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Abstract: Wetlands are ranked as very diverse ecosystems, covering about 4-6% of the global
land surface. They occupy the transition zones between aquatic and terrestrial environments,
and share characteristics of both zones. Wetlands play critical roles in the hydrological cycle,
sustaining livelihoods and aquatic life, and biodiversity. Poor management of wetlands results in
the loss of critical ecosystems goods and services. Globally, wetlands are degrading at a fast rate
due to global environmental change and anthropogenic activities. This requires holistic monitoring,
assessment, and management of wetlands to prevent further degradation and losses. Remote-sensing
data offer an opportunity to assess changes in the status of wetlands including their spatial coverage.
So far, a number of studies have been conducted using remotely sensed data to assess and monitor
wetland status in semi-arid and arid regions. A literature search shows a significant increase in
the number of papers published during the 2000-2020 period, with most of these studies being in
semi-arid regions in Australia and China, and few in the sub-Saharan Africa. This paper reviews
progress made in the use of remote sensing in detecting and monitoring of the semi-arid and
arid wetlands, and focuses particularly on new insights in detection and monitoring of wetlands
using freely available multispectral sensors. The paper firstly describes important characteristics of
wetlands in semi-arid and arid regions that require monitoring in order to improve their management.
Secondly, the use of freely available multispectral imagery for compiling wetland inventories is
reviewed. Thirdly, the challenges of using freely available multispectral imagery in mapping and
monitoring wetlands dynamics like inundation, vegetation cover and extent, are examined. Lastly,
algorithms for image classification as well as challenges associated with their uses and possible future
research are summarised. However, there are concerns regarding whether the spatial and temporal
resolutions of some of the remote-sensing data enable accurate monitoring of wetlands of varying
sizes. Furthermore, it was noted that there were challenges associated with the both spatial and
spectral resolutions of data used when mapping and monitoring wetlands. However, advancements
in remote-sensing and data analytics provides new opportunities for further research on wetland
monitoring and assessment across various scales.

Keywords: data integration; inundation; multispectral imagery; semi-arid; seasonal wetlands;
vegetation dynamics

1. Introduction

There are several definitions of wetlands and most of these definitions include abiotic and biotic
factors, hydrological regime, geomorphology and vegetation factors controlling the existence of
wetlands. The Ramsar convention definition which includes these factors is widely used. However,
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the Ramsar convention excludes areas with marine water greater than 6 m at low tide. Wetlands exist
where soils are saturated or inundated with water for a varying duration and frequencies [1]. The Ramsar
convention definition of wetlands includes not only those systems falling within the traditional concept
of wetlands such as mangrove swamps, peat bogs, tidal flats and water meadows, but also many
other natural and man-made features like flooded gravel peats, reservoirs, rice paddies and coastal
beaches [2]. While the Ramsar definition does not refer to the hydrological system, the definition
includes components of natural inland systems, and predates the recent conceptual developments and
management of coastal and water systems [3].

In North America, wetlands are defined as “lands that are either inundated by shallow water
less than 2 m deep during low water events or have soils that are saturated long enough during
the growing season to become anoxic and support specialized wetland plants (hydrophytes)” [4].
Unlike the Ramsar convention definition, the North American definition takes into consideration the
fact that wetland water can be at the soil surface or below at some season. Several definitions of
wetlands are used in South Africa, such as the one in the National Water Act (36 of 1998) and another
by SANBI (South African National Biodiversity institute). The South African National Water Act
(SANWA) (36 of 1998) defines wetlands as “areas which are transitional between terrestrial and aquatic
systems where the water table is usually at or near the surface or the land is periodically covered with
shallow water and which in normal circumstances supports or would support vegetation typically
adapted to life in saturated soils” [5]. For the purpose of this review, the Ramsar definition of wetlands
will be used, as this is globally accepted. Since different countries have different wetlands definitions,
some ecosystems that are not considered as wetlands based on the Ramsar definition will be included.

Wetlands are ranked among very diverse ecosystems that cover a proportion of about 4-6% of the
land surface [6,7], and provide an array of ecosystem services, which are categorised as provisioning,
regulating, and cultural services. The provisioning services include the provision of water for livestock
and domestic use, raw material as well as genetic resources, and production of wild foods and
medicine [8]. The regulating services include carbon sequestration, flood attenuation, groundwater
replenishment, sediment retention, waste treatment and regulation of pests and pathogens [1].
Cultural services include providing opportunities for cultural activities and heritage, recreational use
as well as social interactions [9,10].

Globally, wetlands have been undergoing changes resulting from natural and human
anthropogenic causes [11]. The natural causes include severe droughts experienced in certain
parts of the world leading to drying and degradation of wetlands [11]. Anthropogenic causes include
the conversion of wetlands to agricultural lands and pollution. However, there are uncertainties
regarding the extent of wetland loss globally [12]. These uncertainties are caused by inconsistencies in
data sets on spatial changes in wetlands and sizes of the studied systems [13]. Liu et al. [14] reported
that in semi-arid China, natural wetlands have been lost over the past 50 years, and about 30% of
these systems disappeared between 1990 and 2000, mostly due to anthropogenic causes. In Africa,
wetlands are considered among threatened and degraded ecosystems [15]. In semi-arid South Africa,
at least 50% of wetlands have been eradicated in some catchments [1]. Riddell et al. [16] highlighted
that about 30-60% of wetland losses in South Africa were experienced in several major catchments due
to poor land use management practices which is also the case across sub-Saharan Africa. Oluocha and
Okeke [17] reported that in semi-arid Nigeria, wetlands that previously were recharging groundwater
systems had been undergoing degradation at an alarming rate, and without measures to protect
these systems.

