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Abstract: Our study highlights the usefulness of very high resolution (VHR) images to detect various
types of disturbances over permafrost areas using three example regions in different permafrost
zones. The study focuses on detecting subtle changes in land cover classes, thermokarst water bodies,
river dynamics, retrogressive thaw slumps (RTS) and infrastructure in the Yamal Peninsula, Urengoy
and Pechora regions. Very high-resolution optical imagery (sub-meter) derived from WorldView,
QuickBird and GeoEye in conjunction with declassified Corona images were involved in the analyses.
The comparison of very high-resolution images acquired in 2003/2004 and 2016/2017 indicates a
pronounced increase in the extent of tundra and a slight increase of land covered by water. The number
of water bodies increased in all three regions, especially in discontinuous permafrost, where 14.86%
of new lakes and ponds were initiated between 2003 and 2017. The analysis of the evolution of two
river channels in Yamal and Urengoy indicates the dominance of erosion during the last two decades.
An increase of both rivers’ lengths and a significant widening of the river channels were also observed.
The number and total surface of RTS in the Yamal Peninsula strongly increased between 2004 and 2016.
A mean annual headwall retreat rate of 1.86 m/year was calculated. Extensive networks of infrastructure
occurred in the Yamal Peninsula in the last two decades, stimulating the initiation of new thermokarst
features. The significant warming and seasonal variations of the hydrologic cycle, in particular, increased
snow water equivalent acted in favor of deepening of the active layer; thus, an increasing number of
thermokarst lake formations.

Keywords: permafrost; remote sensing; land cover; ponds; retrogressive thaw slumps; infrastructure;
Arctic Russia

1. Introduction

Over the past three decades, arctic regions have experienced various changes in land cover [1] and
landscape structure [2] due to the rapid increase of air temperature [3] and human development [4].
In high-latitude regions, the recent atmospheric warming trend was considerably stronger than
elsewhere, with an average increase of surface air temperature of about 0.6 ◦C/decade over the last
30 years [3]. Arctic regions are extensively underlain by permafrost and thus very sensitive to rising
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air temperatures [5] since higher air temperatures mainly drive the observed enhanced degradation
of permafrost [6]. Permafrost warming significantly impacts local hydrology [7], vegetation [8],
topography [9], soil processes [10], infrastructure and local communities [11] and may cause climate
impacts on a global scale [12]. Therefore, permafrost has been recently added as an essential climate
variable by the Global Climate Observing System.

Despite northern environments being subjected to recent dramatic changes, there is still an insufficient
understanding of the complex climate-permafrost-ecosystem interactions [13]. Large regions in the high
latitudes of the Northern Hemisphere remain relatively understudied due to harsh environments
and remoteness, leading to incomplete knowledge of the disturbances and significance of change to
environmental processes. In this context, remote sensing techniques have proved to be valuable tools
to analyze changing landscapes in arctic regions [1]. In the last decades, low to high-resolution satellite
images, such as those from advanced very high-resolution radiometer (AVHRR) (1 km spatial resolution),
moderate resolution imaging spectroradiometer (MODIS) (250 m), Landsat (30 m), advanced space-borne
thermal emission and reflection radiometer (ASTER) (15 m), Sentinel (20 m), Satellite Pour l’Observation
de la Terre (SPOT) (10 m), coupled with improved algorithms for image processing provide critical and
detailed information on land cover changes [14], vegetation greening [15,16], the surface area of water
bodies [17], retrogressive thaw slumps activity [18], fire occurrence [19], et cetera. However, in many
cases, the coarse resolution of freely available remote sensing products was inappropriate to detect subtle
changes in the arctic ecosystems [20]. Recent contributions revealed, for example, an underestimation
in the surface area of water bodies due to inadequate spatial resolution of medium to high-resolution
of satellite imagery analysis (e.g., moderate resolution imaging spectroradiometer—250 m resolution;
Landsat—30 m resolution) [21]. It has been shown that the resolution of Landsat images is too coarse to
detect ponds in tundra environments and might underestimate the water surface by a factor of 1.5 [22].
Concurrently, the omission of Siberian tundra ponds would mean an underestimation of carbon dioxide
emissions of 35–62% [23].

However, only a small number of studies have used very high-resolution (VHR) imagery
(<5 m resolution) for a more accurate mapping of Arctic coastlines [24], small water bodies [25],
vegetation distribution [26], land cover classes [4] or ice-wedge degradation [27].

Since the Arctic landscapes’ responses to atmospheric warming are very heterogeneous at
local scales [28], different categories of disturbances cannot be detected by coarse resolution remote
sensing imagery [29]. In recent years Ikonos, Quickbird, GeoEye, WorldView, Pleiades, TerraSAR-X,
Cosmo-Skymed, Planet, et cetera, and many other VHR satellites have been launched, and provide
more detailed disturbance detection and analysis about Arctic features. Despite recent progress in this
field, there are still enormous gaps concerning the inventories of permafrost related disturbances at
very high resolution due to the high cost and limited availability of such images.

