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Abstract: To precisely forecast downstream water levels in catchment areas during typhoons, the deep
learning artificial neural networks were employed to establish two water level forecasting models
using sequential neural networks (SNNs) and multiple-input functional neural networks (MIFNNs).
SNNs, which have a typical neural network structure, are network models constructed using
sequential methods. To develop a network model capable of flexibly consolidating data, MIFNNs are
employed for processing data from multiple sources or with multiple dimensions. Specifically, when
images (e.g., radar reflectivity images) are used as input attributes, feature extraction is required to
provide effective feature maps for model training. Therefore, convolutional layers and pooling layers
were adopted to extract features. Long short-term memory (LSTM) layers adopted during model
training enabled memory cell units to automatically determine the memory length, providing more
useful information. The Hsintien River basin in northern Taiwan was selected as the research area
and collected relevant data from 2011 to 2019. The input attributes comprised one-dimensional data
(e.g., water levels at river stations, rain rates at rain gauges, and reservoir release) and two-dimensional
data (i.e., radar reflectivity mosaics). Typhoons Saola, Soudelor, Dujuan, and Megi were selected,
and the water levels 1 to 6 h after the typhoons struck were forecasted. The results indicated that
compared with linear regressions (REG), SNN using dense layers (SNN-Dense), and SNN using
LSTM layers (SNN-LSTM) models, superior forecasting results were achieved for the MIFNN model.
Thus, the MIFNN model, as the optimal model for water level forecasting, was identified.
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1. Introduction

Taiwan is located in the Northwest Pacific, where typhoons frequently strike, and most of its rivers
are short and steep. During typhoons, short-term heavy rains and hyperconcentrated streamflows
cause river surges in downstream areas, which increases the possibility of flood loss in areas along
rivers. The Hsintien River basin (Figure 1) in northern Taiwan is the main source of service water to
the Taipei Metropolitan Area (with a population of approximately four million); hence, water source
management and conservation within the basin are essential. Typhoon-related disasters in the Hsintien
River basin, such as Typhoon Soudelor in 2015, prompted us to develop highly accurate water level
forecasting models to inform flood prevention.
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Figure 1. Map of the Hsintien River Basin. 

In research on flood-stage estimation and prediction, physically-based models often yield 
accurate results, but developing such a forecasting system requires extensive computational time and 
various hydrogeomorphological data [1]. Examples of such models are MIKE Flood [2], MODFLOW 
[3], HEC-RAS [4,5], and CCCMMOC [6,7]. Another common method is data-driven forecasting 
models; Rainfall-runoff and river-stage forecasting models are established using machine learning 
(ML). The advantages of these methods are that they are less subject to the constraints of physical 
mechanisms and that they effectively identify and learn correlated patterns between input data sets 
and the corresponding target values [8,9]. Such ML-based methods can be used to construct various 
algorithm models, such as support vector regression [10], multilayer feedforward perceptron [11], 
self-organizing map [12], k-nearest neighbor [13], and random forest [14], on the basis of rainfall data 
at precipitation stations and water level or water flow data at hydrographic stations. 

In general, artificial neural network (ANN)-based models can process all types of sequential 
data. Time series data, such as streamflow and river stage, are a special type of sequence data ordered 
by timestamps [15,16]. Among ANN-based models, sophisticated ML-based time series models, 
including recurrent neural networks (RNNs), have been developed to solve the problem of time series 
data extending the memory length on the time axis. Accordingly, on the basis of RNN, models 
capable of automatically determining the memory length (e.g., LSTM neural networks) have been 
established. Researchers have employed RNN-based models to solve flood-stage prediction 
problems [17–19]. 

In most studies on flood-stage estimation and prediction, ML-based models are created using 
ground observation data, namely one-dimensional (1-D) data such as rainfall, water flow, and water 
level. According to Gires et al. [20] and Ochoa-Rodriguez et al. [21], rain gauges provide relatively 
accurate point rainfall estimates near the ground surface; nonetheless, they cannot effectively capture 
the spatial variability of rainfall, which significantly affects hydrological systems and thus runoff 
modeling. With the advancement and popularization of remote-sensing equipment, remote-sensing 
data have become cheaper and more accessible. Therefore, radar-sensing data can add value to 
hydrological data. Remote-sensing data (e.g., ground radar reflectivity data, which are commonly 
applied) can be employed to estimate ground rainfall conditions. Radar reflectivity is the signal 
reflected by the electromagnetic wave actively emitted by radar through water vapor particles in the 
atmosphere [22–24]. Radar reflectivity images exhibit various colors that display the intensity of the 
echo signals received by radars, and these images provide information on water vapor in space. 
Researchers over the past few decades have adopted radar reflectivity data for rainfall estimation 
[25–31]. Radar reflectivity data are essential remote-sensing data that facilitate the prediction of 
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In research on flood-stage estimation and prediction, physically-based models often yield accurate
results, but developing such a forecasting system requires extensive computational time and various
hydrogeomorphological data [1]. Examples of such models are MIKE Flood [2], MODFLOW [3],
HEC-RAS [4,5], and CCCMMOC [6,7]. Another common method is data-driven forecasting models;
Rainfall-runoff and river-stage forecasting models are established using machine learning (ML).
The advantages of these methods are that they are less subject to the constraints of physical mechanisms
and that they effectively identify and learn correlated patterns between input data sets and the
corresponding target values [8,9]. Such ML-based methods can be used to construct various algorithm
models, such as support vector regression [10], multilayer feedforward perceptron [11], self-organizing
map [12], k-nearest neighbor [13], and random forest [14], on the basis of rainfall data at precipitation
stations and water level or water flow data at hydrographic stations.