Given the significance of ecological services provided by wetlands, it is imperative that they are
sustainably managed. One of the key elements of sustainable management of wetlands is continuous
monitoring of changes in their ecohydrological dynamics [18]. This is a challenge for wetlands in
semi-arid and arid areas as most wetlands are seasonal or temporary and inaccessible because of
their remoteness [7,19]. Remote sensing offers unique opportunities for providing information about
wetlands in a spatially explicit manner where monitoring programs are not available [20], with input
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data from various satellite sensors ranging from multispectral to hyperspectral sensors. However,
there are concerns regarding whether the spatial and temporal resolutions of some of the remote-sensing
data enable accurate monitoring of wetlands of varying sizes especially in semi-arid and arid areas [21].

A significant number of reviews on the remote sensing of wetlands have been published.
These reviews highlight the major progress on the use of remote-sensing data ranging from low
spatial resolution to hyperspectral imagery for inventorying wetland in different climatic zones [22-30].
Although these reviews are showing progress on the use of various remotely sensed data for wetlands
of different types, geographical location and climatic zones, these reviews did not only focus on the
applications of freely available multispectral data on remote sensing of wetlands in semi-arid and
arid areas. Guo et al. [22] and Dronova [24] incorporated semi-arid and arid studies in their reviews;
which included wetlands in humid and sub-humid areas. In addition, the reviews by Guo et al. [22] and
Dronova [24] also included studies on hyperspectral remote sensing of wetlands. These reviews also
focused on either one aspect of wetland ecosystem, type or the application of one multispectral data set.
The reviews by Adeli et al. [27], Wohlfart et al. [28] focused on the application of the Synthetic Aperture
Radar (SAR) on the remote sensing of different wetland types. Kuenzer et al. [30], and Klemas [29]
focused on the remote sensing of one specific wetland type which is the coastal marsh. Adam et al. [31]
provided a comprehensive review on the status of remote sensing applications in differentiating and
mapping biochemical and biophysical parameters of wetland vegetation. Owing to that background,
this paper sought to provide a comprehensive review on the progress and development of remote
sensing in the detection and monitoring of semi-arid and arid wetlands. Attention is drawn to the new
insights in detection and monitoring of all wetland types located within the semi-arid and arid regions
using freely available multispectral images.

Literature Search

A literature search was conducted using search engines such as Google Scholar, Scopus, and Web
of Science to gain an overview of the remote-sensing application on wetlands. The targeted journals
were internationally recognised peer reviewed journals covering geographical information system
(GIS), remote sensing and water resource science. Information in journals was supplemented with
that in books and reports from the European Union (EU), South African Water Research Commission
(WRCQ), International Union for Conservation of Nature (IUCN), African Union (AU) and South
African National Biodiversity Institute (SANBI) amongst others. The search criteria were used to
find studies that were published between the years 2000 and 2020. For level-one search criteria,
the key words “remote sensing” and “wetlands” were used to search for publications within the
specified time frame. A total of 32,500 publications were retrieved. These included 17,500 from
Google Scholar, 8500 from Scopus and 6500 from the Web of Science. The articles collected were
further subjected to level 2 search or screening using key words “multispectral sensors”, “semi-arid
wetlands” and “arid”, and the years 2000-2020. A total of 6380 were retrieved from the Google
Scholar articles, 3870 from Scopus and 3200 from Web of Science. Further screening was conducted on
these articles using the keywords, “wetlands inundation and extent”, “wetlands vegetation cover”,
“wetlands degradation extent”, “land-use land-cover changes” “wetlands monitoring challenges” and
“wetlands classification”, “Sentinel “, “SAR”, “Landsat”, “MODIS” and “radar” on level 3, and a total
of 196 articles within the scope of this review were retrieved.

” o

2. Semi-Arid and Arid Wetlands Characteristics and Key Monitoring and
Management Challenges

The semi-arid and arid areas (Figure 1) host a diverse range of perennial to non-perennial wetlands
with most of them being visible during the wet season [11]. These wetlands include swamps, peatlands,
marshes and floodplains [1,6,32]. The existence of wetlands in semi-arid and arid areas is controlled
by the positive surface water balance for the whole or part of the year, and inundation is mostly due
to frequent rainfall from the upper humid basins. Groundwater also contributes to inundation of
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wetlands [6,31]. Outflows from wetlands are usually higher, due to high evaporation rates experienced
over prolonged dry periods in the semi-arid and arid regions [31]. The dominating vegetation species
characterising the semi-arid and arid wetlands vary with the locality of each wetland. In semi-arid
South Africa, common wetland vegetation species include the short grasses family species such as
Cynodon dyctolon, and the common reeds, Phragmites australis. These species are able to adapt to
inundation, drying and sediments deposition. The semi-arid and arid wetlands soils tend to be
oxygenated in some seasons due to the episodic inundation nature. For that reason, these wetlands
tend to host more animal species than other wetlands that are permanently inundated [7,33,34].