The amplified Arctic warming over the past decade was significantly stronger over Siberia
compared with North America [30]. Consequently, permafrost has warmed throughout Siberia,
reaching its maximum in the northwestern Siberia (at Marre Sale permafrost station in the Yamal
Peninsula) where permafrost temperature increased by almost 1 ◦C between 2008 and 2016 [5,6].
According to recent estimates, 25–90% of near surface-permafrost will degrade into seasonally frozen
ground by the end of this century [31,32], thereby releasing large amounts of greenhouse gases into the
atmosphere and triggering further warming of the atmosphere [12]. However, Arctic environment
responses to atmospheric warming are very heterogeneous due to disproportional warming of the
mosaicked landscapes and nonlinear manifestation of different climate-induced processes [33]. As the
Arctic warms, complex interactions of permafrost thawing with hydrology, topography, climate and
land cover at various spatial and temporal scales occur [34].

In this research, we combine the use of very high-resolution optical imagery (sub-meter) derived
from WorldView, QuickBird and GeoEye in conjunction with declassified Corona images to quantify
various types of changes in land cover, thermokarst water bodies, river dynamics, retrogressive thaw
slumps (RTS) and infrastructure in three sites distributed in West Siberia and northeastern European



Remote Sens. 2020, 12, 3999 3 of 27

Russia (Figure 1). To establish a link between the small-scale processes and their regional climate
drivers, VHR images have been compared with medium resolution European Space Agency (ESA)
Permafrost climate change initiative (CCI) active layer thickness map [35]) and the climate parameters
from ERA-Interim reanalysis [36]. Moreover, the results and maps from VHR images could be used as
a useful resource in other applications related to ecological modeling or habitat management [25].

2. Materials and Methods

2.1. Study Area

This analysis focuses on three study sites; two are located in West Siberia (Yamal Peninsula—and
Urengoy region) (YAM and URG) and one in north European Russia (Pechora delta) (PEC) (Figure 1).
The sites are located in continuous, discontinuous and sporadic permafrost regions and cover around
100 km2 each and were chosen as a function of VHR image availability in different years with the largest
time span (i.e., 12–14 years). Furthermore, these areas were selected due to the presence of several
Circumpolar Active Layer Monitoring (CALM) sites located near these study areas (i.e., Vaskiny Dachi,
Urengoy Gas Field GP15 and Bolvansky Cape).Remote Sens. 2020, 12, x 4 of 28 

 

 
Figure 1. Location of the study areas in the Western Russian Arctic (a). YAM site is located in the 
western Yamal Peninsula, URG site in the Urengoy region and PEC site in the Pechora delta. 

The URG site is located in the Urengoy region (67°45′N, 76°90′E), about 150 km north of Novy 
Urengoy city in the discontinuous permafrost zone within a tributary of the Pur River basin. This site 
has a size of 105.09 km2, with a maximum altitude of 30–35 m developed on a marine terrace (Drozdov 
et al. 2015). URG has a MAAT of −7.4 °C and a MAP of 510 mm. At this site, the permafrost thickness 
generally reaches 100–300 m [40]. The landscape is dominated by low shrub tundra and contains 
extensive peatlands [41] and high lake densities [42]. Isolated larch trees also occur, especially near 
the Pur River tributary crossing the URG site from west to east. 

The PEC site is located on the eastern side of the Pechora delta (68°12′N, 54°30′E), at the south of 
Bolvansky Cape station. It covers an area of 78.43 km2 and lies in the vicinity of the Pechora river in 
a sporadic permafrost zone. The topography is very flat with elevation up to 40 m and low shrub 
tundra is the dominant land cover. MAAT at this site is −3.1 °C, whereas MAP is 550 mm. This rolling 

Figure 1. Location of the study areas in the Western Russian Arctic (a). YAM site is located in the
western Yamal Peninsula, URG site in the Urengoy region and PEC site in the Pechora delta.
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The YAM site is located in the western part of the Yamal Peninsula (70◦40′N, 68◦48′E), 40 km
from the coast of the Kara Sea, on the Bovanenkovo gas field and it covers an area of 122.67 km2.
YAM lies within the continuous permafrost zone and based on ERA-Interim data has a mean annual
air temperature (MAAT) of −8.3 ◦C and mean annual precipitation (MAP) of 444 mm (1979–2018).
This area has a maximum elevation of 94 m and is dominated by alluvial-lacustrine-marine plains
and terraces dissected by rivers (Seyyakha river crosses the area from NE to SW). Several hillslope
processes, such as gully erosion [37] and landslides [38], characterize this region. The landscape is
dominated by shrub tundra, thermokarst lakes and ponds, as well as poorly vegetated areas affected
by landslides (RTS) mostly near the Seyyakha river or lake shores. In this continuous permafrost zone,
the permafrost thickness reaches at least 500 m on the marine and coastal-marine plains and reduces to
100–150 m at the younger river terraces [39].

