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Abstract: As one of the fundamental tasks in remote sensing (RS) image understanding, multi-label
remote sensing image scene classification (MLRSSC) is attracting increasing research interest. Human
beings can easily perform MLRSSC by examining the visual elements contained in the scene and the
spatio-topological relationships of these visual elements. However, most of existing methods are
limited by only perceiving visual elements but disregarding the spatio-topological relationships of
visual elements. With this consideration, this paper proposes a novel deep learning-based MLRSSC
framework by combining convolutional neural network (CNN) and graph neural network (GNN),
which is termed the MLRSSC-CNN-GNN. Specifically, the CNN is employed to learn the perception
ability of visual elements in the scene and generate the high-level appearance features. Based on the
trained CNN, one scene graph for each scene is further constructed, where nodes of the graph are
represented by superpixel regions of the scene. To fully mine the spatio-topological relationships of
the scene graph, the multi-layer-integration graph attention network (GAT) model is proposed to
address MLRSSC, where the GAT is one of the latest developments in GNN. Extensive experiments
on two public MLRSSC datasets show that the proposed MLRSSC-CNN-GNN can obtain superior
performance compared with the state-of-the-art methods.

Keywords: convolutional neural network (CNN); graph neural network (GNN); multi-label remote
sensing image scene classification (MLRSSC); multi-layer-integration graph attention network (GAT);
spatio-topological relationship

1. Introduction

Single-label remote sensing (RS) image scene classification considers the image scene
(i.e., one image block) as the basic interpretation unit and aims to assign one semantic category to the
RS image scene according to its visual and contextual content [1-3]. Due to its extensive applications in
object detection [4-7], image retrieval [8-10], etc., single-label RS image scene classification has attracted
extensive attention. To address single-label RS classification, many excellent algorithms have been
proposed [11-14]. At present, single-label RS scene classification has reached saturation accuracy [15].
However, one single label is often insufficient to fully describe the content of a real-world image.

Compared with single-label RS image scene classification, multi-label remote sensing image scene
classification (MLRSSC) is a more realistic task. MLRSSC aims to predict multiple semantic labels to
describe an RS image scene. Because of its stronger description ability, MLRSSC can be applied in
many fields, such as image annotation [15,16] and image retrieval [17,18]. MLRSSC is also a more
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difficult task because complex relationships often exist among multiple categories [19]. Thus, how to
effectively extract discriminative semantic representations to distinguish multiple categories is still an
open problem that deserves much more exploration.

In the computer vision domain, research on multi-label image classification has developed rapidly
due to the establishment of large-scale natural image datasets [20-22] and the development of deep
learning technology [23-25]. Some studies of multi-label image classification combine tasks in various
fields, such as semantic segmentation [26] and object detection [27]. Recent advances focus more on
exploring co-occurrence dependency among multiple labels [28,29]. However, it is still difficult to
directly apply the methods in computer vision to the RS domain, because there are great differences
between natural images and RS images. For instance, buildings in natural images are often located
at the top of the images and the pavements are often located at the bottom of the images, while the
object layout in RS images is flexible due to the viewpoint variation of the RS imaging sensor.

Benefiting from the nonlinear hierarchical abstract ability of deep learning, the convolutional
neural network (CNN) has been extensively exploited to address MLRSSC and shows impressive
performance [30]. Numerous methods apply the CNN to learn the discriminative features, which has
an important role in improving classification accuracy [31-33]. Some recent methods combine the
CNN and the recurrent neural network (RNN) to further model label dependency [34]. However,
these existing methods only perceive the visual elements and generate a global description of the
image scene but disregard the spatio-topological relationships of these elements. When judging the
categories of an RS image scene, human beings not only recognize what elements are in the scene
but also consider their spatial relationships. Moreover, spatial relationship learning may be more
important for RS image classification because the high-resolution RS images are rich in spatial context
information, which is helpful for distinguishing multiple categories.

As a recent discovery in artificial intelligence, the graph neural network (GNN) is designed
to address graph-structured data and has shown outstanding performance. Generally, the GNN
considers a graph as the input and outputs the category prediction of the whole graph or nodes [35-37].
Many advanced GNN entities, such as the graph convolutional network (GCN) [38], gated graph
neural network (GGNN) [39] and graph attention network (GAT) [40], have been recently developed.
Most of these models fit within the framework of neural message passing [41], where node information
can pass, transform, and aggregate across a graph. Inspiringly, the GNN can effectively fuse the
topological relationship and node information by smoothing features. Some scholars have attempted to
use the GNN to solve visual problems, such as image classification [42,43]. However, they are limited
by only learning label dependency via the GNN. How to effectively leverage the spatio-topological
relationship cue via the GNN still needs to be further investigated.