In general, artificial neural network (ANN)-based models can process all types of sequential data.
Time series data, such as streamflow and river stage, are a special type of sequence data ordered by
timestamps [15,16]. Among ANN-based models, sophisticated ML-based time series models, including
recurrent neural networks (RNNs), have been developed to solve the problem of time series data
extending the memory length on the time axis. Accordingly, on the basis of RNN, models capable of
automatically determining the memory length (e.g., LSTM neural networks) have been established.
Researchers have employed RNN-based models to solve flood-stage prediction problems [17–19].

In most studies on flood-stage estimation and prediction, ML-based models are created using
ground observation data, namely one-dimensional (1-D) data such as rainfall, water flow, and water
level. According to Gires et al. [20] and Ochoa-Rodriguez et al. [21], rain gauges provide relatively
accurate point rainfall estimates near the ground surface; nonetheless, they cannot effectively capture
the spatial variability of rainfall, which significantly affects hydrological systems and thus runoff

modeling. With the advancement and popularization of remote-sensing equipment, remote-sensing
data have become cheaper and more accessible. Therefore, radar-sensing data can add value to
hydrological data. Remote-sensing data (e.g., ground radar reflectivity data, which are commonly
applied) can be employed to estimate ground rainfall conditions. Radar reflectivity is the signal
reflected by the electromagnetic wave actively emitted by radar through water vapor particles in
the atmosphere [22–24]. Radar reflectivity images exhibit various colors that display the intensity of
the echo signals received by radars, and these images provide information on water vapor in space.
Researchers over the past few decades have adopted radar reflectivity data for rainfall estimation [25–31].
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Radar reflectivity data are essential remote-sensing data that facilitate the prediction of regional ground
rainfall as well as the rainfall-runoff process. Borga [32] described the promising potential of radar
rainfall observations because their high spatial and temporal resolution and extensive areal coverage
provide detailed information on precipitation events. Accordingly, the application of two-dimensional
(2-D) radar images compensates for the insufficient 1-D spatial rainfall data collected from land-based
observation stations.

ML-based neural network architecture has been utilized for image recognition, object detection,
and computer vision. Networks with such architecture, including convolutional neural networks
(CNNs) [33] and deep belief networks [34], are called deep learning (DL) models because they require
additional hidden layers for the processing of images. These DL-based neural network models
have emerged as powerful methods for learning feature representations automatically from image
data [35,36]. The most commonly employed CNNs are composed mainly of multiple convolutional and
pooling layers, which extract and strengthen image features to further identify objects. CNN algorithms
have also been successfully applied to hydrological problems. For example, Wang et al. [37] and
Kimura et al. [38] have adopted CNNs and input 1-D water level data for water level forecasting.
Van et al. [39] developed a CNN with 1-D data for rainfall-runoff modeling. Kabir et al. [40] developed a
CNN model for the prediction of fluvial flood inundation, and the CNN model was trained with outputs
from a hydraulic model to predict water depths. In the aforementioned findings, 1-D time-series data
retrieved from land-based observation stations were initially collated into image data sets during
preprocessing and were subsequently analyzed using CNN models. In addition, Wang et al. [41]
developed a CNN for flood susceptibility mapping by using various 2-D images (such as altitude,
curvature, distance to rivers, and rainfall).

The above-mentioned studies have used either 2-D images or 1-D attribute data alone to construct
DL-based models. To the best of my knowledge, in the literature on water level prediction for typhoons,
using both 2-D (e.g., radar reflectivity images) and 1-D (e.g., attributes obtained from land-based
observation stations) data simultaneously have seldom been used as input variables for DL-based
neural networks.

The development of a DL-based model using data from multiple sources and in multiple
dimensions is thus valuable. Accordingly, this study used DL-based neural network models for
accurately forecasting the downstream water level in the catchment area during typhoons and selected
the Hsintien River basin as the research area. In general, multiple-input functional neural networks
(MIFNNs) developed in this study offer the following contributions:

(1) The increasing accessibility of ground observation and remote-sensing data enabled us to
flexibly consolidate data from multiple sources in two dimensions (1-D and 2-D) for training DL
models. The ground rainfall, water level, and reservoir release for 1-D data and radar reflectivity
images for 2-D data were adopted.

(2) Feature extractions are required during the construction of MIFNN models when image
files (e.g., radar reflectivity images) serve as input attributes; this provides appropriate feature
maps for model training. Hence, the convolutional and pooling layers for extracting image features
were employed.

(3) Because of time delays in water levels, this study applied LSTM layers, which enabled memory
block units to automatically determine the memory length during the training of ANN-based models
to guarantee the most effective memory length for time series data on the time axis.

2. Region and Material

The Hsintien River is located in northern Taiwan (Figure 1), with a drainage area of approximately
916 km2 and a total length of 84.6 km [42]. The Hsintien River catchment area contains two main
tributaries, Nanshi Creek and Peishi Creek. The source of the Peishi Creek is at an altitude of
approximately 600 m, and the Feitsui Reservoir is located within its basin. The Feitsui Reservoir,
the second-largest reservoir in Taiwan with a total storage capacity of approximately 406 million m3,
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was established in 1981 to ensure the stability of the tap water supply to the Taipei Metropolitan
Area [43]. The source of Nanshi Creek is at an altitude of approximately 1300 m. It passes along the
Lan-Sheng Bridge and the Shang-Gui-Shan Bridge water level stations and then the Chu-Chih and
Hsiu-Lung stations after merging with the Peishi Creek. Table 1 lists the elevation information regarding
these water stations. Located in the densely populated Taipei Metropolitan Area, the Hsiu-Lung station
monitors the river flood stage to prevent overflows and floods. Therefore, the water level measured at
the Hsiu-Lung station as the research objective was selected.