The URG site is located in the Urengoy region (67◦45′N, 76◦90′E), about 150 km north of Novy Urengoy
city in the discontinuous permafrost zone within a tributary of the Pur River basin. This site has a size
of 105.09 km2, with a maximum altitude of 30–35 m developed on a marine terrace (Drozdov et al. 2015).
URG has a MAAT of−7.4 ◦C and a MAP of 510 mm. At this site, the permafrost thickness generally reaches
100–300 m [40]. The landscape is dominated by low shrub tundra and contains extensive peatlands [41]
and high lake densities [42]. Isolated larch trees also occur, especially near the Pur River tributary crossing
the URG site from west to east.

The PEC site is located on the eastern side of the Pechora delta (68◦12′N, 54◦30′E), at the south of
Bolvansky Cape station. It covers an area of 78.43 km2 and lies in the vicinity of the Pechora river in a
sporadic permafrost zone. The topography is very flat with elevation up to 40 m and low shrub tundra
is the dominant land cover. MAAT at this site is −3.1 ◦C, whereas MAP is 550 mm. This rolling coastal
plain belongs to the southern tundra subzone. The surface lithology consists of Quaternary loams and
sands with inclusions of pebbles [43].

2.2. Data Sources

VHR multi-sensor remotely sensed imagery from different years courtesy of DigitalGlobe (http:
//www.digitalglobe.com), along with high-resolution Corona images, were used to assess landscape
changes in the study sites. The selected images have cloud cover of less than 5% and were acquired
during the peak vegetation growing season from July to August [44]. All the images used in this study
are listed in Table 1.

Table 1. Data sources used—sensors, resolution and acquisition.

Site Satellite Spectral Bands Resolution (m) Acquisition

YAM

QuickBird02 Pan
Multi

0.6
2.4 7/28/2004

GeoEye01 Pan
Multi

0.4
1.8 7/18/2016

Corona Pan 5 7/7/1961; 8/8/1976

ArcticDEM - 2

URG

QuickBird02 Pan
Multi

0.6
2.4 8/14/2003

WorlView03 Pan
Multi

0.3
1.2 8/18/2017

Corona Pan 5 8/14/1967

PEC
QuickBird02 Pan

Multi
0.6
2.4 7/12/2004

WorlView03 Pan
Multi

0.3
1.2 7/5/2016

http://www.digitalglobe.com
http://www.digitalglobe.com
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Along with satellite images from 2003/2004 and 2016/2017, in two of the three analyzed sites,
Corona images were used for the assessment of river dynamics. The Corona images are declassified,
Cold War era satellite surveillance system images taken from 1963 to 1980, these being panchromatic
photographs with large swath widths and varying ground resolutions (0.6–15 m). These images
were geo-referenced and co-registered with the newest Quickbird imagery for each site to allow for
change detection.

Moreover, for the analysis of retrogressive thaw slumps from the YAM site, a very high-resolution
digital elevation model (ArcticDEM) at 2 m spatial resolution (https://www.pgc.umn.edu/data/arcticd
em/) and derived parameters were used for the delineation of these features.

2.3. Climate Data and Active Layer Thickness

As in the study of Chet,an et al. [45], climate conditions at geolocations of the three case study
areas are inferred from ERA-Interim atmospheric reanalysis [36]. Previous studies [45,46] showed good
agreement between climate data from meteorological stations operated by the Russian hydrometeorological
observation network (Russian Institute of Hydrometeorological Information—World Data Center,
RIHMI-WDC, available at http://meteo.ru/) and ERA-Interim data in our region of interest. This also
confirms the results of Lindsay et al. (2014) [47] indicating that ERA-Interim is well suited for high
northern latitude applications. Therefore, for this study, we use ERA-Interim data rather than nearby
hydrometeorological station data.

Atmospheric reanalysis is a technique of assimilation of meteorological observation data using
numerical circulation models. Atmospheric reanalysis intends to remove eventual physical inconsistencies
due to deficiency of meteorological observations (e.g., sparse distribution of meteorological stations or
shortcomings of observational techniques) and it is considered the most accurate reconstruction of past
climate conditions. The horizontal resolution of ERA-Interim is ~75 km.

Following results from Georgievski et al. [46], we have complemented our analysis with the
active layer thickness from ESA Permafrost climate change initiative (CCI). The map of ESA CCI active
layer thickness [35] is based on the transient permafrost model CryoGrid CCI driven by land surface
temperature (MODIS LST/ ESA LST CCI) and land cover (ESA LC CCI). ESA Permafrost CCI maps
are available for period 2003–2017, and the spatial resolution is ~1 km. Considering the small-scale
heterogeneity medium resolution, ESA Permafrost CCI active layer thickness has been verified against
in situ observations documented in the CALM database. The CALM network is a coordinated attempt
to standardize measurements of active layer properties in circumpolar regions. Comparison of ESA
Permafrost CCI active layer thickness with corresponding CALM sites measurements shows that
datasets are either in good agreement (Vaskiny Dachi) or qualitatively good at capturing trends
(Urengoy Gas Field GP15 and Bolvansky Cape).