Despite the ecological significance of semi-arid and arid wetlands, their conservation is
not prioritized [35]. This is due to their ephemeral nature and small sizes [7], thus resulting
in poor management, wetland degradation and loss of species and ecosystem services [20].
Gebresllassie, et al. [36] reported that in semi-arid Ethiopia, lack of policies to protect wetlands resulted
in the loss of socio-economic services. Regular monitoring of their ecohydrological dynamics [14] is
critical for formulating appropriate management measures. Frequent monitoring of semi-arid and arid
wetland systems presents some challenges associated with the methods used and types of wetlands.
Traditional field monitoring methods provided baseline information about semi-arid and arid wetlands.
However, due to the cost of these methods, regular monitoring has not been possible, which creates
problems for tracking changes occurring within wetlands [32].

Remote sensing from satellite sensors such as the Landsat and MODIS provides cost-effective
data sets for wetland monitoring in both space and time. However, these sensors have a limitation
based on their spatial resolution, since most semi-arid and arid wetlands are fairly small, <10 and
2500 ha [7], and confined to small depressions with no definite boundaries. These wetlands merge
with the surrounding terrestrial ecosystem [1] posing challenges when mapping their spatial extent
using optical sensors, especially during the dry period when the surrounding and wetland vegetation
are not very healthy, resulting in similar spectral reflectance of soils and other land-cover classes.
Rapinel et al. [37] reported that inventorying and characterization of wetlands in semi-arid and arid
areas are limited to mostly small basins. Furthermore, Cape et al. [38] reported that the semi-arid
wetlands are lost over a short period of time because of the anthropogenic activities including
overexploitation of their water for irrigation. This necessitates the development of a cost-effective
integrated monitoring and management approach, which will enable the generation of wetland
information for wetlands of different sizes thus informing management strategies of wetlands in the
semi-arid and arid areas.

1 Arid
.| Semi-arid
Bl Dry subhumid
Bl Water

Figure 1. Global extent of semi-arid and arid areas with number of studies in each region [39].
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3. Commonly Used Freely Available Multispectral Sensors for Semi-Arid and Arid
Wetland Inventories

Over the last decades different types of wetlands ranging from inland freshwater marshes,
coastal tidal marshes, mangrove ecosystems and forested wetlands or swamps have been studied using
remotely sensed data sets of different spatial, spectral and temporal resolutions [40]. The number of
studies conducted in semi-arid and arid areas on the application of freely available multispectral data
sets for inventorying wetlands has increased exponentially as is evident in the number of publications
between 2000 and 2020 (R? = 0.76) (Figure 2a). A significant increase was noted between the 2008 and
2020, with the highest number of publications in 2020. An analysis of the number of publications per
region reveals that, most publications were from the semi-arid Australia and China (Figure 1) with a
total of 30 and 38 publications respectively, while the semi-arid India and North Africa had the lowest
number of publications (Figure 1). In all these studies, the commonly used data sources were Landsat
Thematic Mapper (TM), Landsat Enhanced Thematic Mapper Plus (ETM+), Landsat Operational
Land Imager (OLI), Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat Multispectral
Scanner System (MSS) and Synthetic Aperture Radar in the form of Sentinel-1 and Advanced Land
Observing Satellite-1- The Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR).
There was an increase in the use of Landsat OLI in mapping different aspects of semi-arid and arid
wetlands. The justification is that Landsat 8 OLI uses the push broom feature which has improved
noise to signal ratio, and that is an advantage when compared to Landsat TM and ETM+. The most
studied wetland aspects were characterization, which include wetland classification and mapping as
well as inundation (Figure 2b).
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Figure 2. Number of remote-sensing publications on semi-arid and arid wetlands (a) and number
of publications per area of focus (b). Characterization include studies on classification and wetland
mapping, impact analysis includes studies focusing of both climatic and anthropogenic impacts on
wetlands, and Land cover analysis refers to all studies on wetland cover change analysis (1 = 196).

The earliest remote-sensing studies on wetlands utilised colour infrared aerial photographs,
and orthophoto quads to examine different aspects of wetlands such as the spatial extent,
wetlands vegetation (types, changes and growth), wetlands classification types and water quality [41].
Although aerial photographs provided useful information about wetlands, it is not feasible to map and
monitor different wetlands at regional scale using aerial photograph, because of cost and time required
to process aerial photographs [41,42]. Currently, a variety of remotely sensed products are available at
different spatial, temporal and spectral resolutions for wetlands inventories, by a range of spaceborne
and airborne sensors from multispectral sensors and hyperspectral sensors. These sensors operate
at different optical spectrum. Amongst these sensors are the commonly used Landsat (Multispectral
Scanner: MSS, Thematic Mapper: TM and Enhanced Thematic Mapper: ETM+, Operational Land
Imager: OLI), Moderate Resolution Imaging Spectroradiometer: MODIS, Sentinel 2 and SAR (Table 1).
Although, there are other satellite products like HALOS-2, the Second Advanced Earth Observation
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satellite (ADEQOS), Satellite Pour I’Observation de la Terre (SPOT), QuickBird, IKONOS and Hisaki
amongst other, the current review focuses on the commonly used products in Table 1.

