PM2.5 [17].

Despite the similar distribution of MAIAC- and DB-derived PM2.5, considerable differences are
obvious in their PM2.5 concentration magnitude in most areas. First, the high-resolution MAIAC PM2.5

at 1 km captures much finer features and reveals numerous small pollution hotspots. The high-level
PM2.5 concentration (>80 µg/m3) in southern Hebei can be clearly detected in the MAIAC estimation.
The DB PM2.5 smooths out such small PM2.5 hotspots due to the coarser resolution of 10 km. Second,
the lower frequency of MAIAC AOD can also contribute to the difference. The over-strict cloud
screening of the high-resolution MAIAC retrievals tends to filter out available values near clouds [16],
leading to large differences in the annual mean of MAIAC and DB AOD. Compared with the large
spatial difference of annual MAIAC and DB AOD, it can be seen that annual mean of their predicted
PM2.5 values has much smaller discrepancy after the AOD-PM2.5 modeling process. However, the
mismatch between MAIAC and DB retrieval can be the biggest challenge in the consistency of PM2.5

predictions from different aerosol products. In addition, the high PM2.5 concentration around the
Bohai Sea is in the location of abnormal values of MAIAC and DT AOD, which cannot be smoothed by
annual averaging due to the low retrieval frequency.

3.3. Inlfuence of MODIS AOD Selection on PM2.5 Predication

The coefficient of determination and RMSE in this study suggests that all the three satellite AOD
have a close correlation with PM2.5 concentrations in their available time by statistical modeling.
However, besides marked differences in PM2.5 derived from various MODIS AOD products, whether
satellite estimation can represent actual PM2.5 variation suffers from the influence of several factors.
Figure 8 displays the annual mean of PM2.5 from all the ground measurements and those in the day
matched with available MODIS MAIAC, DB, and DT AOD, respectively, in the 83 monitoring sites of
the BTH.
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Figure 8. The annual mean PM2.5 values in the 83 sites for all the measurements (PM2.5_ALL) and those
matched with MAIAC, DB, and DT AOD, respectively. The number of ground sites is sequenced by
annual PM2.5 concentration of ground measurements. Site 1–42 is at the top, and 43–83 is at the bottom.

It’s found that observation with frequency of MAIAC and DB AOD can generally represent well
the annual mean of PM2.5. The differences in annual mean of PM2.5 between all observations and
MAIAC or DB matched observation is <5 µg/m3 in most sites. However, there is a poor temporal
representativity for annual PM2.5 matched with DT AOD, about >15 µg/m3 lower than the total mean.
It should be noted that annual mean of all the MODIS-matched PM2.5 data has little differences with
the total mean when the total mean of PM2.5 concentration is <50 µg/m3. Gupta [30] found that the low
sampling frequency of satellite AOD has minor impact on monthly and annual PM2.5 prediction over
southeastern United States, where the annual mean of PM2.5 is at a low concentration (<40 µg/m3).
PM2.5 in the mountainous areas of northern BTH is lower than 40 µg/m3, which is rarely influenced by
regional transport and extreme high values. Thus, satellite PM2.5 predictions in these relatively clean
areas in northern China are less influenced by the retrieval frequency of AOD.

Site-by-site comparison of annual PM.5 values from satellite predictions and matched ground
observations shows concrete variations of their estimation bias at different pollution levels (Figure 9).
Notable overestimation and underestimation by ~5-15 µg/m3 for both MAIAC and DB PM2.5 exist in
nearly half of the 83 sites. The overestimation of MAIAC is more serious than that of DB. Considering
the slight influence of temporal resolution for MAIAC and DB, a higher MAIAC AOD can be the
main cause. By contrast, the difference between DT PM2.5 and matched ground observations is much
smaller, which can be largely due to lower frequency of high AOD (>1.0) in available DT retrievals [17].
In general, all three MODIS-derived PM2.5 results tend to overestimate at low PM2.5 sites (< ~50 µg/m3)
and underestimate for high PM2.5 sites (> ~50 µg/m3).
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Figure 9. Comparison of annual mean of satellite predicted (Predict) and matched observed (Observed)
PM2.5 in the 83 sites from MAIAC (a), DB (b), DT(c) AOD, respectively. The dotted lines here are used
to show site-by-site variations of predicted PM2.5 bias.

It can be seen that the mean and median values of predicted annual PM2.5 are nearly all equal
to those of their matched observations for MAIAC, DB, and DT (Table 4). While the offset of
contrary deviation in low and high PM2.5 sites leads to very reliable mean values for predicted PM2.5,
considerable bias (> ~10 µg/m3) exists for MODIS estimation in low and high PM2.5 levels. Consistent
with Figure 8, the large differences in magnitude of mean and maximum for the three MODIS PM2.5

datasets further demonstrate the great influence of retrieval frequency of satellite AOD for PM2.5

prediction in polluted regions.

Table 4. Descriptive statistics of satellite predicted (top line) and matched ground observed (bottom
line) PM2.5 for MAIAC, DB, and DT AOD (unit: µg/m3).

