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Abstract: The spatial and temporal scale of flash flood occurrence provides limited opportunities
for observations and measurements using conventional monitoring networks, turning the focus
to event-based, post-disaster studies. Post-flood surveys exploit field evidence to make indirect
discharge estimations, aiming to improve our understanding of hydrological response dynamics under
extreme meteorological forcing. However, discharge estimations are associated with demanding
fieldwork aiming to record in small timeframes delicate data and data prone-to-be-lost and achieve
the desired accuracy in measurements to minimize various uncertainties of the process. In this work,
we explore the potential of unmanned aerial systems (UAS) technology, in combination with the
Structure for Motion (SfM) and optical granulometry techniques in peak discharge estimations. We
compare the results of the UAS-aided discharge estimations to estimates derived from differential
Global Navigation Satellite System (d-GNSS) surveys and hydrologic modelling. The application in
the catchment of the Soures torrent in Greece, after a catastrophic flood, shows that the UAS-aided
method determined peak discharge with accuracy, providing very similar values compared to the
ones estimated by the established traditional approach. The technique proved to be particularly
effective, providing flexibility in terms of resources and timing, although there are certain limitations
to its applicability, related mostly to the optical granulometry as well as the condition of the channel.
The application highlighted important advantages and certain weaknesses of these emerging tools in
indirect discharge estimations, which we discuss in detail.

Keywords: UAS; structure-from-motion; flash flood; discharge estimation; manning; photogrammetry

1. Introduction

Flash floods are one of the most catastrophic natural hazards, inducing a wide range of tangible and
intangible effects [1,2], significant economic losses [2–4], and a noteworthy number of fatalities [5–8].
Recent findings indicate that flash flood impacts can potentially become more significant in the future
as a result of climate change [9].

Flash flood characteristics and spatiotemporal scales of occurrence limit the possibilities for
systematic conventional observations [10–12]. The damage of conventional instrumentation [13],
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inadequacy or absence of instruments [14–16] and even safety issues [17,18] have shifted the focus on
post-flood field surveys and indirect estimates [10–12].

The peak discharge is a key metric of flash floods and its estimation provides valuable insights
into rainfall-runoff relationships and catchments’ hydrological response. Studying discharge is a
crucial step to comprehend flood frequency and estimate return period, which are in turn necessary to
develop effective flood mitigation procedures and infrastructure.

The slope conveyance method and the use of the Manning formula are two of the most common
tools in indirect discharge estimations [10,19,20]. Recent works highlight their dominance in post-flood
discharge studies [17,20].

Nevertheless, the process of estimating discharge has inherent uncertainties and difficulties,
connected mostly with defining water surface and energy slope with accuracy, as well as measuring
the channel geometry, determining roughness coefficient, and others [17,20]. To minimize these
uncertainties, fieldwork-based calculations can become time-consuming and in some occasions
impractical or unsafe. Post-flood field surveys are often accompanied by repeated thorough
measurements under challenging conditions. In addition, the wrong choices of cross-sections or
non-meticulous measurements can lead to a need to revisit a remote site. Further, human-induced
or natural changes of the river channel after the first survey can lead to loss of discharge
information entirely.

Recent works demonstrate the mapping and detection of geomorphological features, especially
within river channels using imagery derived from Unmanned Aerial Systems (UAS) as an emerging
discipline. Recently, studies have tested UAS systems in post-flood environments to enhance disaster-
and hydrology-related observations and flood monitoring [21–24]. Together with Structure from
Motion (SfM) techniques and the field of photogrammetry, UAS can be a powerful tool for developing
high-resolution topographic data, which contribute to terrain modelling and provide insight into the
dynamics of geomorphological processes [25–27]. The combination of UAS and SfM has proved its
capacity in multiple geoscientific applications in recent years [28] and has contributed to various field
surveying solutions [29].

Some of UAS and SfM applications focus on hydro-morphological changes [30,31], flood effects [29],
and fluvial geomorphology [32] fields, which benefit from the capacity of continuous coverage in terms
of measurements [33].

While terrestrial and airborne Lidar data were used for developing the high-resolution topographic
datasets, the emerging SfM photogrammetry methods proved to have similar advantages. Westoby
et al. [28] proposed an open-source SfM tool to produce 3-D point clouds in the field of developing
high-resolution Digital Elevation Models (DEMs). Still, their results had similar spatial resolution to
the more traditional and costly terrestrial laser scanning methods. A similar comparison of SfM and
Lidar outputs was performed by Woodget et al. [34], who used a UAS to quantify fluvial topography
and showed that it is possible to develop hyperspatial resolution DEMs by using SfM photogrammetry.

Furthermore, SfM proved to be a very useful tool for channel and fluvial geomorphology, as well
as a critical parameter for hydrodynamic studies [35]. Photogrammetry’s capacity for detailed mapping
of channel surfaces has been exploited in the field of hydraulic simulation and flood magnitude
estimation [22,35,36]. In addition, the high level of detail in representing river morphology was shown
also to be useful. Watanabe and Kawahara [36] used SfM-derived high accuracy [even in the order
of cm] Digital Surface Models (DSMs) to reproduce river topography and vegetation, as well as to
detect changes in ground level and vegetation after flooding. In a more recent study, Langhammer and
Vackova [29] examined a flood plain using a multi-rotor UAS and applied photogrammetry methods
to create high spatial resolution digital elevation model (DEM) and orthomosaics, that can be used for
object-based segmentation as well as the classification of fluvial geomorphological features.

Recently, in the field of roughness estimation, granulometry of river beds has benefited by
automatic analysis of photographs through automatic object detection software solutions [37]. Pearson
et al. [38] found that using the SfM technique we can successfully replicate roughness-grain-size
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relationships using either laboratory or field-based SfM surveys. The capacity that these UAS-aided
techniques have demonstrated in measuring various geometric factors of the terrain show that they
can contribute to measurements relevant to flood hydraulics [35].