Motivated by the notion that the visual elements in the image can be perceived by the CNN and the
topological relationships among graph-structured data can be learned by the GNN, we propose a novel
MLRSSC framework by combining the CNN and the GNN, which is termed the MLRSSC-CNN-GNN.
Specifically, we construct a scene graph for each image to build up the connection between image
data and graph-structured data, encoding the visual content and spatial structure of an RS image
scene. The CNN is utilized to learn the perception ability of visual elements and generate the
high-level appearance features from the image as the initial node features of the graph. For the GNN
module, we leverage the adaptive learning ability of the GAT to mine the complex spatio-topological
relationships of the graph. To the best of our knowledge, it is the first time that the GAT has been applied
to MLRSSC. Moreover, we design a multi-layer-integration GAT to further learn the comprehensive
topological representations of the graph. Extensive experimental results on two publicly available
MLRSSC datasets, such as UCM multi-label dataset and AID multi-label dataset show that our
proposed method can obtain superior performance compared with state-of-the-art methods. The main
contributions of this paper can be summarized as follows:
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o  Weproposeanovel MLRSSC-CNN-GNN framework that can simultaneously mine the appearances
of visual elements in the scene and the spatio-topological relationships of visual elements.
The experimental results on two public datasets demonstrate the effectiveness of our framework.

o  We design a multi-layer-integration GAT model to mine the spatio-topological relationship of the
RS image scene. Compared with the standard GAT, the recommended multi-layer-integration
GAT benefits fusing multiple intermediate topological representations and can further improve
the classification performance.

The remainder of this paper is organized as follows: Section 2 reviews the related works. Section 3
introduces the details of our proposed framework. Section 4 describes the setup of the experiments and
reports the experimental results. Section 5 discusses the important factors of our framework. Section 6
presents the conclusions of this paper.

2. Related Work

In the following section, we specifically discuss the related works from two aspects: MLRSSC and
GNN-based applications.

2.1. MLRSSC

In early research on MLRSSC, handcrafted features were often employed to describe image
scenes [44,45]. However, handcrafted features have limited generalization ability and cannot achieve
an optimal balance between discriminability and robustness. Recently, deep learning methods
have achieved impressive results in MLRSSC [32,46]. For instance, the standard CNN method can
complete feature extraction and classification end-to-end with a deep network framework. Moreover,
Zeggada et al. designed a multi-label classification layer to address multi-label classification via
customized threshold operation [33]. To exploit the co-occurrence dependency of multiple labels,
Hua et al. combined the CNN and the RNN to sequentially predict labels [34]. However, due to the
accumulation of misclassification information during the generation of label sequences, the use of the
RNN may cause an error propagation problem [47]. Hua et al. also considered the label dependency
and proposed a relation network for MLRSSC using the attention mechanism [48]. These methods are
limited by only considering visual elements in the image scene but disregarding the spatio-topological
relationships of visual elements. In addition, Kang et al. proposed a graph relation network to model
the relationships between image scenes for MLRSSC [49]. However, it mainly focused on leveraging
the relationship between image scenes, and still did not model the spatial relationship between visual
elements in each image scene.

2.2. GNN-Based Applications

The GNN is a novel model with great potential that can extend the ability of deep learning to
process non-Euclidean data. The GNN is extensively applied to the fields of social network [50],
recommender system [51], knowledge graph [52], etc. In recent years, some GNNSs, such as the GCN,
have been employed to solve image understanding problems. Yang et al. constructed scene graphs
for images and completed image captioning via the GCN [53]. Chaudhuri et al. used the Siamese
GCN to assess the similarity of the scene graph for image retrieval [54]. Chen et al. proposed a
GCN-based multi-label natural image classification model, where the GCN is employed to learn
the label dependency [43]. However, the GCN is limited for exploring complex node relationships
because it only uses a fixed or learnable polynomial of the adjacency matrix to aggregate node features.
Compared with the GCN, the GAT is a more advanced model, which can learn the aggregation weights
of nodes using the attention mechanism. The adaptability of the GAT can make it more effective
to fuse information from graph topological structures and node features [55]. However, due to the
difference between image data and graph-structured data, it is still a problem worth exploring to mine
the spatio-topological relationship of images via GAT.
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3. Method