Table 1. Water level stations in Hsintien River.

Water-Level Station River Bed
Elevation (m)

Design Defense Flood
Level (m)

Embankment Top
Elevation (m)

Hsiu-Lung 0.00 13.03 15.04
Chu-Chih 40.50 57.80 54.30

Shang-Gui-Shan Bridge 55.24 66.69 68.88
Lan-Sheng Bridge 107.50 119.95 121.45

2.1. Typhoons and Raw Data

The water level data after 2011 collected at the water level stations located in the Hsintien River
basin are comprehensive; hence, this study retrieved the hydrological data related to historical typhoon
events from 2011 to 2019. As demonstrated in Table 2, 16 typhoons caused major rainfall in the research
area, which substantially increased the downstream water level in the catchment area.

Table 2. Rainfall and water levels associated with typhoons in the study area.

Date Typhoon

Max Water
Level at

Hsiu-Lung
Station (m)

Da-Tong-Shan Station Fu-Shan Station Total Release
from Feitsui

Reservoir
(106m3)

Max Rain
Rate

(mm/h)

Total
Precipitation

(mm)

Max Rain
Rate

(mm/h)

Total
Precipitation

(mm)

26–31 August 2011 Namadol 4.5 14 187 51 269 9.9
29 July–8 August 2012 Saola 11.4 50 666 84 878 135.3

11–16 July 2013 Soulik 8.1 36 210 10 41 57.3
19–23 August 2013 Trami 6.9 59 543 35 471 19.0

31 August–6 September 2013 Kong-Rey 4.8 55 319 11 83 43.2
21–27 July 2014 Matmo 5.9 13 127 29 272 44.4

21–29 September 2014 Fung-Wong 4.2 59 336 70 310 13.3
7–11 August 2015 Soudelor 12.0 69 538 82 731 59.1

25 September–6 October 2015 Dujuan 9.8 48 443 76 725 138.0
13–15 September 2016 Meranti 3.9 12 70 17 130 11.4
16–21 September 2016 Malakas 5.0 18 243 28 279 40.9
26–30 September 2016 Megi 9.2 41 456 68 513 104.5
28 July–1 August 2017 Nesat 3.4 18 110 26 155 11.3

6–12 August 2019 Lekima 4.8 21 210 29 331 21.8
22–26 August 2019 Bailu 3.3 9 38 14 225 19.9

26 September–4 October 2019 Mitag 7.6 33 408 25 467 91.2

This study collected the water level records of typhoons from the Hsiu-Lung, Chu-Chih,
Shang-Gui-Shan Bridge, and Lan-Sheng Bridge stations using 1 h as the time interval, and the
statistical properties of the collected data are displayed in Table 3. However, the rainfall data in the
catchment area of Nanshi Creek were separately collected because it is an unregulated river. The data
from two rain gauges in the catchment area, namely the Da-Tong-Shan gauge (at an elevation of
500 m) and the Fu-Shan gauge (at an elevation of 916 m), were obtained. This study also examined
reservoir-regulated flows discharged from the Feisui Reservoir, which affected Peishi Creek. The rainfall
data and the reservoir release values are listed in Table 3.

The water level stations and rain gauges within the research area are currently within the
jurisdiction of the 10th River Management Office of the Water Resources Agency, and the Feitsui
Reservoir is governed by the Taipei Feitsui Reservoir Administration of Taipei City Government.
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Table 3. Statistical properties of rainfall data and reservoir release values.

Attribute Name Unit Mean Range Standard
Deviation

Water level Hsiu-Lung m 3.07 1.86–12.04 1.25
Chu-Chih m 49.23 47.23–52.57 0.59

Shang-Gui-Shan
Bridge m 57.52 55.32–68.00 1.37

Lan-Sheng Bridge m 110.23 107.83–120.30 1.42

Rain Da-Tong-Shan mm/h 1.90 0–69 6.01
Fu-Shan mm/h 2.28 0–84 7.45

Reservoir
release Feitsui m3/s 89.05 12.15–733.59 106.18

2.2. Radar Imagery

The 2952 radar mosaics with resolutions of 1024 × 1024 pixels were collected. The hourly
radar reflectivity images were obtained from the Central Weather Bureau of Taiwan. As depicted in
Table 2, the following four typhoons had the highest maximum water levels at the Hsiu-Lung station,
in descending order: Typhoon Soudelor in 2015 (maximum water level = 12.0 m), Typhoon Saola in
2012 (11.4 m), Typhoon Dujuan in 2015 (9.8 m), and Typhoon Megi in 2016 (9.2 m). The radar mosaics
for these typhoons are illustrated in Figure 2.
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Figure 2. Radar reflectivity images from typhoons’ approach to Taiwan: (a) Typhoon Saola (2 August
2012, 0300 local standard time (LST)), (b) Typhoon Soudelor (8 August 2015, 0400 LST), (c) Typhoon
Dujuan (28 September 2015, 1800 LST), and (d) Typhoon Megi (27 September 2016, 1400 LST).