In this context, the objective of this paper is to examine the application of the slope conveyance
method by exploiting UAS-derived data in the course of a post-flood survey to make peak discharge
estimations. This study examines the accuracy of this UAS-aided approach by comparing its results
with the traditional peak discharge estimation method and discusses its strengths and limitations. This
study applies its methods in the catchment of Soures in Mandra, Greece, focusing on the flood event of
2017. This event has been studied before by Diakakis et al. [39] from a risk and disaster management
viewpoint, adding to the compilation of data on extreme flash floods. The present study focuses on
the applicability of a UAS-aided approach and compares it with established methods, discussing its
practical advantages and disadvantages against them, adding to the relatively new literature on UASs’
applications on flash floods hydrology.

The rest of the paper is structured as follows. Section 2 describes the study area. Section 3 presents
a step by step description of the methodological framework including data collection, recording of key
information in the channels, estimating roughness coefficient with two approaches, and estimating
peak discharge. Sections 4 and 5 present and discuss the results, respectively, comparing different
approaches in a systematic way and focusing on the advantages and disadvantages of UAS-derived
results. Finally, Section 6 concludes with the main findings of the study.

2. Study Area

The town of Mandra is located in the western part of Attica, in Greece and on the western border
of Thriassion plain. Mandra is built on a small alluvial fan, formed in the catchment of the Soures
torrent and its most important tributary [Agia Aikaterini torrent], which merge on the eastern edge of
the town (Figure 1). At the location where they converge, Soures and Agia Aikaterini drain areas of
20.4 km2 and 22.8 km2 respectively. The local drainage network has little or no water at all for most of
the year and drains the eastern slopes of Pateras Mt. foothills, flowing eastward, towards the plain and
then to the south towards the Gulf of Elefsis. At the outlet of the basin, Soures flows through the town
of Elefsis. The towns and the broader area of the plain are host to critical socio-economic activities,
industrial centers, and logistic hubs, as well as two essential motorways (Attiki Odos and E94), built
approximately parallel to the coastline.

In terms of geomorphology, the area is dominated by moderate slopes around the western foothills
and steeper relief in the upstream parts of the catchment. Thriassion plain and Mandra record at least
five important flash flood events in the recent decades (1960-onwards) [40] with substantial damages
and at least two fatalities in 1996. Even though previous events had significant coverage from the
press, there was only documentary information on their hydrologic and damage characteristics.

On 15 November 2017, Mandra was hit by a violent flash flood that ravaged through the town
with catastrophic impacts on properties and infrastructure, tragically causing 24 deaths. The flood
was triggered of a very intense storm exceeding 280 mm at its core, as it was captured by an X-band
polarimetric radar (XPOL) of the National Observatory of Athens [39] that reproduced radar-rainfall
maps showing the spatiotemporal patterns of rainfall, in the absence of rain gages locally. XPOL
rainfall estimates resulted from processes described by Kalogiros et al. [41]. The storm started at 23:00
UTC on 14 November and ended at 12:00 UTC on the 15th with the most of the rainfall clustered
between 01:00 and 07:00 UTC [39].

Based on spatial patterns identified on radar-rainfall maps, the core of the storm appeared and
stayed for several hours over the upstream part of the catchments of Soures and Agia Aikaterini,
with a southwest-northeast longitudinal shape of roughly 4 km wide and 18 km long. Elefsis station
intensity-duration-frequency curves indicated a return period of over 500 years for the rainfall amount
accumulated in 8 h [39].
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Figure 1. Study area map showing the catchments of the two tributaries (Agia Aikaterini and Soures)
lying between the eastern slopes of Pateras Mt (on the western edge of the map) and the western part
of Thriasion plain. The eastern part of the map is characterized by higher slopes and elevations (827 m
for Soures and 590 m for Agia Aikaterini catchments, respectively).

3. Methodology

The research team visited the area after the November 15th flood and selected general areas for
discharge estimation close to the outlet of the two main tributaries of the catchment [Soures and Agia
Aikaterini]. To estimate discharge, we used the slope-conveyance method [20,42] by applying the
Gauckler—Manning formula, assuming uniform flow at the two reaches examined. The locations
were selected in a way that they would be suitable for indirect estimates using the manning formula
from a hydraulic point of view, including stable channel geometries and minimum erosion phenomena
(Figure 1). During fieldwork, which took place two days after the flood event, a handful of possible
cross-sections were identified and included in the survey; however, the final cross-sections were
selected after careful post-processing of all the fieldwork data.

3.1. UAS Flights Description and Data Collection

The research team used a commercial UAS (namely a quadcopter DJI Phantom 4 Pro) with a
30-min flight time limit. The DJI GO 4 Pro application, on an Apple iPad Pro was used for flight control,
while the vehicle’s 1” CMOS camera captured 20-megapixel photos.

The flights were planned and executed in a way that they covered the reaches to be modelled,
spreading downstream and upstream from the locations of the possible cross-sections. At these
locations we calculated the upstream area of Soures and Agia Aikaterini at 17.01 km2 and 15.5 km2

respectively. In the case of Soures, one (1) flight was executed at 85 m altitude, capturing multiple
photos from a 526 m by 300 m area. In the case of Agia Aikaterini, the flight plan was executed in one
flight at 75 m of altitude, covering a 390 m by 310 m area with multiple shots (Figure 2).
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Figure 2. Flight plans for (a) Soures and (b) Agia Aikaterini, with the location of 228 and
226 images, respectively.

Seven (7) ground control points (hereafter GCPs) were positioned by the research team at
Soures and nine (9) at Agia Aikaterini, within each of the rectangle-shaped areas defined by the
two flight plans (i.e., 16 in total). The GCPs coordinates were measured using a dual-frequency
geodetic receiver Hi-Target iRTK5 fixed on a two-meter-high pole, with 1 Hz interval observation
rate. This Real Time Kinematics—Global Navigation Satellite System (RTK-GNSS) equipment used
the Network method solution after the real-time HxGN SmartNet of Greece positioning service
(https://www.metrica.gr/smartnet-greece), for extracting highly accurate coordinates (x, y, z) for each
location (Figure 3) [43]. The GCPs were placed with a balanced spatial distribution within the above
area, and their coordinates were used as markers during the photogrammetric processing. After the
final products of ortho-photo-mosaic and DSM generation, we re-measured the GCPs coordinates on
the screen and used them for geospatial verification [44].