To facilitate understanding, our proposed MLRSSC-CNN-GNN framework is visually shown in
Figure 1. Generally, we propose a way to map an image into graph-structured data and transform
the MLRSSC task into the graph classification task. Specifically, we consider the superpixel regions
of the image scene as the nodes of the graph to construct the scene graph, where the node features
are represented by the deep feature maps from the CNN. According to the proximity and similarity
between superpixel regions, we define the adjacency of nodes, which can be easily employed by the
GNN to optimize feature learning. With the scene graph as input, the multi-layer-integration GAT
is designed to complete multi-label classification by fusing information from the node features and
spatio-topological relationships of the graph.
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Figure 1. Overview of the proposed MLRSSC-CNN-GNN framework.
3.1. Using CNN to Generate Appearance Features

Generating visual representations of the image scene is crucial in our framework. In particular,
we use the CNN as a feature extractor to obtain deep feature maps from intermediate convolutional
layers as the representations of high-level appearance features. To improve the perception ability of
the CNN and make it effective in the RS image, we retrain the CNN by transfer learning [56].

Considering © as the parameters of convolutional layers and & as the parameters of fully
connected layers, the loss function during the training phase can be represented by Equation (1):

C

L(©,9) =- Z(J/(C) log(fenn (D) + (1= ¥9) log(1 - fenn (D)), 1)

c=1
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where fenn (+) represents the nonlinear mapping process of the whole CNN network, I indicates an RS
image, y(©) indicates the ground truth binary label of class ¢, and C is the number of categories. The
process of feature extraction can be represented by Equation (2):

M = frr(1;0), ()

where frr(-) represents the feature representation process of the trained CNN, and M indicates the
deep feature maps of image I.

Note that the CNN can also be trained from scratch using the RS image dataset. However,
considering that the size of the experimental dataset is small, we choose to fine-tune the weights of the
deep convolutional layers to quickly converge the model.

3.2. Constructing Scene Graph

We construct the scene graph for each image to map the image into graph-structured data.
Graph-structure data are mainly composed of the node feature matrix X € RNXP and the adjacency
matrix A € RN*N where N is the number of nodes and D is the dimension of features. In our framework,
X is constructed based on appearance features from the CNN, and A is constructed according to the
topological structure of the superpixel regions.

We use the simple linear iterative clustering (SLIC) superpixel algorithm [57] to segment the image
and obtain N nonoverlapping regions to represent the nodes of the graph. The SLIC is an unsupervised
image segmentation method that uses k-means to locally cluster image pixels, which can generate a
compact and nearly uniform superpixel. It is notable that the superpixel consists of homogeneous
pixels, so it can be assumed that it is an approximate representation of local visual elements.

We apply the high-level appearance features as the initial node features to construct X. Specifically,
we combine the deep feature maps M and segmentation results by upsampling M to the size of the
original image. To catch the main visual features, we obtain the max value of the feature map slice
according to each superpixel region boundary as the corresponding node feature. The node feature
extraction will be repeated for each slice of M. Therefore, we can obtain multidimensional features
from multiple channels of M as the node features.

We construct A considering the proximity and similarity between superpixel regions. We measure
the spatial proximity of nodes by the adjacency of the superpixel regions and quantify the similarity of
nodes by calculating the distance between superpixel regions in the color space, which satisfies human
perception. In addition, we use the threshold of color distance to filter noisy links. When regions i and
jhave a common boundary, the adjacency value A;; is defined by Equation (3):

0, if|lvj—vil| >t
A= ] , 3
gl { 1, iflloj—vjll <t ®)

where v; and v; represent the mean value of regions i and j in the HSV color space, and threshold ¢ is
empirically set to 0.2 according to the common color aberration of different categories. Note that our A is
the symmetric binary matrix with the self-loop to define whether the nodes are connected. The specific
adjacency weights will be adaptively learned in the GNN module to represent the relationships among
nodes. The detailed process of constructing the scene graph is shown in Algorithm 1.

3.3. Learning GNN to Mine Spatio-Topological Relationship

Benefiting from the mechanism of node message passing, the GNN can integrate the
spatio-topological structure into node feature learning. Thus, we treat the MLRSSC task as the
graph classification task to mine the spatial relationships of the scene graph via the GNN. For
graph classification, the GNN is composed of graph convolution layers, graph pooling layers and
fully connected layers. Specifically, we adopt the GAT model [40] as the backbone of the graph
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convolution layer and design the multi-layer-integration GAT structure to better learn the complex
spatial relationship and topological representations of the graph.