Remote Sens. 2020, 12, 4172 6 of 24

2.3. Typhoon Paths

The influence of typhoon paths on the rainfall and water level in the research area were examined.
As depicted in Figure 3a, the path of the eye of Typhoon Saola, one of the aforementioned four typhoons,
moves northward after touching the east coast of Taiwan and then moves along the northeast coast of
Taiwan. In the radar reflectivity image in Figure 2a, the typhoon circulation covered the location of the
research area. Because of the relatively long time for which it hovered over northern Taiwan, total
rainfall values of 666 and 878 m were measured at the two precipitation stations (i.e., the Da-Tong-Shan
and Fu-Shan stations), which were the highest rainfall values of the 16 typhoons. Moreover, the paths of
typhoons Soudelor, Dujuan, and Megi were similar to those presented in Figure 3b–d. They continued
to travel to the west after landing on the east coast of Taiwan. When typhoon circulations are lifted by
mountain terrains, heavy rains are likely to occur in windward areas, resulting in exceptionally high
rainfall in the catchment area.
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3. Model Development

The SNN and MIFNN forecasting models for water level estimation during typhoons were
developed (the frameworks are displayed in Figure 4).

3.1. SNNs

SNNs, a type of network model composed of sequential multilayers, have a typical neural network
structure. As depicted in Figure 4a, the input layer is available for the input of 1-D array data
(i.e., the attribute data of water level, rainfall, and reservoir discharge). Multiple dense layers, or LSTM
layers, can be applied as the hidden layers (or core layers) in the middle [44]. After the dropout layer,
the simulation results are produced from the output layer. The dropout layer is to randomly drop the
weights of a certain proportion of nodes between the hidden layers to prevent overfitting.
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Core layers are generally applied as dense layers. A dense layer is a regular layer of neurons in a
neural network. Each neuron receives input from all neurons in the previous layer, thus ensuring a dense
connection. Dense layers are also called fully connected layers because the neuron nodes are connected
to the neurons in the previous layer. Dense layer implements the operation: output = activation {dot
product of (input, kernel) + bias}, where activation is the element-wise activation function passed as
the activation argument, the kernel is a weight matrix created by the layer, and the bias is a bias vector
created by the layer [45,46]. Dense layers are not appropriate for all types of problems, particularly
time sequence problems.

RNNs are suitable for sequential information. In traditional neural networks such as multiple
layer perceptrons, all inputs and outputs are assumed to be independent. RNNs are termed recurrent
because they perform the same task for every element of a sequence, with the output depending on the
previous computations [47,48]. However, RNNs are difficult to train and are detrimentally affected by
vanishing or exploding gradients; therefore, they cannot solve the long-term dependency problem [49].
LSTM neural networks are a type of RNN-based model. An LSTM network has LSTM cell blocks
instead of standard hidden layers [50]. The components of these cells are known as the input gate; the
forget gate, and the output gate. The structural details of LSTM networks were elaborated by [51,52].
In LSTM networks, a gate mechanism is introduced to prevent backpropagated errors from vanishing
or exploding, and this approach has subsequently been proved to be more effective than the use of
conventional RNNs [53].
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3.2. MIFNNs

As illustrated in Figure 4b, MIFNNs could be used for modeling with 1-D hydrographic data and
2-D radar imagery. Accordingly, radar reflectivity images were employed to enhance the rainfall data
captured in the upstream catchment area because the application of only rainfall data retrieved at rain
gauges in SNN models was insufficient to comprehensively describe the rainfall signals within the
catchment area.

The input data had multiple sources and two dimensions; hence, this study developed a model
capable of merging and integrating data into single inputs. As depicted in Figure 4b, the two input
layers separately served as entrances for the 1-D and 2-D data. First, 2-D images were processed.
The input layer received the original bitmaps and extracted features through image-processing
techniques to provide more effective feature maps for model training. As revealed in Figure 4b, in the
first stage (2-D feature extraction, which is marked by red dotted lines), a network structure comprising
convolutional and pooling layers are generally adopted for feature extraction. For convolutional
layers, input images are implemented through convolution by using various kernels [54]. Convolution
is implemented in two steps: sliding and calculating dot products; that is, using filters that slide
onto input images and continuing to calculate matrices to obtain dot products. The convoluted
images are called feature maps [55]. However, features generated in convolutional layers are often
excessively accurate; hence, the sensitivity of convolutional layer–generated features to edges decreases
after passing through pooling layers, which reduces the number of subsequent calculations required.
Detailed equation derivation can be found in the studies of [56,57].

The second stage (marked by blue dotted lines) in the figure is to infuse 1-D and 2-D data.
First, flattened layers are used to flatten both 1-D and 2-D data; specifically, dimension transmissions are
processed by flattened layers. Subsequently, concatenate layers (also called shared layers) are employed to
convert data into 1-D arrays. Eventually, sequential modeling (marked by green-dotted lines) is conducted
to verify model parameters. The structure in this part is identical to that of the SNN model.

4. Model Constructions

The presented models were implemented with the open-source scikit-learn and Keras libraries in
Python 3.7 (Python Software Foundation, Wilmington, DE, USA) [58,59]. The MIFNN and SNN models
were constructed with a functional application programming interface (API) and a Keras sequential
API, respectively. Because the proposed DL-based models use two-dimensional matrices to calculate
images, the advanced computer processing units of graphics cards are required. The computation
environment comprised GeForce RTX 2080 Ti graphics card in the study.

4.1. Data Splitting

Before model construction, data sets were divided into training, validation, and testing data set.
Four typhoons (i.e., typhoons Saola, Soudelor, Dujuan, and Megi) were selected as the testing data set that
significantly influenced the water level at the Hsiu-Lung station. As presented in Table 2, the maximum
flood stages of the remaining 12 typhoons not in the testing data set were relatively low, which may
compromise the accuracy of the estimated maximum flood-stage values if used for model training.