Figure 3. Ground control points placement and coordinates measurement.

The software package Pix4D [45,46] was used for image processing and production of orthomosaics
and DSMs from the georeferenced point cloud. The camera line of sight was continuously at 60◦

degrees towards the ground, and the oblique images were acquired on constant intervals in x and y
axes, in order to ensure full coverage over different angles on both directions (NW-SE and NE-SW, at
both areas, see Figure 2), to ensure that all sides of the riverbanks are included in the photographs.

https://www.metrica.gr/smartnet-greece
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This resulted in a dataset of 228 images for Soures, and 226 images for Agia Aikaterini reaches, with at
least 75% overlap, that led to the production of ortho-photomosaics with spatial resolutions of 0.030 m
and 0.027 m, respectively. The 16 GCPs were also introduced in Pix4D and were manually identified in
the images. The image data series was then photogrammetrically processed in order to be aligned,
before creating a sparse point cloud, then a dense point cloud, and finally, a mesh for the entire study
areas. The model was then georeferenced to the Greek Datum (GGRS ’87), based on the GCPs, in order
to create DEMs and orthomosaics for both reaches.

Residual geo-referencing errors were calculated for the GCPs established at both areas, which were
used within the photogrammetric procedure, by comparing each GCP measured location and their
estimated x,y,z coordinates (Table 1). Following Javernick et al. [47] we assessed point-cloud quality
by summarizing residual errors, for each reach, over the GCPs using four indicators: (i) the mean
error (ME; a measure of accuracy), where positive errors indicated the point cloud had larger value
than the GNSS-measured point; (ii) mean absolute error (MAE, the mean of absolute errors); (iii) root
mean squared error (RMSE); and (iv) the standard deviation (SD). It has to be noted that the number
and the spatial distribution of GCPs were subject to constraints that are present during a field survey
in a disaster zone immediately after a flood (such as safety, accessibility) and fit the opportunistic
nature of post-flood data collection, acknowledged also in previous studies [35]. Nevertheless, we
kept the standards of previously published studies [34–36] in terms of density of GCPs per studied
area (5–6 GCPs/hectare) and in DSM precision in relative terms [the ratio of RMSE to ground sampling
distance was found to be 2 and 5.7 in Agia Aikaterini and Soures respectively] [48].

Table 1. Residual errors for all the ground control points (GCPs) contributing to each of the two
model areas.

Soures GCPs ME [m] MAE [m] RMSE [m] SD [m]

x 7 0.000 0.070 0.091 0.099
y 7 0.000 0.078 0.098 0.106
z 7 0.000 0.093 0.108 0.117

overall in 3D 0.156 0.156 0.172 0.079
Agia Aikaterini GCPs ME [m] MAE [m] RMSE [m] SD [m]

x 9 0.000 0.031 0.049 0.052
y 9 0.000 0.013 0.024 0.025
z 9 0.000 0.002 0.002 0.003

overall in 3D 0.037 0.037 0.055 0.043

3.2. d-GNSS Survey

As mentioned above, we used the GCPs for each of the two reaches (7 and 9, respectively) ideally
spread at different elevations throughout the entire area of interest, which were measured with high
precision RTK-GNSS equipment to maximize accuracy.

Additionally, we used the same equipment for acquiring high accuracy surface points along
two topographic cross-sections, at selected sites, normal to the regular flow of both the streams
under investigation. Measurements were recorded every 30–50 cm in order to provide a comparative
geometry to the cross-sections extracted from the photogrammetric processing.

All measurements [GCPs and cross-section points] proved to be very accurate as the receiver
quality was mainly at FIX status, allowing to capture each point within the range of 1–2 cm at the
horizontal plane and 2–3 cm in elevation [49].

3.3. High-Water Marks

The maximum water level indicating peak discharge was measured at various locations within
the reaches studied. High water marks (HWMs) identified included pine straw and leaves stuck on
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river banks and on the floodplain, seed, debris, and wash lines on the floodplain and on river banks,
and debris snags on vegetation [mostly on the downstream side of tree trunks] as well as lines of dried
mud as described in Koenig et al. [50] (2016). Some of these elements are shown in Figure 4.

Figure 4. High water marks in the study area, including (a,b) mud and debris lines, as well as (c) seed
lines on tree trunks and debris snags on the floodplain. Debris snags were considered unreliable as they
are developed by water run-up. Note that mudline presented in (a) is horizontal despite appearing
inclined due to camera perspective. Black arrows denote the direction of flow (DoF).

Specific care was taken to avoid water marks that were unreliable or not representative of the
maximum water stage. Examples of this category included HWMs on potentially bent shrubs and
potentially movable hanging branches and HWMs formed by run-up or wave action of floodwaters.
HWMs were also identified in the aerial images and were incorporated into the analysis once the
images were georeferenced (Figure 5).
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Figure 5. High water marks in the form of mud lines in one of the study channels, visible from aerial
photos [here not georeferenced] taken by the unmanned aerial system (UAS).

3.4. Channel and Water Surface Geometry

Using UAS imagery and the SfM technique, two detailed DSMs were created at these two locations.
The resolution obtained for the DSMs was 3.0 cm and 2.7 cm for Soures and Agia Aikaterini respectively,
given the selected flights’ altitude.

The DSMs were used to extract and inspect detailed channel geometry and cross-sections that
were in turn used to calculate the cross-sectional area and the wetted perimeter.

Through the field survey, we identified more than one potential cross-sections, considered initially
as suitable for estimating discharge. Using the DSMs (one for each reach), we then selected the two
most suitable cross-sections, considering the absence of artefacts (e.g., vegetation) and large obstacles,
significant changes in channel geometry and cross-section area (Figure 6).

After identifying the most suitable cross-sections, a cross-sectional line (Figure 6) was determined
over the DSM. Cross-sections were created by connecting nodes, extracted using the coordinates
(x, y, z) of the centroids of every cell of the DSM on the cross-sectional line. The process was carried
out for both reaches, in total, aggregating 3633 and 1871 nodes for the Agia Aikaterini and Soures
cross-sections, respectively.