AOD Type Mean Std. Dev. Min Max Median

MAIAC
59.666 16.888 23.291 86.704 58.998

59.668 7.97 43.172 75.136 58.217

DB
60.393 16.461 24.705 89.16 60.449

60.593 8.752 40.748 73.654 61.389

DT
51.048 12.235 23.077 74.321 50.999

51.389 7.833 32.816 69.036 52.599

4. Discussion

Based on statistical modeling with sufficient observations from a ground network, a close
AOD-PM2.5 relationship is obtained for all the three categories of MODIS aerosol products. Despite
the apparent reliability, several remarkable uncertainties exist in meeting the requirements of actual
application. The first challenge of satellite PM2.5 prediction is the retrieval frequency of AOD. It
has shown that annual PM2.5 concentration in northern China can be well represented when the
observation frequency exceeds one third of the year (Figure 8). For cleaner areas with smaller temporal
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variability in PM2.5 concentration, required AOD frequency in predicting representative annual mean
of satellite PM2.5 can be lower. However, the representativity of satellite PM2.5 can be a problem in
polluted or cloudy regions for aerosol algorithms such as DT, where the retrieval frequency cannot
reflect the actual variability [16]. Despite the similar retrieval frequency, PM2.5 prediction with various
satellite aerosol products can still have considerable differences since part of their retrievals are not
matched due to different cloud screening methods (Figures 3 and 7). The mismatch of DB and MAIAC
AOD in northern China leads to notable differences in their annual mean values because they capture
different pollution events.

Compared with the remarkable influence of sampling frequency, the difference in spatial resolution
mainly impacts the consistence of MODIS PM2.5 results in detailed scales (Figure 7), which is important
for exposure assessment on a regional scale such as the BTH. Most previous studies focus on influence
of spatial resolution on AOD-PM2.5 relationship [23–26]. It is found that correlation of AOD-PM2.5 gets
slightly higher for high-resolution PM2.5 estimation in the megacity of Beijing in northern China [31],
but is not obvious on a regional scale (Figures 5 and 6). The AOD-PM2.5 relationship can be more
complicated on a large scale with inhomogeneous emission sources and meteorological conditions,
which should utilize more related variables to constrain it. In addition, the applicability of satellite
PM2.5 in regions with few ground sites still needs further examination.

The main purpose of this study was to provide an examination of the applicability of the widely
used MODIS aerosol datasets in PM2.5 prediction in northern China. Besides selecting appropriate
satellite data, as shown in Figure 9, PM2.5 predications suffer from considerable uncertainties in low
and high pollution conditions, which need more constraints on the AOD-PM2.5 relationship with an
improved model and extra information. Over the past few years, there have been a growing number
of new satellite instruments such as Himawari-8 and GOES-16 that can provide hourly AOD during
the daytime. The multiple satellite aerosol products can greatly enhance the spatial and temporal
coverage of predicted PM2.5. To obtain consistent and reliable PM2.5 datasets, several uncertainties in
their applicability should be considered besides the usual model accuracy, including the difference in
spatial-temporal resolution, cloud screening, and retrieval errors.

5. Conclusions

Satellite AOD products have been widely used in estimating PM2.5 concentrations near the
surface. Although statistical models can establish robust AOD-PM2.5 relationships, whether these
AOD-matched PM2.5 can represent the truth remains subject to several uncertainties such as retrieval
frequency and algorithm performance. Based on MODIS aerosol products from three typical algorithms
including MAIAC, DB and DT, we provide a comprehensive insight into the influence of spatial
resolution and retrieval frequency on the applicability of satellite predicted PM2.5 data in northern
China. Based on satellite AOD and ground PM2.5 observations at 83 sites, we estimated daily PM2.5 in
the BTH region of northern China during 2017 with a mixed effects model. It’s found that all three
categories of MODIS AOD can predict PM2.5 with high CV R2 values ranging between 0.75~0.78.

However, annual PM2.5 data derived from MODIS MAIAC, DB and DT AOD exhibit distinct
spatial patterns. The DT PM2.5 is much lower than the MAIAC and DB predictions due to the fewer
available AOD retrievals, especially for heavy pollution events. By comparison, ground observed
PM2.5 matched with MAIAC and DB AOD can both represent well the annual PM2.5 in almost all of
the 83 sites. MAIAC and DB PM2.5 show a similar accuracy level but exhibit notable spatial differences.
The different cloud screening methods of MAIAC and DB lead to partial mismatch of their AOD values.
The high-resolution MAIAC PM2.5 at 1 km can capture much finer hotspots, which is significant for
air pollution monitoring on a city scale. It should be stated that the absolute error between MAIAC
and DB PM2.5 and matched observations is larger than that of DT, indicating that the inhomogeneous
distribution of aerosol properties has a considerable influence on daily AOD-PM2.5 relationship.

Generally, MAIAC AOD is most suitable for PM2.5 prediction for both adequate retrieval frequency
and high spatial resolution. DB PM2.5 has a slightly lower bias than MAIAC PM2.5, but with much
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coarser resolution. Owning to the low retrieval frequency, DT PM2.5 cannot reflect the actual PM2.5

level in eastern China. In addition, the consistency of PM2.5 concentrations derived from different
satellite products still faces some uncertainties, which need further study. Our results can however
provide a reference for the application and estimation of satellite-predicted PM2.5 concentrations at
regional scales.
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