Several new cross-validation procedures were introduced to overcome the defects of the old
ones [60]. One of the methods, the leave-p-out method (where p denotes the cardinality of the testing
data set), could resolve the problem I encountered during data splitting. The leave-p-out method
involves the use of p observations as the testing data set and the use of the remaining observations as
the training–validation data set. This is repeated in all ways to cut the original sample on a testing data
set of p observations and a training–validation data set. To increase the data in the training–validation
data set, I let p equal 1. That is, one of the four biggest typhoons as the test data and the remaining
15 typhoons were used as the training and validation data sets. The remaining 15 typhoons were then
used to train the models through 10-fold cross-validation. Therefore, four models were built.
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4.2. Selection of Lag Times

In this study, the water levels at the Hsiu-Lung station were influenced by the natural processes
of rainfall-runoff and control flow from upstream reservoirs. Accordingly, for the proposed water level
prediction models, the hourly water levels predicted were assumed to be a function of the respective
related attributes and could be expressed as:

LH,t+i = f
(
PF,t−∆ta , PF,t−∆tb , RD,t−∆tc , LH,t−∆td , LC,t−∆te , LS,t−∆t f , LL,t−∆tg

)
(1)

where LH,t+i represents the forecast water levels at the Hsiu-Lung station for the i-h ahead forecast
(i ranges from 1 to 6 h in this research); PF and PD denote the rain rates at Da-Tong-Shan and Fu-Shan
rain gauges, respectively; RF is the release from Feitsui Reservoir; LH, LC, LS, and LL are the water
levels at Hsiu-Lung, Chu-Chih, Shang-Gui-Shan Bridge, and Lan-Sheng Bridge stations, respectively;
and t and ∆ta–∆tg are the indices of the time period and lag-time length, respectively.

Note that in Taiwan, the most common release strategy for reservoir flood control operations
involves predefined operation rules, in which releases are expressed as a function of reservoir variables
(water levels) and hydrological inputs (reservoir inflows) [61,62]. Moreover, numerous studies
presented in-depth reviews of reservoir operations and modeling on this topic [63–67]. Because this
study focused on developing the downstream water levels prediction models, for simplicity, the records
of reservoir outflow were employed as an attribute when the modeling process.

Acceptable lag times (∆ta–∆tg) for the water level forecasts were first identified. Figure 5 illustrates
the correlation coefficient (R) between water level with lead times (1- to 6-h ahead forecast) at Hsiu-Lung
station and various attributes with lag times. The results indicated that a lag time of 1 h yielded
the highest R values for the four water level stations and the Feitsui Reservoir because of the small
catchment. For the two rain gauges, lag times of 4, 3, 2, 1, 0, and 0 h, respectively, 1 to 6 h ahead yielded
the highest R values. Note that lag time = 0 refers to the current time.Remote Sens. 2020, 12, x FOR PEER REVIEW  11 of 25 
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4.3. Training SNNs

Section 3.1 details the use of dense and LSTM layers as hidden layers of SNN models. For the
modeling in this section, this study adopted two types of hidden layers to establish models and
named them the SNN-Dense and SNN-LSTM models. The calculation parameters of the SNN-Dense
model were set as follows: the loss function of dense layers = mean squared errors; activation
function = sigmoid; the dropout rate of the dropout layer = 0.2. The parameters of the SNN-LSTM
model were set as follows: the loss function of LSTM layers = mean squared error, cell activation
function = rectified linear units; and gate activation function = sigmoid. The settings of the output layer
of the SNN-Dense and SNN-LSTM models were loss function = mean squared error and activation
function = sigmoid.

The optimizer method used in SNN-based models was the adaptive moment estimation (Adam)
optimization algorithm. Adam [68] optimizes the momentum and learning rate. The merit of the
Adam optimizer is its ability to compute individual adaptive learning rates for various parameters
from estimates of the first and second moments of the gradients [69].

Hyperparameters were calibrated for both SNN-based models, comprising the number of hidden
layers and neuron nodes in a hidden layer. In Figure 6, the testing typhoon, Saola, was used as
an example. The number of hidden layers was calibrated from 1 to 4. The optimal lengths of the
hidden layers were mostly 3 and 2 for SNN-Dense and SNN-LSTM models, respectively (Figure 6a,b).
Subsequently, the number of nodes in a hidden layer, adjusting them to values between 10 and 100,
were calibrated. In Figure 6c,d, the optimal numbers of nodes were within the ranges of 20–30 and
30–60 for the SNN-Dense and SNN-LSTM models, respectively.Remote Sens. 2020, 12, x FOR PEER REVIEW  12 of 25 
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4.4. Training MIFNNs

In Section 3.2, 2-D radar reflectivity images were incorporated into the MIFNN model. As described
in Section 2.1, because the Peishi Creek is regulated by the Feitsui Reservoir, I cropped the corresponding
position of the image according to the longitudinal and latitudinal range of the Nanshi Creek catchment.
The longitude of the Nanshi Creek catchment is 121.43◦ E–121.60◦ E, and its latitude is 24.68◦ N–24.89◦ N.
Its corresponding area on radar images could be represented by approximately 28 × 28 pixels. Figure 7
presents the cropped radar reflectivity images of the Nanshi Creek catchment for 16 consecutive hours
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on 8 August 8, 2015, when Typhoon Soudelor made landfall in Taiwan on 8 August 2015, from 0000
LST to 1500 LST. The figure illustrates how the intensity of the radar reflectivity signals dBZ changes
with the interaction between typhoon circulation and the land.
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Figure 7. Typhoon Soudelor: cropped images at 8 August 2015 from 0000 LST to 1500 LST at 1 h
sampling frequency: (a) 0000 LST, (b) 0100 LST, (c) 0200 LST, (d) 0300 LST, (e) 0400 LST, (f) 0500 LST, (g)
0600 LST, (h) 0700 LST, (i) 0800 LST, (j) 0900 LST, (k) 1000 LST, (l) 1100 LST, (m) 1200 LST, (n) 1300 LST,
(o) 1400 LST, (p) 1500 LST.