Table 1. Commonly used freely available sensors specifications for wetlands inventories modified from
Ozesmi and Bauer, [40].

Resolution Landsat MSS Landsat TM Landsat ETM+ Landsat OLI Sentinel-1 Sentinel-2 MODIS
Spectral
bands C-band (3.75-75 cm)
(um)
Band 1 0.45-0.52 0.45-0.515 0.43-0.45 0.443 0.62-0.67
Band 2 0.52-0.62 0.525-0.605 0.45-0.51 0.49 0.841-0.876
Band 3 0.63-0.69 0.63-0.69 0.53-0.59 0.56 0.459-0.479
Band 4 0.5-0.6 0.76-0.90 0.775-0.90 0.64-0.67 0.665 0.545-0.565
Band 5 0.6-0.7 1.55-1.75 1.55-1.75 0.85-0.88 0.705 1.23-1.25
Band 6 0.7-0.8 10.4-12.5 10.4-12.5 1.57-1.65 0.74 1.628-1.652
Band 7 0.8-1.1 2.08-2.35 2.08-2.35 2.11-2.29 0.783 2.105-2.155
Band 8 0.52-0.9 0.50-0.68 0.842
Band 8A 0.865
Band 9 1.36-1.38 0.945 0.438-0.448
Band 10 10.6-11.19 1.375
Band 11 11.5-12.5 1.61
Band 12 2.19
Band 19 0.915-0.965
Band 31 10.78-11.28
Band 32 11.77-12.27
Temporal 180 days 16 days 16 days 16 days 12 days 5 days 1-2 days
60 m 250 m B1-2, 500 m
Spatial 30m&120for 30m, 15mBs& 0 MBLIT&S B1,9,10 B8-36
(pixel-sizes) 80m Band 6 60 m B6 5mx5m 10m
15m B8 B23,48 1000 m B8-36
20
100 m B10-11 m-B5,6,7,11,12
Period 1972199 1982 Present  2003-Present  2013-Present 2 ohiene ot Eoraammd 2008 beesnt for Acns
For 1B 2017 for 2B

Although multispectral sensors in Table 1 have been providing crucial information on wetlands
at no cost and repeated coverage over the larger areas, fine detail wetland detection is still a major
challenge [43,44], especially the fairly small semi-arid and arid wetlands (<10 ha) with varied vegetation
and other land-cover characteristics. This results in some of the wetlands being missed or confused
with other land-cover classes during classification. Various studies have been undertaken to establish
the utility of these sensors in understanding different dynamics of wetlands in semi-arid and arid
areas. These studies include [7,15,32,45] amongst others. The study by Powell et al. [32] demonstrated
the utility of Landsat TM and ETM+ data sets coupled with digital elevation and light detection
and ranging (LIDAR) data sets to classify and map land-cover classes of the semi-arid wetland
in Barwon-Darling River system using stochastic gradient boasting algorithm and fractional cover
model. The study deduced 5 land-cover classes which included tree-dominated forest and woodlands,
shrub lands, vegetated swamps and non-flood dependent terrestrial communities with an overall
accuracy of 88%. However, the study failed to distinguish between certain types of wetland located
at the boundaries of the drier wetlands from the Landsat TM and TM+ images used. The study by
Li et al. [7] evaluated the utility of MODIS spectral indices in monitoring hydrological dynamics
of a small seasonally flooded wetland (1364 ha) in semi-arid southern Spain. An analysis of the
relationship between the MODIS inundation area and field measured water levels showed a positive
linear relationship between the two variables with a R? determinant of 0.96, suggesting the success
of MODIS data set in monitoring hydrological dynamics of seasonal wetlands. However, the study
focused on a single seasonal wetland with only varying soil characteristics. The other semi-arid
and arid seasonal wetlands have other diverging characteristics e.g., marshes with dense emergent
vegetation, and are even smaller, and comprise only a few MODIS pixels.

Chen et al. [45] utilised a 250 m resolution MODIS data set coupled with daily field water levels
to investigate the applicability of MODIS time series data set in monitoring wetlands cover dynamics
overtime. Four land-cover classes which are water, mudflats, submerged and emergent vegetation
were identified with the overall accuracy of 80.18% and Kappa coefficient of 0.734. There were,
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however, omission errors of about 30% where water was confused with other classes such as mudflats
and emergent vegetation. Much of this water was located at the interface of mudflats and other
classes. Landmann et al. [15] also utilised MODIS coupled with topographical landform data set
to map basic wetland classes in semi-arid Burkina Faso and Mali. The results showed a total of 5
wetland classes with a total area of 9350 km?. The results demonstrated low accuracies of mapped
land cover classes. Although the studies demonstrated the success of these freely available data sets in
detecting and mapping different wetland cover classes, the fine detailed differentiation between the
wetland classes was a major challenge. The use of pixel and sub-pixel-based approaches offer a great
opportunity to improve the accuracy in wetland cover detection and monitoring from freely available
multispectral data. These approaches provide the analysis of spectral characteristics of each class
within a pixel, as such pixels with the same spectral characteristics are grouped together as one object.
This has the potential to minimize the spectral confusion between classes. However, the challenge
in the case of wetlands is that wetlands vary spatially and temporally; the inner wetland may be
permanently inundated when compared to the seasonally inundated edges of the same wetland but
the temporal pattern of the entire system is what distinguishes it from other landscapes. As such,
using the pixel-based approach will not permit the capture of that temporal pattern [46]. In addition,
wetlands have similar spectral characteristics to other landscapes i.e., flooded wetland may resemble
shadows from trees, hills and other features since these have low surface reflectance.