Since CALM data are not available for all the areas covered by VHR imagery, in further analysis
we use ESA Permafrost CCI active layer thickness spatially averaged for YAM, URG and PEC regions.

We note that the resolution of the ERA-Interim data is rather coarse compared to the scale of VHR
images and may not fully represent the exact conditions at the three sites. However, on the one hand,
they can be used to identify large-scale climate drivers of environmental change that also act at small
scale and, hence, may contribute to permafrost degradation. On the other hand, it has been shown that
ERA-Interim data generally agree well with observations in the high northern latitudes [45,47,48].

2.4. Land Use Land Cover (LULC) Changes

For the analysis of land cover change, a supervised classification of each satellite image was
conducted through an object-based image analysis (OBIA) approach. OBIA is now a widely accepted
and used alternative, demonstrated as superior to pixel-based methods [49–51]. For comparison
purposes, each site was classified into 6 classes: water, shrub tundra, grassland and sparse vegetation,
disturbed inundated areas and barren including artificial surfaces.

https://www.pgc.umn.edu/data/arcticdem/
https://www.pgc.umn.edu/data/arcticdem/
http://meteo.ru/
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The first step of the supervised classification consists of delineating training and validation
samples. The polygons (samples) have been delineated for the analyzed years, within each study area.
Each polygon was manually delineated on the true color satellite image, aided by the panchromatic
band, covering a unique land cover class. The areas were chosen such that the land-cover class could
be clearly identified on the image. To independently assess the accuracy of land cover maps, the total
number of samples was randomly split into training samples (70%) and validation samples (30%),
before the classification procedure.

The OBIA land cover classification was conducted using eCognition Developer software, version 8.9,
starting with the image segmentation process and resulting in automated delineated polygons (objects) by
merging contiguous pixels from the four spectral bands. Subsequently, the resulting objects have been
classified into land cover classes using the Random Forest (RF) machine learning method [52]. The RF
method has proved to be among the most accurate and widely used methods for land cover classification,
since it is robust, has capabilities to work with various data types and it is not affected by statistical data
distribution [53,54]. Mean and standard deviation of the pixel values within training objects, for each of
the four spectral bands, were used as input features for the RF classification process with 500 decision
trees. The RF classification resulted in a land cover map for each year and study area, with the five
pre-defined classes.

The accuracy of each land cover map was independently assessed based on the validation sample
dataset, regarding the widely used metrics of overall accuracy (OA), Cohen’s kappa index of agreement
(KIA), producer’s accuracy (PA) as omission error and user’s accuracy (UA) as commission error [55].

2.5. Water Bodies and Fluvial Dynamics

Based on the results from the landcover classification using object-based image analysis and
random forest, connected pixels of class water were aggregated into objects. From all resulting water
bodies, the rivers were manually excluded, and the remaining objects were exported as polygons and
classified as lakes and ponds based on a threshold areas of 100 m2 [25]. The generated polygons were
then used to assess changes in lake area and lake abundance in each case study region during the
observation period. Moreover, the lakes/ponds were classified based on the magnitude of changes
into disappeared, new, relatively stable (up to 5% areal extent changes), shrinking and growing for
each site.

The planform changes of two different river channels in YAM and URG were analyzed. We used
four scenes (1961, 1976, 2004 and 2016) to detect subtle changes in the Seyyakha river channel and three
(1967, 2003 and 2017) for the tributary of Pur. Digital methods that parse the data derived from remote
sources (e.g., satellite images, orthophotos) are very suitable for detecting the changes that occur in
river channels. To quantify the rate of spatio-temporal changes in watercourses, vector polygons were
generated for each analyzed year.

For each polygon, the centerline that follows the configuration of the minor riverbed was extracted
using the Polygon to centerline toolbox in ArcGIS 10.4.1. This helps to evaluate the total length of the
river and, at the same time, is the base file for the channel investigations.

To assess channel shifts and the rates of lateral migration, we used the Channel Migration
Toolbox [56]. Using the Transect tool that automatically generates perpendicular lines on the centerline
of the river course, channel width at every 100 m was calculated. The mean values of flow direction
correspond to the azimuth of transect lines generated by Digital Shoreline Analysis System (DSAS)
version 5.0 [57]. Likewise, to establish the channel type, the sinuosity index was calculated using the
Sinuosity tool by dividing the length of the centerline by the straight line distance between the end
points of the channel.

Based on each channel polygon, the fingerprint of the main geomorphic processes was calculated.
The total amount of land surface erosion and deposition was determined as the difference between the
pairs of channels for the available imagery (1961–1976, 1976–2004, 2004–2016, for the Seyyakha river
sector from Yamal; and 1967–2003 and 2003–2017, for the tributary of the Pur River).
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2.6. Landslides and Infrastructure

We examined the occurrence of RTS in the YAM site on the multispectral images from 2004,
2016 and available digital elevation model (DEM) and manually digitized all the features. Both polygon
datasets were counted and their corresponding area calculated. The headwall of each landslide was
manually digitized in both scenes and then the longitudinal change in each case was measured in
ArcGIS. Longitudinal transects were drawn at every 1 m between the 2004 and 2016 headwalls and the
mean annual value of retreat was calculated for each feature.