The parameter settings of the MIFNN model are as follows: In the first stage (2-D feature
extraction), the input layer receives a radar reflectivity of 28 × 28 pixels as input; this study then used a
sequence of three convolutional and pooling layers as feature extractors. For the 1- to 6-h predictions,
this study employed the difference input image on the basis of the closest correlation of lag times.
According to Section 4, lag times of 4, 3, 2, 1, 0, and 0 h, respectively at 1 to 6 h ahead, yielded the
greatest R values. For the convolutional layer setting, the kernel size = 3 × 3, and stride (the number
of grids to move when sliding the window) = 1. For the pooling layer, a max-pooling method was
employed for the subsampling process.

In the second stage (infusing of 1-D and 2-D data), the 2-D feature maps from these feature
extractors with 1-D data were flattened into vectors, concatenated into one long vector, and passed on
to a fully connected layer for the following modeling. In the third stage (sequential modeling), LSTM
layers were applied because during the modeling of SNN-based models; this study discovered that the
errors for LSTM layers were lower than those for dense layers. The LSTM layer environmental setups
are the same as in the previous section.

Hyperparameters were calibrated for MIFNN models, comprising the number of hidden layers
and of neuron nodes in a hidden layer. In Figure 8, the testing typhoon, Saola, was used as an example.
The optimal lengths of the hidden layers were 3, and the optimal number of nodes in a hidden layer
was in the range of 120–160 nodes.
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5. Simulations

A simulation analysis of each of the selected typhoons was implemented. Four testing typhoons
were employed to identify the most suitable water level prediction models in this section. Subsequently,
a conventional regression-based (REG) water level forecasting model was established to serve as a
benchmark model.

5.1. Testing Typhoons and Predictions

Water level changes at the Hsiu-Lung station mainly result from the upstream rainfall and
the water released by the reservoir. Hence, a rainfall and reservoir release time-series image was
developed. Figure 9 (typhoons Saola and Soudelor) and Figure 10 (typhoons Dujuan and Megi) depict
the hyetograph at the Da-Tong-Shan gauge and the Fu-Shan gauge, the reservoir released at the Feitsui
Reservoir, and the water levels at the Hsiu-Lung station during each typhoon.

Figures 9 and 10 show that the peak water level of the Hsiu-Lung station is contributed primarily
by upstream rainfall (because the peak water level at the Hsiu-Lung station occurred after maximum
rainfall) and secondarily by reservoir release (because the maximum water discharge times of the four
tested typhoons all occurred after the water level peaked at the Hsiu-Lung station). This study further
confirmed that, for the four testing typhoons, the difference between the maximum precipitation time
and the peak water level time at the Hsiu-Lung station (i.e., the lag time) was minimal (between 3 and
4 h). Furthermore, this study discovered that, for the four testing typhoons, the maximum precipitation
values estimated at the Da-Tong-Shan gauge and the Fu-Shan gauge differed greatly. The results were
as follows: the maximum rainfall values at the Da-Tong-Shan gauge and the Fu-Shan gauge were
(50, 84 mm/h) for Typhoon Saola, (69, 82 mm/h) for Typhoon Soudelor, (48, 76 mm/h) for Typhoon
Dujuan, and (41, 68 mm/h) for Typhoon Megi. Accordingly, the spatial distribution of rainfall within
the catchment area varied considerably.Remote Sens. 2020, 12, x FOR PEER REVIEW  14 of 25 
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at Hsiu-Lung station.
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Figure 10. Hydrologic observations of typhoons Dujuan and Megi: (a) hyetograph at Da-Tong-Shan
gauge, (b) hyetograph at Fu-Shan gauge, (c) reservoir releases at Feitsui Reservoir, and (d) water levels
at Hsiu-Lung Station.

Figure 11 (typhoons Saola and Soudelor) and Figure 12 (typhoons Dujuan and Megi) depict the
water level time series graphs of observations and the predictions of the proposed models. The thick
gray solid lines (observation) represent the observed water levels of the Hsin-Lung station, and the
remaining four lines are the forecasting results of the REG, SNN-Dense, SNN-LSTM, and MIFNN
models. As seen in Figures 11 and 12, when lead time = 1 h, no major deviations were visible between
the predicted results and the observed values. However, when the forecasting horizons were longer,
the differences between the models’ overall forecast performance, actual peak water levels, and arrival
times increased.

5.2. Evaluation

To evaluate the deviations between the predicted and observed values, the root-mean-squared
error (RMSE) deviation results for lead times of 1–6 h were analyzed. The RMSE is calculated as follows:

RMSE =

√√
1
n

n∑
i = 1

(Pt −Ot)
2 (2)

where n is the total number of observations, Pt is the predicted water levels at time t, and Ot is the
observed water levels at time t.