The calculation of wetted perimeter and cross-sectional area was based on the relative positions
and distances of the aforementioned nodes of the selected cross-sections, using a procedure developed
in the course of HYDRATE project [51]. It was assumed that the maximum discharge was reached
in the conditions in which the channel was surveyed, given that in the locations of the selected
cross-sections scouring and erosion of the channel and the riverbanks, as well as vegetation removal
were very limited.

To obtain the geometry of the water surface at maximum depth, HWMs were identified upstream
and downstream of these cross-sections and were placed on the DSM on the appropriate elevation
(Figure 7). The energy slope, defined as the slope of the energy grade line or the ratio of energy (head)
loss against the length of the reach under study, was extracted as the best fit profile line formed based
on these marks in the three-dimensional space (Figure 8).
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Figure 6. Digital surface models created by photogrammetry of the two reaches, namely: (a) Agia
Aikterini and (b) Soures, with the locations of the studied cross-sections and the high-water marks
(HWMs) and GCPs.
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Figure 7. Segments of the two reaches [vertical section] cropped around the selected cross-sections. In
both (a) Agia Aikaterini and (b) Soures the channel and the floodplains are illustrated as SfM-generated
true-colour mosaics, derived from UAS imagery. Black arrows denote the direction of flow. The yellow
dashed lines show the flood boundaries at maximum discharge extracted by wash and debris lines.

Figure 8. High water marks (green dots) and channel bed slope points (yellow dots) placed on the DSM
(left hand) and the ortho-mosaic (right hand) of the two reaches under study, namely Agia Aikaterini
(a,b) and Soures (c,d). The red lines denote the studied cross-sections.
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The energy slope defined by the HWMs was controlled for consistency by abstracting HMWs
points one by one and observing the effect that each abstraction had on the energy slope’s value.
In essence, we removed each one of them from the whole set and examined how this affected the
correlation coefficient (R) of the best fit line and the line’s inclination (Figure 9). If the correlation
coefficient moved closer to one (1) by an abstraction of a point, then this meant that the line fit better
to the rest of the set. This process was used to examine the sensitivity of the slope value to the set of
HWMs and to each one of them. Finally, we kept the HMWs that showed coherence with the slope
formed by all the rest HWMs. On the contrary, the HWMs that were visually incoherent with the line
and the rest of the set were removed during this process. In this procedure, we removed one HMW
out of nine that we initially had from each reach.

Figure 9. Longitudinal profiles of (a) Agia Aikaterini and (b) Soures reaches based on stream bed slope
data and high-water marks projected on both sides (upstream and downstream) of the cross-sections
studied (blue lines). BFL stands for best fit line.

3.5. Roughness Estimation

Roughness was estimated by two approaches in the two cross-sections. In the first approach,
we used the traditional method of calculating a composite n Manning coefficient as described by
Cowan [52], Arcement and Schneider [53] and also found in Phillips and Tadayon [54]. In the second
approach we used optical granulometry on pictures of the channel captured by the UAS.

3.5.1. Traditional Approach

We computed the Manning coefficient (n) first by assigning a coefficient for individual segments of
the channel and used the calculations for each segment to derive a value of n for the entire channel. To
this end, the cross section was divided into segments, namely (i) the channel, (ii) the south floodplain
area, and (iii) the north floodplain area, so that the roughness factor within each segment would be
uniform. It has to be noted that given the minimal changes in the channel after the flood we assumed
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that during peak discharge the Manning coefficient (n) was equal to the one estimated during the
post-flood survey (as described by Aldridge and Garrett, [55]).

First, we determined a base value of n for the bed material of the channel and then selected
separate n-value adjustments to account for channel degree of irregularity, variations of cross sections,
obstructions to flow, vegetation, and degree of meandering, [53,54].

Following this process, the value of n was computed using Equation (1):

n = [n0 + n1 + n2 + n3 + n4] ∗m (1)

where

n0 = base value of n for a straight, uniform channel,
n1, n2, n3, n4 = adjustment for channel degree of irregularity, variations of cross sections, obstructions
to flow, and vegetation, respectively
m = adjustment for meanders

3.5.2. Optical Granulometry-Assisted Approach

For the second approach we used vertical imagery captured by the UAS along the riverbed
segment of each cross-section. The imagery was captured at 1 m above ground level (a.g.l.) altitude
by the 20-megapixel camera of the unmanned aerial vehicle. Each image was introduced in Matlab
software [56], using the BASEGRAIN plugin.

The software is an automatic object-detection tool for granulometric analysis and can be used
for vertical aerial photography [37,57], following Fehr’s [58] line-sampling method to calculate grain
dimensions. BASEGRAIN runs 5-steps algorithms, which detect different objects (grains and intersects),
use edge detection techniques and separate the objects into single grain areas. The final step of the
software is to attribute the properties of every grain and the export data represent granular distribution
curves. An additional advantage of BASEGRAIN is that the whole procedure may transform from
automatic to semi-automatic while the user is able to intervene with pre-processing and post-processing.

It must be noted that the imagery was captured using a scale (Figure 10) to accurately determine
the pixel to actual length ratio, which is necessary for the grain size calculations. This ratio is defined
by the ‘Scale’ tool of the software, provided that a scale is included in the imagery. The ratio can vary
depending on the height from which the photos are taken and the dimensions of the photo. In this
case, we used a standard photo size, and we chose to use the imagery captured by the 1 m a.g.l. flights
to achieve higher analysis. We calculated a ratio of 0.3246 and 0.4187 px/mm for Agia Aikaterini and
Soures, respectively.

The riverbed was examined in segments as defined by the different photos captured. Overall, we
captured 75 and 61 photos for Agia Aikaterini and Soures, respectively, with 5472 × 3648 resolution.
This investigation examined a zone of the cross section of an actual width of 5.33 m and 6.87 m for
Agia Aikaterini and Soures, respectively.