The infrastructure components were also manually digitized on two different datasets (2004 and 2016)
in the Yamal Peninsula using ArcGIS 10.4.1. Roads and buildings were digitized as polygons and pipelines
as lines in both datasets.

3. Results

3.1. Climate Drivers of Environmental Change

Annual mean 2 m air temperature increased in the period from 2003 to 2017 at the geolocations of
all three sites (Figure 2a). The linear trend analysis using the least-squares method shows the most
substantial increase at PEC (~0.6 ◦C/decade), a slightly weaker increase at YAM (~0.5 ◦C/decade) and
the lowest increase is detected at URG (~0.3 ◦C/decade). Georgievski et al. (in preparation) analyzed
climate patterns relevant for permafrost degradation and identified abrupt warming events (years with
annual mean temperature warmer than the 5-year running mean temperature) have a high impact
on deepening of active layer thickness. The comparison of Figure 2a,b shows that this is also a valid
assumption for the three sites; as the warm year events coincide with the strongest deepening of
the active layer. Furthermore, the corresponding linear trends show the strongest deepening at the
PEC site (~51.5 cm/decade), while at the URG and YAM sites, active layer thicknesses increased by
~22.7 cm/decade and ~15.3 cm/decade, respectively.

Although the YAM site is warming at a faster rate than URG (~0.5 ◦C/decade vs. ~0.3 ◦C/decade)
during the considered period, the latter site is characterized by a quicker deepening of the active
layer (~22.7 cm/decade vs. ~15.3 cm/decade). This probably reflects the impact of changes in the
hydrological cycle. Though the annual mean precipitation shows a notable declining trend during the
VHR observation period (2003–2017) at all sites (YAM: −3.2 cm/decade, URG: −1.3 cm/decade, PEC:
−6.9 cm/decade), there is no significant change in the precipitation trend during the whole ERA-Interim
period (1979–2018) except for a slight increase at the PEC site. However, seasonal variations in
precipitation, in particular, the increasing trend during the transition months between winter and
summer (March, April and May), may lead to changes in snow cover that can have a critical impact on
the active layer thickness. A trend analysis of the snow water equivalent (SWE) shows almost the same
increase in the annual mean for both the YAM and URG sites (~3 cm/decade), where at the latter site
it shows a much stronger increasing linear trend in the month with maximum SWE (~11 cm/decade
vs. ~5 cm/decade). Therefore, it is very likely that the active layer at the URG site does not completely
freeze during the months with maximum SWE as the deeper snow cover leads to better isolation of
the soil from the cold surface than at the YAM site. In a warming climate, this can compensate for
a slower warming of the air temperature and, hence, result in a stronger trend in the deepening of
the active layer. The PEC site shows a fragile increasing trend for both annual SWE (~0.8 cm/decade)
and maximum SWE (1.5 cm/decade). Therefore, the primary driver of active layer deepening at the
PEC site during the considered period (2003–2017) is the increase of mean annual air temperature,
while at the YAM and URG sites changes in hydrologic cycle seem to modify the impact of warming
on the deepening of active layer thickness. Trends of increasing SWE at our sites support findings
of Bulygina et al. [48] for the previous period based on snow depth observations. They also found
increasing trends of maximum snow depth in the Western Russian Arctic.
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Figure 2. ERA-Interim annual mean 2 m air temperature, linear trend, and 5-year running mean (a)
and ESA Permafrost climate change initiative (CCI) mean active layer thickness spatially averaged for
three case study sites (b).

3.2. Land Use Land Cover (LULC) Changes

The comparison of major land cover fractions between the VHR scenes shows a general decrease
of grassland and an increase of shrubs and water classes in all sites (Figure 3). Here, the increase in
water classes is most evident at the discontinuous permafrost URG site.
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Figure 3. Land use land cover (LULC) overall changes as percentage in the YAM, URG and PEC sites.

Overall, the generated land cover maps recorded excellent accuracy values with OA ranging from
0.91 to 0.95, while KIA ranges between 0.87 and 0.93 (Table 2). As expected, the high accuracy values
(close to 1) were achieved for the water class due to their notable spectral separability. Shrub tundra,
including sparse forest in the Urengoy site, also yielded very high accuracies ranging from 0.85 to 0.99,
with eleven cases out of twelve that have values higher than 0.91. Barren, including artificial surfaces,
recorded accuracy values higher than 0.85, except within the Yamal study area in 2004. The disturbed,
inundated areas and grassland classes mostly have excellent accuracy values, although there are a few
outliers where UA reaches lower values such as 0.63 in the Pechora study area in 2004 and 0.43 in the
Yamal study area in 2004 (Table 2).
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Table 2. Accuracy metrics of land cover maps.