The use of object-based image analysis (OBIA) offers an opportunity to improve wetlands
detection and classification, despite the inherent computational costs higher than pixel-based approach.
The introduction of cloud computing systems such as Google Earth Engine (GEE), National Aeronautics
and Space Administration (NASA) Earth Exchange and Amazon web services amongst other presents
an opportunity to simplify the use of OBIA approach in wetlands mapping and thus improving the
accuracy of the classification. In addition, the use of fine spatial resolution images from commercial
sensors may also assist in improving the classification accuracy.

4. Mapping Semi-Arid and Arid Wetland Vegetation Using Freely Available Multispectral Images

Wetland vegetation provides a habitat to a variety of aquatic animal species [26]. Changes in
the conditions of wetland vegetation can be used as a proxy for early signs of any chemical and
physical wetland degradation [41]. The assessment of wetlands vegetation is considered an important
aspect for evaluating the ecological status of a particular wetland [47-49], and management of wetland
biodiversity relies heavily on accurate assessment of wetland vegetation [33]. The assessment of
wetland vegetation includes an understanding of wetland vegetation components such as structure,
species type and composition. The use of optical freely available multispectral remote-sensing data in
understanding wetland vegetation components is a common practice for semi-arid and arid wetland
inventories, and most studies have successfully mapped wetland vegetation using these types of data
set e.g., [48,50,51]. The challenge however lies with the spatial resolution of these data sets which are
often too coarse to accurately map mixed vegetated and small semi-arid and arid wetlands.

The spectral reflectance of vegetation types in a mixed vegetated wetland are similar, and usually
combined with spectral reflectance from the underlying soils, water and top of the atmospheric effects
resulting in complications during the classification process [44]. In addition, steep environmental
gradients cause short ecotones and sharp demarcations between vegetation species in the wetlands
resulting in high spectral and spatial variability, thus presenting difficulties in identification of
boundaries between vegetation communities and types during the optical mapping [26,44]. As such,
the use of optical freely available multispectral imagery may present challenges in separating and
understanding wetland vegetation components such as different species types, composition and
structure due to their low to medium spatial and spectral resolution. McCarthy, et al. [52] mapped
eco-regions of the Okavango Delta in Botswana, from the Landsat TM imagery using maximum
likelihood classification (MLC) and rule-based classification (RBC) with 6 and 10 classes. The results
showed overall accuracy of 46% and Kappa co-efficient of 0.37 for all the 10 classes based on MLC,
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overall accuracy of 63% and Kappa co-efficient of 0.59 based on RBC for the 10 classes, and an overall
accuracy of 74% and Kappa co-efficient of 0.67 based on the RBC 6 class map. Based on these findings,
the study deemed Landsat TM as unsatisfactory in the classification of the land cover classes including
the wetland vegetation in the Okavango Delta.

Carrefio et al. [53] utilised Landsat TM and ETM+ to assess the spatiotemporal changes in the
area and internal components of the Mar Menor coastal wetland in semi-arid Spain from 1984 to
2001. The results for classification of land cover classes showed three natural vegetation sub-classes,
which included salt steppe, salt marsh and reed bed. The user accuracy of 90% for the salt marshes,
and 80% for both the reed beds and salt marshes based on the 1984 image were achieved, and based on
the 1997 image the user accuracies of 62% for salt steppe, 96.5% for salt marshes and 76.92% for reed
beds were reported respectively. The study reported high commission errors for salt steppe (37.5%)
based on the 1997 image, which were attributed to the spatial resolution of the Landsat images used.
Mazzarino [54] used Landsat 5 TM-derived NDVI to investigate multi decadal (1985-2010) vegetation
dynamics of the Andean wetland system in the Nufioa watershed. The classification results showed
2 classes named wetland (characterised by wetland vegetation) and non-wetland with an accuracy
of 93% for wetland systems and 87% for non-wetland systems respectively. Although the Landsat
5 TM used in the study proved to be successful in the separation of non-wetland areas from wetlands
area, the images used were representing dry season when the wetland is not inundated and wetland
vegetation classes can be identified easily.

Literature [52-54] showed the successfulness of the application of multispectral images in mapping
vegetation of the semi-arid wetland, however mapping vegetation communities and specific species
to the finest detail is still a major gap requiring the use of high spatial-resolution satellite images.
In attempting to resolve this issue, the fusion of different data sets which combines strengths of different
sensors has the potential to improve mapping of wetland vegetation. Data fusion may however cause
information distortion resulting from mismatch in pixels of different sizes of the fused data thus
lowering the quality of the produced image.