Algorithm 1 Algorithm to construct the scene graph of an RS image

Input: RS image I.

Output: Node feature matrix X and adjacency matrix A.

1: foreach!Ido

2 Extract deep feature maps M from image I;

3: Segment I into N superpixel regions R;

4 foreachr € R do

5 Obtain the max values of M according to the boundary of r in D channels, and update
the vector X, € RP of the matrix X;

6: Calculate the mean value v, of r in the HSV color space;
7 Obtain the adjacent regions list R” of r;

8: end for

9: for each v € R do

10: Ay =1;

11: Calculate color distance |[v; — vy || between r and ¥’ € R’;
12: if |[v, —vpr|| < t do

13: A =1;

14: end if

15: end for

16: end for

3.3.1. Graph Attention Convolution Layer

We construct the graph convolution layer following the GAT model to constantly update the node
features and adjacency weights. With the attention mechanism, the adjacency weights are adaptively
learned according to the node features, which can represent the complex relationships among nodes.
Considering X; € RP as the features of node i, the attention weight e; i between node i and node j is
calculated with a learnable linear transformation, which can be represented by Equation (4):

e;j = H WX WX;], @

where || is the concatenation operation, W € RDP'*D and H € R2P" are the learnable parameters, and D’
indicates the dimension of the output features. The topological structure is injected into the mechanism
by a mask operation. Specifically, only e;; for nodes j € n; are employed in the network, where n; is the
neighborhood of node i, which is generated according to A. Subsequently, e is nonlinearly activated
via the LeakyReLU function and normalized by Equation (5):

exp(LeakyReLU(ei ])>
ij = Y.zen, exp(LeakyReLU(e;,))”

®)

We can fuse information from the graph topological structures and node features by matrix
multiplication between a and X. In addition, we adopt multi-head attention to stabilize the learning
process. Considering X;, € RNXD a5 the input node features, the output node features Xgar € RNXKD’
of a graph attention convolution layer can be computed by Equation (6):

Xoar = I ReLU(a® Xx;, W®), ©

where || represents the concatenation operation, a() is the normalized attention matrix of the k-th
attention mechanism, and W) is the corresponding weight matrix. Equation (6), represents the
concatenation of the output node features from K independent attention mechanisms.
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To synthesize the advantage of each graph attention convolution layer and obtain comprehensive
representation of the graph, we design the multi-layer-integration GAT structure that is shown in
Figure 1. After multiple graph attention convolution layers, the hierarchical features of the same node
are summarized as the new node features X,,cat, which can be computed by Equation (7):

Xoar, ()
1

L
XinGAT =

1=

where Xga7(!) represents the output node features of the I-th graph attention convolution layer, and L
is the total number of graph attention convolution layers.

3.3.2. Graph Pooling Layer

For graph classification, we use a graph pooling layer to convert a graph of any size to a fixed-size
output. Specifically, we adopt differentiable pooling proposed in [58] to construct the graph pool layer.
The idea of differentiable pooling is to transform the original graph into a coarsened graph through the
way of embedded. Considering X;, € RN*D a5 the input node features and N’ as the new number of
nodes, the embedded matrix S € RNN' can be learned by Equation (8):

S = softmax (X Weup + bemp), ®)

where W,,,;, € RPN’ represents the learnable weight and b,,,;, is the bias. The softmax function is
applied in a row-wise function. The node feature matrix output Xgp € RN"*P of a graph pooling layer
can be calculated by Equation (9):

Xep = ST Xy )

Because the graph pooling operation is learnable, the output graph is an optimized result that
represents the reduced-dimension input graph.