Study Area Class Name
2004 2016

PA UA OA KIA PA UA OA KIA

Pechora

water 0.98 1.00

0.94 0.91

1.00 1.00

0.94 0.91

shrub tundra 0.97 0.94 0.97 0.94

grassland, sparse vegetation 0.71 0.91 0.70 0.82

disturbed, inundated areas 1.00 0.63 1.00 0.80

barren, including artificial surfaces 0.86 1.00 0.86 1.00

2004 2016

Yamal

water 1.00 0.97

0.91 0.87

1.00 1.00

0.95 0.92

shrub tundra 0.98 0.98 0.95 0.99

grassland 1.00 0.43 0.80 0.63

disturbed, inundated areas 0.91 0.77 0.90 0.68

barren, including artificial surfaces 0.61 1.00 0.90 0.97

2003 2017

Urengoy

water 1.00 1.00

0.91 0.89

1.00 1.00

0.94 0.93

shrub tundra and sparse forest 0.85 0.92 0.93 0.94

grassland 0.84 0.70 0.92 0.73

disturbed, inundated areas 0.86 0.86 0.86 1.00

barren, including artificial surfaces 1.00 1.00 1.00 1.00

PA—producer’s accuracy; UA—user’s accuracy; OA—overall accuracy; KIA—Cohen’s kappa index of agreement.

For the Pechora site, the shrub tundra class showed the largest dynamics between 2004 and 2016,
when it extended its area by 24.4% (4 km2) homogeneously across the study area. Here, the replaced
classes mostly comprise grassland/sparse vegetation (72.5%, 2.9 km2) and disturbed, inundated areas
(26%, 1.04 km2). On the contrary, grassland/sparse vegetation, and barren, including artificial surfaces,
areas decreased by 10.3% (3.4 km2), concentrated in the south-east and western part, and 10.5%
(0.8 km2) concentrated in the north-east, respectively. Grassland/sparse vegetation, besides shrub
tundra, lost area due to the expansion of disturbed, inundated areas (1.1 km2), while barren class, was
replaced by grassland of 0.51 km2 and disturbed, inundated areas of 0.31 km2. Water surface area
increased in the analyzed interval by 1.7% (0.23 km2), with expansions mainly localized around small
lakes and the northwestern shore. The disturbed, inundated areas class showed the lowest net change
with only −0.04 km2 (Figure 4).

The same tendencies have been observed for the Yamal study area, except barren and artificial
surfaces, which recorded a positive net change of 14.5% (0.91 km2). They mainly replaced shrub tundra
(on 1.28 km2) and grassland (0.07 km2). Here, new roads were identified on the map in the northern
and western part of the study area, accompanied by new buildings occurring during the analyzed
interval. A net gain of 3.86% (2.25 km2) was observed for shrub tundra, mostly replacing grasslands
(2.42 km2) and disturbed, inundated areas (1.12 km2), predominantly in the northern and western part
of the study area. However, part of this gain was compensated for by a loss of 1.28 km2 to artificial
surfaces. The surface water area increased by 5.17% (0.95 km2) through lake expansion replacing
disturbed, inundated areas (0.56 km2), barren, including artificial surfaces (0.29 km2) and grasslands
(0.1 km2). Grasslands lost 15.88% (4.08 km2) due to shrub development of 2.42 km2 and the expansion
of disturbed, inundated areas of 1.49 km2, localized mainly in the south-western part of the study
area (Figure 5). Similar to Pechora, the disturbed, inundated areas showed the lowest net change
(−0.04 km2).

For Urengoy, positive net changes have been observed for shrub tundra and sparse forest (2.94%)
and water bodies (10.53%), negative net changes for grassland (9.83%) and disturbed, inundated areas
(9.83%). In contrast, the barren area (including artificial surfaces) did not change during the analyzed
interval. Shrub tundra and sparse forest developed mainly at the expense of disturbed, inundated
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areas (1.13 km2), grassland (1.03 km2) and barren land (0.17 km2), with new patches predominantly
appearing in the south-eastern part. Water bodies mainly replaced disturbed, inundated areas (0.4 km2),
shrub tundra and sparse forest (0.51 km2) and grassland (0.08 km2), mainly due to changes in the
river watercourse and appearance of new lakes. Grasslands and disturbed, inundated areas primarily
developed into shrubs, with the latter also changing to pristine lakes (Figure 6).
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3.3. Water Bodies (Lake/Ponds) Dynamics

The total area covered by lakes and ponds larger than 0.01 ha slightly increased in each case
study region. The total water bodies surface area increased by 0.45% and 4.72% in PEC and YAM,
respectively, whereas in URG, the area covered by water bodies larger than 100 m2 expanded by 2.38%
during the observation period (Figure 7a). Half of the lakes and ponds remained predominantly stable
in PEC, whereas in URG and YAM the majority of the water bodies show an increasing trend. In URG,
317 new lakes and ponds were initiated between 2003 and 2017, whereas in PEC, only 20 newly-formed
water bodies appeared during the 12-years interval (Figure 7c).
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The number of lakes and ponds larger than 0.01 ha increased by 0.74% in PEC, 4.46% in YAM and
14.86% in the URG region during the observation period. Ponds are the dominant type of water bodies
in each study site (e.g., YAM—73%, URG—88.5% and PEC—73.2%). Both lakes and ponds increased
in number in URG and YAM, whereas in PEC, only ponds experienced an increase, whereas lakes
number remained stable (Figure 7b).