For forecasting horizons of 1–6 h, the RMSE evaluation values demonstrated that the ordering
of the sizes of the models’ deviations (Figure 13) was as follows, from largest to smallest: the REG
model, the SNN-Dense and SNN-LSTM models, and then the MIFNN model. Figure 14 illustrates
the scatter diagrams of the observed and predicted values for all tested typhoons. The figure reveals
that, when the lead time was larger, the MIFNN model’s predicted values were closer to its observed
values compared with those for the REG, SNN-Dense, and SNN-LSTM models. In terms of correlation,
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the ordering of the values for the models’ coefficients of determination (R2) in the figure was as follows,
from largest to smallest: the MIFNN model, the SNN-LSTM and SNN-Dense models, and then the
REG model.
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5.3. Overall, Performance

To estimate the model deviation for all four testing typhoons, the mean absolute error (MAE),
relative MAE (rMAE), RMSE, and relative RMSE (rRMSE) were adopted as indicators. Moreover,
the efficiency coefficient (CE) indicating the goodness-of-fit measures and R were used. The relevant
equations are as follows:

MAE =
1
n

n∑
i = 1

|Pt −Ot| (3)
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rMAE =
MAE

Ot
(4)

rRMSE =
RMSE

Ot
(5)

CE = 1−

∑n
i = 1 (Pt −Ot)

2∑n
i = 1 (Ot −Ot)

2 (6)

R =

∑n
i = 1

(
Pt − Pt

)(
Ot −Ot

)
√∑n

i = 1

(
Pt − Pt

)2 ∑n
i = 1

(
Ot −Ot

)2
(7)

where Pt is the average of all predicted water levels, and Ot is the average of all observed water levels.
In Figure 15, model performance is compared within a lead time of 1–6 h. Figure 15a–d reveals

that in terms of the MAE, rMAE, RMSE, and rRMSE indicators, the MIFNN model outperformed
the REG, SNN-Dense, and SNN-LSTM models. In the deviation comparison, the SNN-LSTM model
was inferior to the MIFNN model but superior to the REG and SNN-Dense models; the REG model
outperformed the SNN-Dense model only when the lead time was 1–4 h, yet its remaining deviation
indicators were all higher than those of other models. The ordering of the performance in terms of
CE (Figure 15e), according to the scores obtained by the four models, is as follows, in descending
order: the MIFNN model (with a CE range of 0.994–0.936 for 1–6 h lead time), the SNN-LSTM model
(CE = 0.992–0.904), SNN-Dense model (CE = 0.989–0.864), and the REG model (CE = 0.985–0.671).
In addition, according to the R results (Figure 15f), the MIFNN and REG models, respectively, yielded
the best and worst performance.Remote Sens. 2020, 12, x FOR PEER REVIEW  19 of 25 
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Table 4 presents the mean measured values of the deviation indicators within a lead time of 1–6 h.
Table 4 indicates that among the four models, the MIFNN model most effectively reduced forecasting
errors. The improvement rate of the REG model by using its CE results was defined:

IR = (CE−CEREG)/CEREG (8)

After calculation, the SNN-Dense, SNN-LSTM, and MIFNN models exhibited respective
improvements of 7.49%, 10.99%, and 12.87% compared with the REG model.

Table 4. Average performance levels for 1–6 h predictions.

Measure REG SNN-Dense SNN-LSTM MIFNN

MAE (m) 0.286 0.289 0.256 0.208
rMAE 0.077 0.078 0.069 0.056

RMSE (m) 0.653 0.480 0.383 0.317
rRMSE 0.176 0.130 0.103 0.086

CE 0.855 0.919 0.949 0.965
R 0.924 0.966 0.977 0.984

EWp (%) 7.822 10.979 7.686 6.150
TWp (h) 3.333 1.792 1.417 1.167

Moreover, to examine peak water levels and the deviations of their arrival times, the error
percentage of peak water levels (EWp) and time error of peak water levels (TWp) were defined:

EWp =
1
m

m∑
k = 1

∣∣∣∣∣Pk −Ok
Ok

∣∣∣∣∣× 100% (9)

TWp =
1
m

m∑
k = 1

∣∣∣TPk − TOk

∣∣∣ (10)

where Pk is the predicted peak water level for typhoon event k; Ok is the observed peak water level
for typhoon event k; m is the total number of typhoon events; TPk is the arrival time of the predicted
peak water level for typhoon event k; and TOk is the arrival time of the observed peak water level for
typhoon event k.

Figure 16 depicts the results of EWp and TWp. (1) According to the EWp values of the models, the
peak water level deviation rate of the REG model was within the range of 3.87%–13.19%, that of the
SNN-Dense model was within 5.46%–11.21%, that of the SNN-LSTM model was within 4.74%–8.47%,
and that of the MIFNN model was within 3.66–7.97%. (2) According to the models’ TWp values,
the arrival times of peak water levels of the REG model were within 1–6 h for a lead time of 1–6 h,
those of the SNN-Dense were within 0.75–3.5 h, those of the SNN-LSTM model were within 0.5–2.75 h,
and those of the MIFNN model were within 0.25–2.5 h. Table 4 further indicates that, on average,
the MIFNN model more accurately forecasts peak water levels and arrival times than REG, SNN-Dense,
and SNN-LSTM models.