Following grain-size estimation by the software, we calculated a grain size distribution curve
for each cross-section. From the two curves we extracted ‘d50′, the median particle size diameter,
for each dataset. Then, we calculated the base ‘n’ value for the two channels, using the Phillips and
Ingersoll, [59] Equation (2) (shown also in Phillips and Tadayon [54]). Then, we estimated the overall
Manning ‘n’ coefficient using the estimates for the floodplain segments of the cross-sections from the
traditional method.

n =
0.0926×R1/6

1.46 + 2.23× log
[

R
d50

] (2)

where n is the manning coefficient and R is the hydraulic radius.
The summary and basic steps of the approach for estimating the different variables of the Manning

equation is presented in Figure 11.
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Figure 10. Sample images of the channel bed of Agia Aikaterini inserted in BASEGRAIN software: (a)
The yellow line is a 1 m long measuring tape used here as scale to determine the pixel to actual length
(mm) ratio. Y and X axes are in pixels (px) and (b) every grain marked with two lines along their axes,
the length of which matches the grains diameter. Please note that image in (b) is a subset of image(a) at
the location of the black rectangle. The dark-colored grains at the outer part of image in (b) are grains
that are not measured by the software in this example, because parts of them are not in the measuring
field and therefore their dimensions cannot be determined.
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Figure 11. Flow chart of the main steps of the approach.

3.6. Hydrologic Modelling and Consistency Checks

Hydrologic response during the flash flood event under study was simulated using the Kinematic
Local Excess Model (KLEM). KLEM is a distributed hydrologic model that is based on the SCS-CN
(Soil Conservation Service—Curve Number) method for estimating runoff at each grid cell. Runoff is
routed over hillslope and channel grid cells following a simple linear routing scheme that assumes two
invariant velocities for hillslope and channel nodes respectively, KLEM’s spatially distributed nature
allows to effectively incorporate information of spatial rainfall variability, which is extremely important
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especially for flash flood events induced by highly localized intense storms as in this case. Despite its
relatively simple representation of runoff generation and routing, KLEM has been successfully applied
in many other flash flood related studies for peak flow estimation [60–63]. For more details on KLEM
setup and parameterization, the interested reader is referred to Diakakis et al. [39].

4. Results

4.1. Cross-Sections Comparison

Comparison of the cross-sections between the one extracted from the SfM-derived DSM and
the one developed using the d-GNNS campaign data showed extensive similarities (Figure 12). The
cross-sectional area values calculated (Table 2) were very close, with differences ranging between 0.62%
and 1.46%. In a similar fashion wetted perimeter values calculated ranged within 0.72–0.93% (Table 1).
With respect to the energy slope formed by the HWMs at the two reaches differences were found to be
minimum between the UAS-aided approach and the d-GNSS survey as well (Table 1).

Figure 12. Comparison of SfM DEM with RTK-GNSS cross sections for Soures (upper graph, 138
measured points) and Agia Aikaterini (lower graph, 134 measured points) reaches. The average
elevation difference is 4.1 cm and 5.1 cm, respectively, with the largest percentage not exceeding 0.2 m
at both cases (excluding the olive tree at the second reach). The slightly higher SD values at the right
section of Agia Aikaterini floodplain are possibly due to problematic Global Navigation Satellite System
(GNSS) receiver signal reception on the UAS, during the flight.
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Table 2. Cross-sectional area and wetted perimeter measurements in Soures and Agia Aikaterini
reaches, using d-GNSS and SfM data, respectively.

Parameter Soures Agia Aikaterini

Measurement approach d-GNSS SfM d-GNSS SfM

Cross-sectional area (in m2) 63.24 63.63 67.52 66.53

Wetted perimeter (in m) 35.39 35.06 83.5 84.1

Hydraulic radius (Rh) 1.79 1.81 0.81 0.78

Energy slope (S) 0.00942 0.00939 0.0192 0.0191

4.2. Roughness Estimation

Based on the principles described in the Section 3, the Manning ‘n’ coefficient was calculated
as follows (Figure 13). To deal with the uncertainty inherent in the dynamic nature of the Manning
coefficient [17], we provided a range of values (provided also in previous studies [11], using probable
minimum and maximum n coefficient calculations, apart from our main estimation (black line in
Figure 13). In this case, the ranges of values estimated by the two approaches show a high degree
of overlapping.

Figure 13. Calculation of manning ‘n’ coefficient values in the two approaches in Soures and Agia
Aikaterini sites (thick black vertical lines), along with a range of estimates (grey rectangles). TA:
traditional approach, OGA: Optical granulometry approach.

4.3. Peak Discharge Estimation

Based on the above metrics, our main estimation for the peak discharge at the two reaches was
calculated at 170 m3/s (with range 141–203 m3/s) for Soures and 140 m3/s (with range 117–193 m3/s) for
Agia Aikaterini (Table 3) (Figure 14). Again, due to the uncertainty in roughness determination that
propagates to the discharge estimation, we provide a range of discharge values (also seen in previous
studies [42]), using minimum and maximum apart from our main estimation. Below in Table 3, the
results of peak discharge main estimations for each approach are presented for comparison along with
the ranges provided.
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Table 3. Peak discharge estimations and cross section measurement details for Soures and Agia
Aikaterini reaches.

Approach
UAS Method with

Traditional ‘n’ Manning
Approach [A1]

UAS Method with Optical
Granulometry
Approach [A2]

d-GNSS Approach with
Traditional ‘n’ Manning

Approach [A3]
KLEM

Sources
Min 141.2 152.7 139.1 158.4

Main estimation 170 185.1 167.6 198
Max 203.6 208.7 201.1 237.6

Agia Aikaterini
Min 117.1 127.7 130.3 109.6

Main estimation 139.7 157.0 145.2 137
Max 192.9 185.6 200.5 164.4

Figure 14. Simulated discharge at the outlet of Soures (a) and Ag. Aikaterini (b) catchments. Black
line corresponds to simulated discharge based on original XPOL rainfall estimates. The shaded area
corresponds to uncertainty in simulated discharge based on ±20% error in XPOL rainfall estimates.
The horizontal black lines define the min and max discharge estimates from post flood event survey of
the two cross-sections. The time stamp in the horizontal axis of both graphs refers to the 14th and 15th
November 2017.