5. Mapping Wetlands Inundation Using Freely Available Multispectral Images

Inundation plays a critical role in expressing the hydrological dynamics of the wetlands [7].
Understanding of this process plays a key role in water management, ecosystems assessment and
biodiversity conservation [55]. Use of in situ gauge data set has been the backbone for the current
understanding of surface water dynamics including wetlands inundation [56]. The use of in situ
measurements presents challenges because most wetlands in semi-arid and arid areas are not gauged
due partly to their episodic nature [7,34]. The advancement in remote-sensing approaches and
products improves mapping surface water features including changes of inundation. The most utilized
products include Landsat 5 TM and Landsat ETM+, as well as MODIS. The use of freely available
medium spatial resolution products like MODIS presents difficulties in mapping inundation from
heterogeneous seasonal flooded wetlands whose water is beneath the vegetation, small in size and
with very dynamic eco-hydrological changes, especially during dry season [45]. This is evident in the
studies by Klein et al. [55], Xie et al. [57] and Moser et al. [58].

Moser et al. [58] used a MODIS time-series data set to establish the spatio-temporal variability
of water coverage of a semi-arid wetland in sub-Sahara West Africa. The coverage of surface water
was slightly over-estimated from MODIS. Klein et al. [55] evaluated the spatial extent of seasonal
water bodies in semi-arid central Asia from 1968-2001 using the coupled Advanced Very High
Resolution Radiometer (AVHRR) and MODIS multispectral data. The accuracy assessment showed
overall classification accuracy of 0.83 based on the AVHRR data, and 0.91 based on MODIS data.
Lower accuracies were observed for the month of April in the northern region of the basin including
the Tengiz-Kolgalzhyn lake system and was attributed to the presence of lake ice and snow. In addition,
water masks were over-estimated due to the coarse spatial resolutions of the data sets particular at the
interface of land and water surfaces.
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Xie et al. [57] used Landsat (TM, ETM+ and OLI) coupled with gravity recovery and climate
experiment data sets to investigate hydrological dynamics and ecosystems functioning of the Coongie
Lake in the arid central Australia over a 24-year period. The analysis of flooding extent indicated
a variable water regime with episodes of long-term drought and short periods of flooding over the
Coongie Lake. Although the study successfully mapped the inundation dynamics of the Coongie Lake,
there were uncertainties regarding the magnitudes of monthly inundation derived from the Landsat
images. Literature [55,57,58] demonstrated the capabilities of the freely available multispectral data
set in mapping and understanding inundation of the semi-arid and arid wetlands, however, it was
noted that the presence of other wetland features influenced the level of accuracy when mapping
inundation using coarse spatial resolution images such as MODIS. In addition, the issue of spectral
confusion between water and soils at their boundaries remained unresolved, as such water pixels were
overestimated. In attempting to resolve the issue of spectral mixing between wetland water and soils
at the boundaries of these two classes, the use of high spatial-resolution images is likely to improve the
latter. Moreover, the use of the SAR data set has the potential of improving the detection of inundation
patterns since the sensor has the ability to penetrate wetland vegetation canopy.

6. Mapping Land-Use and Land-Cover Changes Impacts on Semi-Arid and Arid Wetland Systems
Using Freely Available Multispectral Images

An understanding of land-use and land-cover changes (LULC) assists in developing effective
environmental management strategies for the degradation and loss of wetlands [59,60]. In addition,
to better understand land dynamics, LULC change analysis is pertinent [61]. Studies have revealed
that changes in LULC are significant drivers for wetland degradation. Alam et al. [62] reported that
a continuous inflow of sediment loads and nutrients in the Hokar Sar wetlands in India led to their
degradation. Inflows of sediments were attributed to the changes of LULC due to the anthropogenic
activities during 1986-2005 in the upper basin. Martinez-Lopez et al. [49] also highlighted that the
expansion of irrigated lands in semi-arid Mediterranean catchments has altered inputs of water and
nutrients to lowland wetlands resulting in their degradation. Regular monitoring of LULC is necessary
for developing measures for managing degradation of wetlands [63]. The use of data sets from
different satellite sensors such as the multispectral MODIS and Landsat has been widely recognised
as a powerful tool for studying and monitoring the dynamic impacts of LULC changes on wetlands
in semi-arid and arid environments. The challenge, however, is the detection of these impacts with
adequate precision [43].

Peter, et al. [64] used four decades of Landsat data set to assess the impact of anthropogenic
activities and climate variability on the spatiotemporal pattern of Lake Babati in Tanzania. The study
achieved an overall classification accuracy of 87%. The extent of water surface area was not accurately
captured. This was due to the unavailability of usable continuous Landsat data set caused by significant
cloud cover for most of the year. Wang et al. [65] investigated the shrinkage and fragmentation of
marshes in the West Songnen in China for the period between 1954 and 2008 using Landsat data set
coupled with topographical land cover maps. The study reported an overall classification accuracy of
90%. Mwita, [66] utilized Landsat MSS, TM, ETM and ETM+ over a 30-year period with a sequence of
10 years (1976-2003) to assess land-use and land-cover dynamics of the Rumuruti and Malindi wetlands
in Kenya and Tanzania. The classification achieved an overall accuracy ranging between 88.28% and
95.17% for both wetlands. Although the overall accuracy results were higher, the producer’s accuracy
for open water class for the 1976 scene was low (33.3%) for both the wetlands. This was attributed to
the spatial resolution of the Landsat MSS used for 1976. Although other studies [64-66] reported high
classification accuracies, there were challenges associated with the type of data used in these studies.
In an attempt to avoid the issues of cloud cover as reported by Peter, et al. [64], the use of SAR data set
proved to be a solution as the sensor can penetrate through the cloud cover.
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7. Low- to Medium- vs. High-Resolution Remote Sensing for Wetland Monitoring
and Assessment