The mean lake area changed slightly in PEC (−0.28%) and YAM (+0.1%), and decreased considerably
in URG (−10.75%). Despite the lake density in URG (10.2/km2) is twice as large as in PEC (5.2/km2) and
YAM (3.6/km2), the average size of inventoried lakes is smaller in URG (8 ha vs. 40 and 20 ha, respectively).
The increase in the number of ponds in URG is a result of thermokarst processes but is also related to the
partial drainage of larger lakes.

Although the majority of water bodies are growing, the fraction of change per individual lake
(%) is more significant for shrinking lakes (Figure 7d). By far, the most remarkable changes over the
analyzed interval occurred in discontinuous permafrost area (Figure 8).
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3.4. Fluvial Dynamics

For at least six months per year, snow and ice cover the drainage networks in these regions,
thereby decreasing the intensity of in-channel geomorphological processes [58]. The erosion is dominant
in both analyzed cases, except from 1961 to 1976 for the Seyyakha river (YAM) (Figure 9a). The annual
erosion rates have greater values for the tributary of the Pur river (URG). Still, between 2004 and 2016
the erosion was barely twice as high as the accumulation ratio for the Seyyakha river.

The length of the Seyyakha river increased by 0.65% in the first period, 1.71% in the second period
and 0.42% in the third. The length of the river in URG decreased in the first phase (3.4%) but increased
(1.79%) between 2003 and 2017 after new meander bends were initiated (Figure 9d). The sinuosity index
of the Seyyakha river increased in all periods as the meanders continuously developed (Figure 9f).
In URG, the initial decrease of the sinuosity was followed by a slight increase in the last years.

Channel migration is a natural phenomenon as rivers try to reach a dynamic equilibrium state.
The migration rates for the Seyyakha river indicate a mature stage and a quasi-stable channel, with annual
migration values between 1.8 m (1961–1976) and 0.6 m (2004–2016). The Pur tributary is more dynamic,
with mean annual values of migration rates around 4 m (Figure 9b). Regarding the changing rates for
the flow direction, there are no significant shifts (Figure 9e). The differences in azimuth for the Pur
tributary in URG (0.22◦/year) are larger than the corresponding values for the Seyyakha river in Yamal
(0.07◦/year). Furthermore, the results for the channel width values indicate a cumulative change of
~17 m for the Pur tributary and ~24 m for the Seyyakha river (Figure 9c).
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3.5. Retrogressive Thaw Slumps

In the Yamal Peninsula, the majority of retrogressive thaw slumps (RTS) were identified in sloped
terrain along lakeshores and the Seyyakha River (Figure 10).

RTS generally occur in clusters where favorable site-specific conditions for their development exist.
For Yamal, RTS are abundant in the western part and were initiated by thermo-erosion and mechanical
erosion due to fluvial processes and waves. In a few cases, the development of RTS is related to the
melting of ice-wedge polygons, known as “baydjarakhs” [59]. The features cover small spatial footprints
ranging from 0.01 to 1.32 ha (mean area: 0.26 ha). The majority of the features have lengths/widths
lower than 100 m and in some cases present evidence of coalescence. Furthermore, 51% of the RTS have
a length to width ratio below 1. The number of RTS increased from 24 in 2004 to 37 in 2016 whereas
the total area of thaw slumps had grown by about 69% for the same interval. The mean rate of slump
headwall retreat ranged between 0.3 m/year and 4.9 m/year uring the period from 2004 to 2016. Based
on the VHR satellite images from 2004 and 2016, the mean rate of RTS growth was between 11 and
679.8 m2/y (Figure 11).
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3.6. Infrastructure

In the Yamal Peninsula, enormous unexploited gas resources were discovered in the 1980s.
Since then, an extensive network of roads, drilling sites, buildings and gas pipelines appeared around
the significant gas deposits. In the investigated site within the Bovanenkovo gas field, the total area
covered by infrastructure constructions (roads and buildings) increased from 107.08 to 308.02 ha
between 2004 and 2016 (Figure 12). The surface covered by roads expanded by 3.7 times, whereas the
total area of buildings increased by 2.2 times during the 12-years interval. Moreover, the entire length
of gas pipelines increased by 7.4 times in the same period. The expansion of the infrastructure in YAM
was related to notable changes in hydrological features (Figure 13). In YAM, no footprint of roads,
buildings or pipelines is found in the 1961 and 1976 Corona images. In PEC and URG, the buildings
are sparse and concrete roads are entirely missing.