3.3.3. Classification Layer

After graph pooling, we flatten the node features matrix and obtain a finite dimensional vector
to represent the global representation of the graph. Taking X;,, as the input node features, the flatten
operation can be represented by Equation (10):

x = flatten(X,), (10)

where x is a feature vector. At the end of the network, we add fully connected layers followed by the
sigmoid activation function as the classifier to complete the graph classification. The classification
probability output j of the last fully connected layer can be computed by Equation (11):

7= a(foC + bfc), (11)

where ¢ (-) is the sigmoid function, Wy, represents the learnable weight and by, is the bias. Furthermore,
we apply the binary cross-entropy as the loss function, which can be defined by Equation (12):

C
LA) ==Y (¥ 10g(9)) + (1- y)log(1 - 5)), (12)

c=1

where A represents the parameters of the whole GNN network and y(©) indicates the ground truth
binary label of class c. Via back-propagation, A can be optimized based on the gradient of the loss.
Thus, we can use GNN to complete the multi-label classification in an end-to-end manner. The training
process of the whole MLRSSC-CNN-GNN framework is shown in Algorithm 2.
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4. Experiments

In this section, the data description is presented at first. Afterwards, the evaluation metrics and
details of the experimental setting are shown. The experimental results and analysis are given at
the end.

Algorithm 2 Training process of the proposed MLRSSC-CNN-GNN framework

Input: RS images I and ground truth multi-labels y in training set.
Output: Model parameters © and A.
Step 1: Learning CNN
1: TakeIand y as input, and train CNN to optimize ® according to Equation (1);
2: Extract deep feature maps M of I according to Equation (2);
Step 2: Constructing scene graph
3:  Construct node feature matrix X and adjacency matrix A of I according to Algorithm 1;
Step 3: Learning GNN
4. foriter=1, 2,...do
5: Initialize parameters A of the network in the first iteration;
Update X using L graph attention convolution layers according to Equation (4)—(6);
Fuse Xgar from L graph attention convolution layers according to Equation (7);
Cover X,,caT to a fixed-size output via the graph pooling layer according to Equation (8-9);
: Flatten X¢p and generate the classification probability after the classification layer according to
Equation (10-11);

o X N

10: Calculate the loss based on the output # of the network and y according to Equation (12);
11: Update A by back-propagation;
10: end for

4.1. Dataset Description

We perform experiments on the UCM multi-label dataset and AID multi-label dataset, which are
described here. The UCM multi-label dataset contains 2100 RS images with 0.3 m/pixel spatial
resolution, and the image size is 256 X 256 pixels. For MLRSSC, the dataset is divided into the following
17 categories based on the DLRSD dataset [59]: airplane, bare soil, buildings, cars, chaparral, court,
dock, field, grass, mobile home, pavement, sand, sea, ship, tanks, trees, and water. Some example
images and their labels are shown in Figure 2.
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pavement

buildings, cars,
pavement
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field, trees pavement, trees

sand, sea
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grass, pavement
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Figure 2. Samples in the UCM multi-label dataset.
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The AID multi-label dataset [48] contains 3000 RS images from the AID dataset [60]. For MLRSSC,
the dataset is assigned 17 categories, which are the same as those in the UCM multi-label dataset.
The spatial resolutions of the images vary from 0.5 m/pixel to 0.8 m/pixel, and the size of each image is
600 x 600 pixels. Some example images and their labels are shown in Figure 3.

R

V

airplane, bare soil, bare soil, bare soil, cars, bare soil, buildings,

e Kords ildings, cars,
buildings, cars, buildings, grass, sand, sea grass, pavement, |cars, chaparral, grass, bu :jvet:rf;aﬁ‘t 4
grass, pavement pavement, trees trees, water pavement, trees PS

buildings, cars, buildings, cars, buildings, dock,

ar: il ildings, v
ba e§o , buildings ; buildings, grass,
cars, grass, bare soil, trees grass, pavement, court, grass, pavement, sea,
. pavement, trees N &
pavement, trees trees pavement, trees shlp, trees

buildings, cars, buildings, cars, court,

! bare soil, buildings, bare soil, buildings, | bare 501!, buildings, b1}'c 501[1 buildings,
grass, pavement, grass, pavement, N S - cars, court, grass, cars, grass, cars, grass, pavement,
sand, sea, trees trees, water BrasS, . pavement, trees pavement, tanks trees, water

Figure 3. Samples in the AID multi-label dataset.

4.2. Evaluation Metrics

We calculate Precision, Recall, F1-Score and F2-Score to evaluate the multi-label classification
performance [61]. The evaluation indicators are computed based on the number of true positives (TP),
false positives (FP), true negatives (TN) and false negatives (FN) in an example (i.e., an image with
multiple labels). The evaluation indicators can be calculated using Equations (13) and (14):

TP

Recall = ——
AT TP AN’

P
Precision = ——— 1
recision = = T (13)

Precision-Recall
F = (14 p2 B=12 -
Bscore ( g ) B2-Precision + Recall P -

Note that all the evaluation indicators are example-based indices that are formed by averaging the
scores of each individual sample [62]. Generally, F1-Score and F2-Score are relatively more important
for performance evaluation.