Regarding KLEM, the model was forced with the radar-rainfall estimates from XPOL and flood
response was simulated at the Soures and Ag. Aikaterini catchments (Figure 14). Uncertainty in
hydrologic simulations due to uncertainty in rainfall forcing is also presented in Figure 14 for a relative
error of ±20%, which is considered a realistic estimate of range of error based on previous works
evaluating XPOL retrieval algorithm [41,64]. As shown in the figure, except for high (+20%) rainfall
simulation for Soures, the rest of simulations fall within (or very close) the range of peak flow estimates
derived by the post-flood survey thus providing extra confidence on the realism of the estimated
range of peak discharge. It has to be noted that the stated confidence interval of relative error could
correspond to a large difference in the return period of discharge.

In general, the range of discharge estimations for Soures was between 56–62 m3/s depending on
the approach, which corresponds to ±15–18% of the peak discharge value. In Agia Aikaterini this
range was higher (58–76 m3/s or ±18–27%) due to a higher uncertainty regarding the ‘n’ coefficient
(Figure 15). This is attributed to the fact that Agia Aikaterini’s cross-section was not as uniform as
Soures’ cross-section was, leading to more uncertainty in the various adjustments of the ‘n’ coefficient
calculation. In contrast, the A2 approach (using optical granulometry) was characterized by narrower
uncertainty margins (range of estimates) because of the more deterministic nature of the Manning
coefficient calculation.
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Figure 15. Comparison of peak discharge values (colored dots) calculated by the different approaches
used for Soures and Agia Aikaterini reaches, along with the range of estimates (black lines), as well as
the estimations of Bellos et al. [65] (grey rectangles) and Varlas et al. [66].

We compared the two UAS-based estimates with the ones given by the rest of the approaches,
namely, d-GNSS and KLEM, as well as their average. We found that differences of the UAS-aided
estimates are within a 10% margin (Figure 16) from the others and certainly within the range of
estimates (Figure 15), indicating a consistency in the results of the UAS-aided approach.

4.4. Other Consistency Tests

Furthermore, we used further tests to examine the consistency of the calculations. Time to peak
estimated from KLEM model was also compared with observations by locals regarding the water
stage. Time of peak discharge was estimated between 5.10 and 5.40 UTC near the entrance of the
city—which is a few hundred meters downstream from the two cross sections. The timing information
was collected through interviews with local residents corroborated using the time signature of visual
material that they possessed and demonstrated to the research team [39]. Calculation results were
also checked for consistency by comparison with published envelope curves [11], as suggested by
Lumbroso and Gaume [17].
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Figure 16. Comparison of the range of peak discharge estimates (PDE) in m3/sec and percent in
comparison to the main estimation (upper row) and difference calculation between A1 approach and
A2 approach with other estimates (lower row). Percentages are presented in absolute numbers. Please
note that different estimates may have a similar range, but the main estimate can still be different. For
differences in the main estimates of each approach please see Figure 14.

5. Discussion

In the present study, we examine the capabilities of UAS use in peak discharge estimation in the
course of post-flood surveys and we explore its strengths and weaknesses. To this end, we applied
the slope conveyance method using a UAS for calculating the different parameters needed. Then, we
compared our UAS-derived estimates with estimates made through a conventional d-GNSS survey.
We applied these techniques in the post-flood setting of Mandra in Greece, in two main tributaries of
the catchment that experienced the catastrophic flooding in 2017.

The findings show that a UAS-aided peak discharge estimation is an effective and practicable
method able to extract with accuracy the geometric properties of the channel and the geometry of
high-water surface. Comparison with the d-GNSS survey findings showed minor differences in
the cross section and wetted perimeter calculations ranging between 0.61–1.46% and 0.71–0.93%
respectively for Soures and Agia Aikaterini reaches, indicating a very satisfactory performance.

With respect to the final discharge estimates we found minimal differences in the estimations.
When we applied the traditional manning coefficient estimation approach, the UAS-aided results
differed only slightly from the d-GNSS survey ones, namely 1.4% in the case of Soures and 3.7% in the
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case of Agia Aikaterini. These differences identified in the final discharge results were propagated by
differences found in channel and water surface geometry and remain well within the range of values
used to account for uncertainy in the estimations.

Comparison of UAS-aided discharge estimates based on optical granulometry with the d-GNSS
approach shows larger differences 7.5% and 9.5% for Agia Aikaterini and Soures, respectively. The
optical granulometry approach estimates are in all cases higher than the estimates of the traditional
approaches, although they are found to be within the range of these estimates (Figure 14). This increase
is an indication that optical granulometry may lead to a slight overestimation of discharge, although
more research should be carried out to investigate whether this is a consistent trend. A probable cause
for this overestimation is that top-view photography does not account for broader scale topographic
variability within the channel that in reality may increase the Manning coefficient. This matter is
discussed in more detail in Section 5.3 of this study.

The UAS-aided approach follows different a sequence of steps compared to the conventional one.
In the d-GNSS approach, the geometry of the channel is described directly by surveying a specific
cross-section that is selected during fieldwork. Then at the lab, the topographic data are projected,
and calculations are made to obtain the values of wetted perimeter and wetted area based on HWMs
identified also in the field. In contrast, the UAS-aided approach collects data from a wider area and
obtains the geometry of a larger part of the channel. The selection of the appropriate cross-section can
be done both during fieldwork and at the lab and even changed at a later time. Even though this change
has certain constraints of its own (discussed in Section 5.2), a different cross section can be selected and
studied without a second visit to the study area, provided that there is no need for additional data
(e.g., new HWMs). This clearly adds to the value of the UAS-aided approach. This visual material as
well as the terrain information can be stored in the model intact from human intervention or natural
changes be used for comparison with future flood event or other riverine processes [36].