Low to medium spatial resolution remote-sensing data sets are characterised by pixel sizes
ranging between 30 and >200 m. These data sets have been successfully used in many wetland
inventories in different climatic zones globally. This is because they are readily available at no cost
and mostly provide timely data sets thus providing the opportunity to monitor changes in wetlands
over longer time periods. Despite the highlighted advantages of low to medium spatial-resolution
data, their applications are somehow challenging especially on wetlands with an aerial extent less than
1-ha [24,27]. The advancements in satellite technological developments have led to the introduction of
new generation multispectral sensors both spaceborne and airborne sensors with high spatial-resolution
data sets (<10 m pixel size; Table 2). The sensors are uniquely characterised with improved sensing
characteristics, which include the presence of strategically positioned spectral bands e.g., red-edge,
near-infra red II as well as improved signal-to-noise ratio, amongst others [67]. The sensors are freely
available and come in fine spatial resolution with strategically organised bands, which can finely
detect wetland features similarly to the high spatial-resolution commercial sensors. These sensors
have been explored in vegetation monitoring, biomass and surface water mapping studies and the
findings were commendable [67]]. It is upon this premise that these datasets are likely to improve
the monitoring and understanding of wetlands and wetland dynamics in semi-arid and arid areas,
a previously challenging task with broadband sensors as the majority have an aerial extent below
1 ha [27]. However, the challenges are the cost implications for some of these datasets because most
of these are available at a cost. For example, high spatial-resolution data sets from sensors such as
Worldview-2, QuickBird and RapidEye amongst other are very costly to acquire thus making it difficult
to map semi-arid and arid wetlands distributed in resource-limited environments.

Table 2. Selected low to high spatial-resolution sensors for wetland monitoring and assessment
(highlighted bold are freely available data sensors).

Sensor Pixel Size (m) Bands Revisit Time Acquisition Cost Scale of Application Spatial Resolution
AVHRR 1100 5 1 Readily available Regional to global Low
Hyperspectral <1 >100 - Very expensive Plot High
IKONOS 4 5 1-2 Expensive Local High
Landsat TM 30 7 16 Readily available Local to regional Medium
Landsat ETM+ 30 8,11 16 Readily available Local to regional Medium
Landsat MSS 80 4 180 Readily available Local to regional Low
Landsat OLI 30 11 16 Readily available Local to regional Medium
MERIS 300 15 3 Readily available Regional Low
MODIS 500, 1000 7 1 Readily available Regional to global Low
QuickBird 24 5 1-3.5 Expensive Local High
RapidEye 5 5 55 Expensive Local High
Sentinel-2 10, 20, 60 13 5 Readily available Local to regional High/medium
SPOT 10, 20 4 26 Readily available Local to regional High
Worldview-2 <1 8 1 Very expensive Local High
Sentinel-1 5m 1 12 Readily available Local to regional High

8. Available Satellite Image Processing Techniques for Accurate Wetland Monitoring

There are challenges in mapping wetlands from optical sensors since wetlands have a heterogenous
mixture of land-cover classes, which may produce similar spectral reflectance resulting in complications
during the classification process [44,67]. In addition, wetlands are highly dynamic with regards to
presence of both water, plants and land surface which alters their reflectance and energy back-scattering
properties. The classification of wetlands can be achieved through the pixel-based or OBIA approaches.
In pixel-based classification, pixels are analysed by their spectral information and require imagery
that extend beyond the visible spectrum [68]. Although the pixel-based classification has long been
used [67], the approach does not fully utilise the spatial information of the multispectral imagery.
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Unlike pixel-based classification, OBIA aggregates pixels with similar characteristics into objects or
segments, which are then classified using analyst rules, machine-learning algorithms and statistical
approaches [46]. One of the advantages of using OBIA over the pixel-based approach is that additional
features such as shape, size and context are considered during the classification process, and reduces
the within class spectral variation, thus improving the accuracy of classification [69]. Although OBIA
is the preferred approach, one of the limitations in wetland mapping is that there is no clear standard
for pre-classification assessment of segmentation effects on the final outcomes in either wetlands or
other heterogeneous landscapes [24].

Different machine-learning algorithms are available for classifying wetlands using remotely
sensed data. These include supervised machine learning algorithm such as the K-nearest neighbor
(KNN), support vector machine (SVM), maximum likelihood classification (MLC), random forest (RF),
artificial neural network and classification and regression tree (CART), as well as the unsupervised
K-means, and Iterative Self-Organizing Data Analysis Technique ISODATA. The selection of the
appropriate algorithm to use depends on the objective of the classification. A number of studies have
used these algorithms in studying wetland systems in the semi-arid and arid areas. The supervised
machine-learning algorithms have proved to be better performing than the unsupervised classification
algorithms (Table 3). However, despite the better performance these algorithms have some limitations.
For example, ANN and SVM were reported to be too difficult to automate and require an adjustment
of a large number of parameters [70], RF sometimes tends to overfit and for every data set the size of a
tree can take up memory [71]. The availability of image-processing techniques such as Google Earth
Engine and image processing on cloud simplifies the use of supervised machine-learning algorithms.
However, according to the literature, these platforms have been under-utilised in remote sensing of
semi-arid and arid wetlands using the freely available multispectral sensors.