4.3. Experimental Settings

In our experiments, we adopt VGG16 [63] as the CNN backbone. The network is initialized with
the weights trained on ImageNet [64], and we fine-tune it with the experimental datasets. In addition,
we use fusion features by combining feature maps from the “block4_conv3” and “block5_conv3” layers
in VGG16 as the node features of the scene graph. Thus, the total dimension of the initial node features
is 1024.

Our recommended GNN architecture contains two graph attention convolution layers with the
output dimensions of 512 and multi-head attention with K = 3. The multi-layer-integration GAT
structure is applied to construct the graph attention convolution layers. Subsequently, we set up one
graph pooling layer that fixes the size of the graph to 32 nodes and two fully connected layers with
the output dimensions of 256 and 17 (number of categories). Moreover, the dropout layer is set in the
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middle of each layer, and batch normalization is employed for all layers but the last layer. The network
is trained with the Adagrad optimizer [65], and the learning rate is initially set to 0.01, which decays
during the training process.

To pursue a fair comparison, based on the partition way in [48], the UCM and AID multi-label
datasets are split into 72% for training, 8% for validation and 20% for testing. Note that instead of
randomly division, this partition way is pre-set, where the training and testing samples have obvious
style differences. Therefore, it will be more challenging for the classification methods. In the training
phase, we only use the training images and their ground truth labels to train the CNN and the GNN.
Specifically, we learn the CNN to extract deep feature maps of the images and then construct a scene
graph for each image, which is the input of the GNN. In the testing phase, the testing images are fed
into the trained CNN and GNN models to predict multi-labels.

4.4. Comparison with the State-of-the-Art Methods

We compare our proposed methods with several recent methods, including the standard CNN [63],
CNN-RBENN [33], CA-CNN-BiLSTM [34] and AL-RN-CNN [48]. For a fair comparison, all compared
methods adopt the same VGG16 structure as the CNN backbone. We implement the standard CNIN
method as the baseline of MLRSSC and report the mean and standard deviation [66] of the evaluation
results. Because the other methods also adopt the same dataset partition, we take the reported evaluation
results from their corresponding publications as the comparison reference in this paper. It is noted
that the existing methods don’t report the standard deviation of evaluation results. As these methods
don’t release their source codes, it is hard to recover the standard deviation of the existing methods.
Fortunately, we find the variance of repeated experiments is very slight, which helps to fully show the
superiority of our proposed method. For the proposed methods, we report the results based on the
MLRSSC-CNN-GNN via the standard GAT and the MLRSSC-CNN-GNN via the multi-layer-integration
GAT, respectively.

4.4.1. Results on the UCM Multi-Label Dataset

The quantitative results on the UCM multi-label dataset are shown in Table 1. We can observe that
our proposed MLRSSC-CNN-GNN via the multi-layer-integration GAT achieves the highest scores
for Recall, F1-Score and F2-Score. In general, the proposed method achieves the best performance.
The lower bound of our method can also be better than the performances of the existing methods.
We can also observe that our methods with the GNN show significant improvement compared with
the method that only uses the CNN. Compared with the standard CNN, the proposed method gains
an improvement of 7.4% for F1-Score and an improvement of 7.09% for F2-Score, which demonstrates
that learning the spatial relationship of visual elements via the GNN has an important role in advancing
the classification performances. Moreover, the MLRSSC-CNN-GNN via the multi-layer-integration
GAT performs better than the MLRSSC-CNN-GNN via the standard GAT, which shows the effectiveness
of the proposed multi-layer-integration GAT.

Table 1. Performances of different methods on the UCM multi-label dataset (%).

Methods Precision Recall F1-Score F2-Score
CNN [63] 80.09 + 0.25 81.78 + 0.41 78.99 + 0.10 80.18 + 0.09
CNN-RBENN [33] 78.18 83.91 78.80 81.14
CA-CNN-BIiLSTM [34] 79.33 83.99 79.78 81.69
AL-RN-CNN [48] 87.62 86.41 85.70 85.81
Our MLRSSC-CNN-GNNvia ¢ /1 | 99 88.17 + 0.09 86.09 + 0.07 87.03 + 0.02
standard GAT

Our MLRSSC-CNN-GNN via

multi-layer-integration GAT 87.11 £ 0.09 88.41 +0.10 86.39 + 0.04 87.27 +0.07
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Some samples of the predicted results on the UCM multi-label dataset are exhibited in Figure 4.
It can be seen that the proposed method can successfully capture the main categories of the scene.
However, our method is still insufficient in the details, such as the prediction of cars, grass, and bare
soil, which may be inconsistent with the ground truths.