5.1. Advantages of the UAS-Aided Approach

In the area of data collection, the UAS-aided approach has three important advantages. Firstly,
the study reach can be remotely revisited (i.e., virtually), as photogrammetry allows storing of the
geometry data for use/reuse at a later time. This is particularly useful in the case of remote areas
and sites where safety is compromised [21]. Secondly, in the case that the selected cross-section(s)
are unsuitable, a second field survey using d-GNSS or other field-based techniques at a later time
may lead to inaccuracies due to changes in channel geometry. These changes between the channel
geometry exactly after the flood and the geometry of a later time are common, both due to human
activities (i.e., cleanup efforts) and post-flood river erosion/sedimentation processes. UAS imagery, by
storing the channel geometry in a wider area through structure-from-motion, minimizes this problem.
Thirdly, the availability of terrain data for a part of the reach allows processing of multiple parts of it,
permitting in this way a more thorough study of flow conditions in multiple cross sections if needed.
In this way the captured terrain information in the form of a DSM offer greater flexibility and provide
the opportunity of easy-to-perform trials, when it comes to geometric data including bed slope and
cross section selection. As such, for example, if we identify extensive erosion or other elements that
render our selection unsuitable for estimating discharge, we can make a different selection or test
another part of the reach.

Furthermore, the resolution of the model permits observations in high detail (bedrock, vegetation,
soil, clasts larger than a few centimeters (3 cm in this case) and every object and obstacle in the
streambed are clearly visible). This way the imagery can contribute to the Manning’s n coefficient
estimation even after the field survey. In addition, other elements such as debris lines or mud lines
(Figure 5) can be identified from the imagery, along with their exact position. The increased resolution
provides also a very accurate description of the cross section with nodes every few centimeters (in this
case 3 cm). This is also a strong advantage of the UAS approach, as it becomes impractical and
time consuming to survey the whole cross section using a d-GNSS rover receiver with such small
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intervals, especially considering steep riverbanks and inaccessible channels. Our application showed
that the UAS provide a unique opportunity to capture this imagery with minimum safety concerns, in
a rapid way and with less personnel, increasing the flexibility of the required operation. This, in turn,
facilitates the survey in a way that it can be carried out immediately after the flood despite practical
limitations (mentioned in detail by Gaume and Borga [20]) reducing the chances of losing valuable
data. Given the temporary nature of HWMs [50] this characteristic of the UAS-aided approach is
considered particularly valuable.

It should be emphasized that the flights carried out to capture the imagery used in this study,
along with the d-GNSS campaign to acquire coordinates of the GCPs took a total of 30 min each. For
comparison, this time was approximately one-third of the d-GNSS survey for the two cross sections,
which were in the scale of 70 to 80 m in length. In addition, as it already mentioned by applying
the UAS-aided approach the data collected expanded to a large part of the channel and they are not
restricted to only two cross sections.

Finally, the simple consumer-grade equipment required to carry out the survey is also one of the
advantages increasing the practicality and the potential for a wider use (also acknowledged by Yang
et al. [22]).

5.2. Weaknesses and Limitations of the UAS-Aided Approach

With regard to disadvantages, we identified mostly practical issues and certain limitations that need
to be stressed. One of the disadvantages of structure-from-motion-derived terrain is that permanent
water flow in the river could cause inaccuracies in producing an accurate channel geometry. Therefore,
the technique is more effective for ephemeral streams, rather than river beds that experience permanent
water submersion [22,23]. In the case of permanent flow, the inclusion of optical-empirical bathymetric
mapping in the SfM data, accomplished with the aid of depth measurements [47] was used to counter
this problem. In addition, the obstruction of vegetation is also one of the limitations of constructing
a channel geometry through photogrammetry (acknowledged also by previous studies [23]. The
technique does not distinguish between the actual terrain and other surfaces, including the vegetation
canopy. This obstacle is expected to be more significant in channels with dense vegetation. The
most common solution to this problem is selecting cross-sections that have no vegetation out of the
constructed DSMs. The method is more suitable or can be applied more easily in arid and semi-arid
areas where vegetation is normally less dense. Another solution would be to remove vegetation related
points during the point cloud post-processing. For that reason, a more dense and detailed photo
shooting process is needed in advance, in order to accurately identify the shape and colour of different
vegetation types. The vegetation related points are then grouped into certain classes which can be
filtered and removed from the DSM (see also [35]). However, in case of individual vegetation stands, a
filtering could be also applied during the cross-section evaluation.

The placement of high-water marks can be carried out using both approaches. In some cases, like
debris lines these marks can be visible from the aerial imagery and therefore can be placed directly
on the digital model of the study site. In the case that a HWM is found above the ground (e.g., on a
tree limb) it can be still placed by measuring its height above the ground in the field and then add an
HWM point by adding the aboveground elevation on the DSM. However, in this area, the d-GNSS
approach has the advantage of including data and information (e.g., HWMs) not visible from top-down
photography (i.e., hidden by the vegetation canopy). These types of HWMs are recommended for use
only after being measured by a d-GNSS device.

In addition, the use of d-GNSS ensures standardization of the HWM placement accuracy in
the sense that it is measurable. On the contrary, manual placement of HWM directly on the DSM,
while it is considered accurate due to the very high analysis, its accuracy is difficult to measure.
Nonetheless, this study found no important differences in the energy slope extracted by the two
approaches. Nevertheless, it must be noted that in some cases, when HWMs are on the ground surface
[see Figure 5] are easier and faster to place on the Digital Surface Model.
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Close-up, careful inspection and examination of of the HWMs is critical to ensure they are reliable
indicators of maximum water stage [50], which in turn is important for a realistic interpretation
of the water surface geometry. Thus, a UAS-only survey without the input of ground observation
is not recommended (stressed also by Kastridis et al. [21]), when it comes to HWMs identification
and placement.

The time of collecting the necessary data can vary depending on the reach length, the amount of
HWM data available and the weather conditions. Adverse weather conditions may be a limitation to
data collection leading to the postponement of a UAS flight or faster battery consumption. The latter
in turn may lead to more flights needed to capture the necessary imagery and therefore more time
required for the survey. In terms of time scale, the flights presented in this study needed approximately
20 min each with an additional 10 min for preparation.