Table 3. Available algorithms for wetlands remote sensing.

Algorithm Remote Sensing Data Performance Range Reference
Landsat TM, Sentinel 1A, 2A,
RF MODIS, LiDAR, SAR, 80-98% [70,72-77]

ALOS-PALSAR, RADARSAT
Landsat TM, Sentinel-1A, 2A,

CART PALSAR, Landsat ETM-+ 89.2-92% [71,78-80]
Landsat TM, MODIS, Landsat MSS, o

MLC Landsat ETM+ 83.6-94% [71,72,80-82]

SVM Sentinel-2,1A, Landsat OLI 75-87% [78,80,83-86]

ANN Sentinel-2, Landsat TM, ETM+, OLI  90-96% [72,78,86,87]
Sentinel-2, Landsat TM, ETM+, OLI, o )

KNN RADARSAT-2, Sentinel-1 83-97% [77,78,84,87]

Unsupervised classification Landsat TM, ETM+, MSS, Sentinel-2  82-96% [71,78,81]

9. Summary of Key Challenges and Future Research Directions

Although the semi-arid and arid wetland systems tend to host most invertebrate and vertebrate
species that would not survive in the surrounding landscape, they are still overlooked. Remote-sensing
approaches have been offering an opportunity to understand these wetlands from aspects ranging
from wetland characterisation, inundation, vegetation, extent and land-cover changes. The majority of
these studies utilised the freely available multispectral sensors such as Sentinel-2 MODIS and Landsat
(MSS, TM, ETM+, OLI). Although progress has been made regarding the utility of freely available
multispectral sensors in understanding the dynamics of wetlands in semi-arid and arid areas, it is
still challenging to map these wetlands to the finest precision due to their complex edaphic and small
hydrological gradients. Moreover, the spatial resolution of these freely available multispectral sensors
limits the detection and monitoring of these wetlands.
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Wetlands are complex systems, and understanding their ecohydrological dynamics cannot be
solely based on a single data source and or validation using the in situ measured data. In most
arid and semi-arid environments, the in situ data set is limited. In addition, in most of these
regions sharing of such data among different institutions is poor particularly in sub-Saharan Africa.
The availability and free access to numerous spatial data sources with varying sensing characteristics
e.g., global mapper Landsat series, Sentinel Copernicus and freely available radar and weather data
set products, improves the mapping of wetlands where in-situ data are limited. This provides new
opportunities for monitoring and assessment of fairly small semi-arid and arid wetlands, which were
previously ignored due to the lack of requisite spatial data. This challenge or knowledge gap can easily
be addressed by exploring different spatial data set integration techniques—a previous challenging task
with broadband and coarse spatial resolution multispectral data set. Furthermore, improvements in
data analytical techniques such as the introduction of advanced computer-processing methods provide
new opportunities for the detection and monitoring of wetlands.

Literature shows that the introduction of advanced machine-learning algorithms and cloud
computing such as GEE, artificial intelligence (AI) and Petascale image-processing techniques provide
new avenues for multisource data integration and fusion [88]. Although few studies have explored
the applicability of these techniques in vegetation monitoring and other related field of study, there is
need for future studies to shift towards embracing the methods to enhance wetlands detection and
monitoring particularly in data poor regions. One advantage of these techniques is the fast processing
of large data sets. However, challenges such as inadequate network and internet connectivity as well
as lack of high-performance computing systems for cloud computing and the lack of skilled personnel
limit the application of such techniques especially in developing countries, mostly in sub-Saharan
Africa, and other parts of the world. Despite some of the highlighted challenges, this review advocates
for a paradigm shift in satellite data applications in wetland monitoring by embracing multi-data and
advanced data processing techniques to improve our understanding of these systems.

10. Conclusions

The current review was aimed at providing a comprehensive overview on the progress and
development of multispectral remote sensing in detection and monitoring of the semi-arid and
arid wetlands. The literature search showed that there is a great improvement on the use of
freely available multispectral data set in monitoring semi-arid and arid wetlands but more is
required for smaller wetlands monitoring and assessment in these regions. This is evident in
the number of studies that were published between the period of 2000-2020, with a significant
increase between 2008 and 2020. Although there is a significant increase in the number of published
papers focusing on the use of freely available multispectral data set on remote sensing of semi-arid
and arid wetlands, it was noted that monitoring of key wetland aspects presented some challenges
mainly due to spectral mixing and poor data quality for determining inherent wetland characteristics.
These challenges include mapping inaccuracies which were either attributed to poor spatial resolution
versus wetland, inadequate validation data or the classification method used. The introduction
of advanced machine-learning algorithm and cloud computing systems such Google Earth Engine
and Petascale thus provide a great opportunity to improve monitoring and assessment of wetlands
particularly in data poor regions and in semi-arid or arid environments. So far, the use of these
machine-learning algorithms and cloud computing techniques as well as data integration methods
in semi-arid and arid wetlands is still in its infancy but the increased applications of these methods
provide a new window of hope. Further investigations are thus required to test the utility of these
programs and platforms in understanding the distribution, dynamics and the status of wetlands in
semi-arid and arid regions to enhance their management and conservation as well as to safeguard
ecosystems goods and services and, above all, livelihoods.
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