Sample
Images
Ground : o S z ; d bare soil, buildings,
airplane, buildings, | buildings, cars, grass, | bare soil, cars, mobile bare soil, cars, ‘ 85/
Truth cars, court, grass,
pavement pavement, trees home, pavement, trees [ pavement, tanks, trees
Labels pavement, trees
; ; o5 5 bare soil, buildings . bare soil, buildings,
Predicted airplane, buildings, | buildings, cars, grass, i “r;“ mobiii'e’ bare soil, cars, o vr1s§ £
Labels cars, pavement pavement, trees S pavement, tanks, trees ! r B
home, pavement, trees pavement, trees

Figure 4. Sample images and predicted labels in the UCM multi-label dataset. Red predictions indicate
the false positives (FP), and blue predictions indicate the false negatives (FN).

4.4.2. Results on the AID Multi-Label Dataset

Table 2 shows the experimental results on the AID multi-label dataset. We can also observe that
our proposed MLRSSC-CNN-GNN via the multi-layer-integration GAT achieves the best performance
with the highest scores of Recall, F1-Score and F2-Score. Compared to the standard CNN, the proposed
method increases F1-Score and F2-Score by 3.33% and 3.82%, respectively. Compared to AL-RN-CNN,
the proposed method gains an improvement of 0.55% for F1-Score and an improvement of 0.87%
for F2-Score. Compared to the MLRSSC-CNN-GNN via the GAT, the proposed method gains an
improvement of 0.32% for F1-Score and an improvement of 0.52% for F2-Score.

Table 2. Performances of different methods on the AID multi-label dataset (%).

Methods Precision Recall F1-Score F2-Score
CNN [63] 87.62 +0.14 86.13 + 0.15 85.31 = 0.09 85.36 + 0.07
CNN-RBFNN [33] 84.56 87.85 84.58 85.99
CA-CNN-BiLSTM [34] 88.68 87.83 86.68 86.88
AL-RN-CNN [48] 89.96 89.27 88.09 88.31
Our MLRSSC-CNN-GNNvia g5 70 | 5y 89.52 + 0.10 88.32 + 0.05 88.66 + 0.05
standard GAT

Our MLRSSC-CNN-GNN via

multi-layer-integration GAT 89.83 + 0.27 90.20 + 0.22 88.64 + 0.06 89.18 £ 0.13

Some samples of the predicted results on the AID multi-label dataset are exhibited in Figure 5.
Consistent with the results on the UCM multi-label dataset, our method can successfully capture the
main categories of the scene. The superior performances on both UCM and AID multi-label datasets
can show the robustness and effectiveness of our method.
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Sample l
Images | ¢ %

Ground airplane, bare soil, bare soil, buildings, | buildings, cars, dock, | bare soil, buildings, bare soil, buildings,
Truth buildings, cars, grass, cars, court, grass, grass, pavement, ship, [ cars, grass, pavement, | cars, grass, pavement,
Labels pavement, trees pavement, trees trees, water trees, water sand, trees, water

Pradiciad airplane, bare soil, bare soil, buildings, | Paresoil, buildings, | pare soil, buildings, | bare soil, buildings,

Yabel buildings, cars, grass, cars, court, grass, cars, dock, grass, cars, grass, pavement, | cars, grass, pavement,

abels i
¢ pavement, trees pavement, trees pavement, ship, trees, trees, water sand, trees, water
water

Figure 5. Sample images and predicted labels in the AID multi-label dataset. Red predictions indicate
the false positives (FP), and blue predictions indicate the false negatives (FN).

5. Discussion

In this section, we analyze the influence of some important factors in the proposed framework,

including the number of superpixel regions in the scene graph, the value K of multi-head attention in
the GNN, and the depth of the GNN.