Regarding the precision of the DSM, it must be noted that this is a multi-parameter issue, that is
influenced by the number and placement of GCPs and the altitude of flight among other factors. In
turn, the flight altitude affects the size of the area captured in imagery in a specific time window, which
is important as by increasing the area, the method provides more flexibility in terms of cross-section
selection. Time availability, as well as safety and accessibility are also important constraints that bound
the overall field survey process in a disaster zone. These constraints are pronounced and unbending
immediately after the flood but tend to relax with time. However, the more time passes between
the flood and the survey, the more we run the risk of losing critical data. In this framework, the
aforementioned factors are bound in a tradeoff. The more we apply the method in a way that increases
the DSM’s precision [i.e., by lowering flight altitude and adding more GCPs], the more we lose on
flexibility and the more time is needed to complete the survey, which in turn incorporates the risk of
data-loss. This is a practical issue that has been acknowledged in previous studies as well [48].

5.3. Limitations of the Optical Granulometry Technique

Practical considerations also apply in the optical granulometry part of the method. One of the
limitations of the automatic process of granulometry based on imagery is that we cannot exclude the
chance of errors. Even when good quality imagery is used, poor lighting conditions can potentially
affect the results. Therefore, adequate and homogenous lighting conditions are recommended. In
addition, when poor quality imagery is combined with very small grains, multiple grains can appear
as one. This problem is not common and even if it happens it is not expected to affect the overall result
significantly. To counter this problem, a 5 mpx (or better) camera is recommended. In addition, a
visual quality check of the results allows corrections of the automatic process of identifying grains, by
manual intervention of the user.

Furthermore, in bedrock-only channels and in parts of the channel covered with water, grass,
vegetation or snow the optical granulometry part of the method is not expected to work properly and
should be avoided, as it is based on grain measurements.

As vertical photography cannot account for broader relief changes and topographic variability
within the channel, estimation of manning coefficient is limited to its relationship with grain size. Thus,
the technique produces more realistic results and its more effective on flat riverbeds with minimum
relief changes. In the case of river channels with presence of bedforms and intense topographic
variability, it is possible that the final estimation will underestimate Manning coefficient to a degree
and therefore it is not recommended. In the case of minor topographic variability within the channel,
placing scaling objects in multiple locations across the channel and keeping a constant relative altitude
(i.e., a.g.l) is recommended to retain the same scale in the imagery. It must be noted that other
sources of imagery (e.g., portable digital camera) are compatible for optical granulometry. In this case,
using the camera of the unmanned aerial vehicle was considered more practical in the framework
of a rapid post-flood reconnaissance, offering an efficient way to capture top-down images with a
constant altitude.
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In general, the altitude is inversely proportional to distinctive shooting ability of the camera
and therefore, the altitude is at the judgment of the user, who must calculate the available time,
equipment, and case study extent. Regarding the flight altitude for optical granulometry, there is no
particular recommended altitude for capturing the imagery, provided that the distinctive ability of the
camera is adequate to distinguish the smaller grains. Experiments that carried out in 1 and 3 m a.g.l.
shots showed negligible differences in the d50 estimation results. Namely, for both Soures and Agia
Aikaterini, the “n” roughness coefficient presented differences not larger than 0.2%. However, there
is a need for further research and trials to determine the maximum altitude of imagery-capturing in
relation to the resolution of the camera. In addition, it must be stressed that imagery of poorer quality,
for example due to the camera attributes, may lead to inaccuracies in the estimation of d50 in higher
altitudes of image-capturing that could be propagated in the roughness coefficient. Thus, keeping an
altitude of less than 3 m a.g.l altitude for applying the optical granulometry is recommended, before
further research is carried out.

Overall, the optical granulometry module of the application gives results within the realistic
spectrum but the tends to overestimate discharge by a small percentage. Although more research
is needed, this part of the approach is effective only within certain limitations acknowledged in this
section, the most important of which is a suitable channel that lacks significant topographic variability
and grains are visible.

Overall, the study shows that the UAS can be a reliable and very efficient tool for peak discharge
estimation. The UAS can provide the post-flood field surveys with a collection of aerial imagery/data
in a quick way over an extensive area, even in the case of inaccessibility and despite safety issues. The
high-resolution digital surface models developed through this imagery were found to be particularly
valuable for analyzing channel geometry, as well as obstructions to flow and other characteristics of
the riverbed. In addition, they proved to be particularly useful for measuring cross-sectional areas on
demand, even at a later time, when the channel has changed. The capabilities of UAS are suitable to
the opportunistic nature of flash flood studies in the sense that UASs are able to collect data within the
limited time window that these data are available. Nonetheless, it must be stressed that a combination
of these aerial observations with ground surveys is considered desirable.

6. Conclusions

This paper demonstrates the potential of a UAS-aided method using the structure-from-motion
technique to provide channel and water surface geometry data, along with roughness coefficient
information appropriate for peak discharge estimation in the course of a post-flood survey.

Overall, the short time of its application and the flexibility of the technique in terms of timing and
resources needed, in comparison with conventional approaches, render this approach a very effective
tool for indirect discharge estimation. This study demonstrates that the approach described allows
us to survey multiple river reaches in a short time and with minimum resource requirements. The
method, with the exception of the optical granulometry module, shows minimal differences in terms
of estimates, in comparison with the conventional survey. At the same time, it provides the flexibility
to review the data collected in the field and potentially correct mistakes in the surveyor judgment,
when it comes to selecting a cross section. Overall, the UAS-aided estimation despite its limitations is
more practical than the conventional approach. The ability of data collection at multiple river sections
and the flood plain, offers the potential to advance our understanding on the spatial dynamics of
flood response. Moreover, high resolution imagery can be used to further understand flow dynamics
and sediment connectivity between overland areas and river segments or monitor these dynamics in
subsequent surveys.

While certain practical limitations exist, which must be taken into consideration to ensure accuracy,
this approach is an easy-to-use methodology that has the potential to become a common practice in
indirect discharge estimation campaigns.
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The readily available consumer-grade equipment that is essential for this approach, the enhanced
observation capabilities, and certain practical conveniences [i.e., safety, flexibility] they offer in field
surveys, indicate a strong potential of these technologies in many aspects of flash floods, especially
given the opportunistic nature of their study.
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