5.4. Discussion

As described, the results obtained from the MIFNN model indicated considerable changes in
the spatial distribution of rainfall in the catchment area examined. However, the limited ground
observation data failed to comprehensively address the spatial changes in rainfall. This study thus
employed radar reflectivity images to effectively describe the spatial changes in water vapor and to
provide additional hydrophilic data for the catchment area. For REG, SNN-Dense, SNN-LSTM, and
MIFNN models, the RMSE values for our water level forecasts were 0.653, 0.480, 0.383, and 0.317 m,
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respectively. The results indicate that the MIFNN had superior forecasting accuracy to the REG,
SNN-Dense, and SNN-LSTM models without the incorporation of radar reflectivity images.Remote Sens. 2020, 12, x FOR PEER REVIEW  20 of 25 
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In addition, the application of LSTM layers as the network structure of the MIFNN model
enhanced the forecasting ability of the algorithm. The LSTM layer is a neural network containing
memory cell blocks. Each memory cell block comprises memory cell units that retain state across
time-steps as well as three types of specialized gate units that learn to protect, utilize, or destroy this
state as appropriate [44,70]. Memory blocks have a gate for determining whether the input data are
valuable enough to be remembered and output. Such blocks can memorize information from various
time lengths to automatically determine the amount of information that is useful [71]. Therefore, in
typhoon water level forecasting through time series data analysis, determining for how long preceding
memories should be retained is crucial. By contrast, because the REG and SNN-Dense models lacked
memory functions, limited data were available for use. The experimental results also verified that
the two aforementioned models yielded less accurate forecasting performance compared with the
SNN-LSTM and MIFNN models, which had memory functions.

Limitations and suggestions are as follows: in the present study, this study used the trial-and-error
method to calibrate the model hyperparameters. According to Maier et al. [72], as the number of
model parameters increases, it is the difficulty in finding the parameter value or combination of
parameter values that results in the smallest model error. Therefore, future studies are likely to focus
on conducting a suitable optimization algorithm, such as the genetic algorithm, to increase the ability
to find global optima, although this is generally at the expense of computational efficiency.

In the modeling process, this study used data that were collected from 2-D images of weather
radars. Radar instruments can easily monitor and provide information on the spatial distribution of
rainfall over larger areas [73]. However, the radar rainfall estimates face many acquisition limitations,
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such as the radar coverage is limited due to terrain complexity and the shading problem [74]. In addition,
there are huge areas where only satellite observations available, so any global solution for precipitation
prediction needs to incorporate satellite data [75]. Hence, the use of data from satellite measurements
or data fusion of radar and satellite measurements is suggested for constructing DL-based models in
the future.

Furthermore, in Taiwan, other existing forecast methods were using physical-based models such
as hydrodynamics-hydrology models (e.g., SOBEK model [76]) and conceptual models (e.g., PWRI tank
model [77]). Wei [78] demonstrated the multilayer perceptron neural networks achieved superior
prediction accuracy compared with the conceptual PWRI rainfall-runoff model for flood forecasting in
the Tsengwen Reservoir watershed in Southern Taiwan. The inputs of multilayer perceptron neural
networks comprised the observed rainfalls, reservoir inflows, and ground weather data. This was
similar to the model case of SNN-Dense in the paper. This study may suggest that applying the
proposed models using deep learning combined with radar reflectivity images in other regions or
compared the physical-based models with proposed models in the Hsintien River catchment in
future research.

6. Conclusions

To precisely predict the downstream water level in catchment areas during typhoons, the water
level–forecasting models were developed by using DL-based ANN models. In addition, due to the
increasing accessibility of ground observation and remote-sensing data, methods are required for
integrating data from multiple sources and in two dimensions (1-D and 2-D data) for DL-model training.

Two types of models: SNN and MIFNN models, were designed. The SNN, a typical neural
network structure, was a network model constructed using sequential methods. The MIFNN model,
however, could process multisource or multidimensional data, meaning that a network model was
required to flexibly consolidate data. Specifically, when image files (e.g., radar reflectivity images) were
employed as input attributes, feature extraction was necessary to provide effective feature maps for
model training. Therefore, this study adopted convolutional and pooling layers to extract features and
applied LSTM layers during model training to enable memory cell units to automatically determine
the length of memory and to provide more useful preliminary information during training.

The Hsintien River in northern Taiwan was selected as the research area, and data concerning the
changes in rainfall and water levels caused by 16 typhoons in the area from 2011 to 2019 were collected.
Furthermore, the following input attributes were applied: 1-D data (i.e., water levels at river station,
rain rate at rain gauges, and reservoir release of Feitsui Reservoir) and 2-D data (i.e., radar reflectivity
mosaics obtained from the central weather bureau). I established models to forecast the water level at
the Hsiu-Lung station and examined the results for Typhoon Saola in 2012, Typhoon Soudelor in 2015,
Typhoon Dujuan in 2015, and Typhoon Megi in 2015.

This study forecasted the results for lead times of 1–6 h and reached the following conclusions.
First, in terms of the predictions of water level for a typhoon, on average, the RMSE values of the
REG, SNN-Dense, SNN-LSTM, and the MIFNN models were, respectively 0.653, 0.480, 0.383, and
0.317 m. This indicated that the MIFNN model had an apparently superior forecasting performance
to the REG, SNN-Dense, and SNN-LSTM models. Compared with the REG model, the SNN-Dense,
SNN-LSTM, and MIFNN models achieved improvements in the efficiency of 7.49%, 10.99%, and
12.87%, respectively. In addition, the peak water levels and their arrival times estimated by the REG,
SNN-Dense, SNN-LSTM, and MIFNN models were 7.832 m and 3.333 h, 10.979 m and 1.792 h, 7.686 m
and 1.417 h, and 6.150 m and 1.167 h, respectively. In brief, this study successfully developed a
MIFNN model able to simultaneously process data from multiple sources and in multiple dimensions,
provided a new technique for establishing water level forecasting models, and further enhanced these
models’ accuracy.
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