5.1. Effect on the Number of Superpixel Regions

When constructing the scene graph, the number of superpixel regions N is a vital parameter,
which determines the scale and granularity of the initial graph. Therefore, it is necessary to set an
appropriate N. Considering the tradeoff between efficiency and performance, we set the step size of
the N to 20, and study the effects of N by setting it from 30 to 110. The results on the UCM and AID

multi-label datasets are shown in Figure 6. It can be seen that when the N is set between 50 to 90,
our model can achieve better performance.

89

91

8
8
\
\

\

[

Performance (%)
(o2}
~
8

Performance (%)

@
(=2

—e—Precision 881 —e—Precision |1
*—Recall ~—&—Recall
—e—F1-Score —e—F1-Score |
—e—F2-Score —e—F2-Score
85 87 5 -
30 50 70 90 110 30 50 70 90 110

N N
(a) (b)

Figure 6. Performance comparisons with a different number of superpixel regions: (a) Performances
on the UCM multi-label dataset; (b) Performances on the AID multi-label dataset.

5.2. Sensitivity Analysis of the Multi-Head Attention

In the graph attention convolution layer of the GNN, we adopt multi-head attention to stabilize
the learning process. However, a larger value of K in multi-head attention will increase the parameters
and calculation of the model. Thus, we study the effects of K by setting it to a value from 1 to 5.
The experimental results on the UCM and AID multi-label datasets are shown in Figure 7. Obviously,
the use of multi-head attention can improve the classification performance because it can learn more
abundant feature representations. It can be seen that when the value of K reaches 3, the performance of

the model begins to saturate. However, when the value of K continues to increase, the model may face
an overfitting problem.
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Figure 7. Performance comparisons with different values of K: (a) Performances on the UCM multi-label
dataset; (b) Performances on the AID multi-label dataset.

5.3. Discussion on the Depth of GNN

The graph attention convolution layer in the GNN is the key part to learning the classification
features of the graph. To explore the performance of the GNN in our framework, we build the GNN
with a different number of graph attention convolution layers. Figure 8 shows the performance of
our MLRSSC-CNN-GNN with one, two, and three graph attention convolution layers. The output
dimensions of these layers are 512, and the remaining structures in GNN are the same. It can be
seen that the MLRSSC-CNN-GNN with two graph attention convolution layers achieves the best
performance with the highest F1-Score and F2-Score. However, when the number of graph attention
convolution layers reaches three, both the F1-Score and F2-Score begin to drop. The possible reason for
the performance drop of the deep GNN may be that the node features are oversmoothed when a larger
number of graph attention convolution layers are utilized.

89 T T 91
I 1-layer B 1-layer
I 2-layer I 2-|ayer |
- [3-layer - [3-ayer
881 1

Performance (%)
©
(=]

Performance (%)
o]
©

«©
@©

11

Precision Recall F1-Score F1-Score
(a) (b)

Figure 8. Performance comparisons with different depths of the GNN: (a) Performances on the UCM
multi-label dataset; (b) Performances on the AID multi-label dataset.

87

F2-Score Precision Recall F2-Score

6. Conclusions

MLRSSC remains a challenging task because it is difficult to learn the discriminative semantic
representations to distinguish multiple categories. Although many deep learning-based methods have
been proposed to address MLRSSC and achieved a certain degree of success, the existing methods are
limited by only perceiving visual elements in the scene but disregarding the spatial relationships of
visual elements. With this consideration, this paper proposes a novel MLRSSC-CNN-GNN framework
to address MLRSSC. Different from the existing methods, the proposed method can comprehensively
utilize the visual and spatial information in the scene by combining the CNN and the GNN. Specifically,
we encode the visual content and spatial structure of the RS image scene by constructing scene graph.
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The CNN and the GNN is used to mine the appearance features and spatio-topological relationships,
respectively. In addition, we design the multi-layer-integration GAT model to further mine the
topological representations of scene graph for classification. The proposed framework is verified on
two public MLRSSC datasets. As the experimental results shown, the proposed method can improve
both the F1-Score and F2-Score by more than 3%, which demonstrates the importance of learning
spatio-topological relationships via the GNN. Moreover, the proposed method can obtain superior
performances compared with the state-of-the-art methods. As a general framework, the proposed
MLRSSC-CNN-GNN framework is highly flexible, it can be easily and dynamically enhanced by
replacing the corresponding modules with advanced algorithms. In future work, we will consider
the adoption of more advanced CNN and GNN models to explore the potential of our framework.
However, our proposed method has not explicitly modeled label dependency, which is also important
in MLRSSC. In the future, we will focus on integrating this consideration into our method to further
improve the performance.
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