Remote Sens. 2020, 12, x 19 of 28 

 

In the Yamal Peninsula, enormous unexploited gas resources were discovered in the 1980s. Since 
then, an extensive network of roads, drilling sites, buildings and gas pipelines appeared around the 
significant gas deposits. In the investigated site within the Bovanenkovo gas field, the total area 
covered by infrastructure constructions (roads and buildings) increased from 107.08 to 308.02 ha 
between 2004 and 2016 (Figure 12). The surface covered by roads expanded by 3.7 times, whereas the 
total area of buildings increased by 2.2 times during the 12-years interval. Moreover, the entire length 
of gas pipelines increased by 7.4 times in the same period. The expansion of the infrastructure in 
YAM was related to notable changes in hydrological features (Figure 13). In YAM, no footprint of 
roads, buildings or pipelines is found in the 1961 and 1976 Corona images. In PEC and URG, the 
buildings are sparse and concrete roads are entirely missing. 

 
Figure 12. Infrastructure development in the YAM site (2004–2016). Figure 12. Infrastructure development in the YAM site (2004–2016).



Remote Sens. 2020, 12, 3999 19 of 27
Remote Sens. 2020, 12, x 20 of 28 

 

 
Figure 13. Color-infrared images (NIR-R-G) of infrastructure and thermokarst lakes in the Yamal 
Peninsula: Quickbird 02 acquired on 28 July 2004 (a) and GeoEye01 acquired on 18 July 2016 (b). The 
initiation of new thermokarst lakes is marked with yellow arrows in panel, which appeared after the 
construction of a concrete road. 

4. Discussion 

VHR sensors (e.g., QuickBird, WorldView, GeoEye) have the potential to reveal subtle landscape 
changes in the permafrost dominated landscape and to overcome the limitations of medium and low-
resolution satellite images [60]. Although the latter satellite images are preferred for extensive 
mapping of broad-scale vegetation or water bodies, these datasets are inappropriate to capture local 
high spatial heterogeneity of land use classes in Arctic regions [61]. The use of multispectral VHR 
data proved to be ideal for detecting different categories of land cover and for assessing a wide 
variety of disturbances. These images are also essential to enhance the fuzzy boundaries delineation 
of various types of land cover (e.g., water, sparse vegetation, shrubs). 

4.1. Regional Climate Impact on Permafrost Degradation 

Identifying climate changes on the regional scale that drive the local environmental change in 
the high northern latitudes remains a challenge [62]. Here we explore the role of regional climate 
drivers obtained from ERA-Interim (~75 km horizontal resolution) on the processes that are 
hypothesized to affect processes of the ecosystem and environmental change on the local scale. The 
active layer deepening indicated by data from ESA Permafrost CCI (~1 km horizontal resolution) 
serves as a link between the low-resolution climate data and the VHR remote sensing data. In the 
considered period at the three study sites, we find that warming is the primary driver of deepening 
of the active layer, while changes in the hydrological cycle can modify the impact of warming. Warm 
air and ground temperatures, changes in precipitation and deep snow have been recognized as major 
climatic drivers affecting permafrost degradation [63], for example, expressed by deepening of the 
active layer, RTS and thermokarst lake formation. At our three study sites, warming and increased 
SWE have been identified to act in favor of deepening of the active layer, which consequently results 
in an increasing number of RTS and thermokarst lake formation. Changes in vegetation can further 

Figure 13. Color-infrared images (NIR-R-G) of infrastructure and thermokarst lakes in the Yamal
Peninsula: Quickbird 02 acquired on 28 July 2004 (a) and GeoEye01 acquired on 18 July 2016 (b).
The initiation of new thermokarst lakes is marked with yellow arrows in panel, which appeared after
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4. Discussion

VHR sensors (e.g., QuickBird, WorldView, GeoEye) have the potential to reveal subtle landscape
changes in the permafrost dominated landscape and to overcome the limitations of medium and
low-resolution satellite images [60]. Although the latter satellite images are preferred for extensive
mapping of broad-scale vegetation or water bodies, these datasets are inappropriate to capture local
high spatial heterogeneity of land use classes in Arctic regions [61]. The use of multispectral VHR data
proved to be ideal for detecting different categories of land cover and for assessing a wide variety of
disturbances. These images are also essential to enhance the fuzzy boundaries delineation of various
types of land cover (e.g., water, sparse vegetation, shrubs).

4.1. Regional Climate Impact on Permafrost Degradation

Identifying climate changes on the regional scale that drive the local environmental change in the
high northern latitudes remains a challenge [62]. Here we explore the role of regional climate drivers
obtained from ERA-Interim (~75 km horizontal resolution) on the processes that are hypothesized
to affect processes of the ecosystem and environmental change on the local scale. The active layer
deepening indicated by data from ESA Permafrost CCI (~1 km horizontal resolution) serves as a
link between the low-resolution climate data and the VHR remote sensing data. In the considered
period at the three study sites, we find that warming is the primary driver of deepening of the active
layer, while changes in the hydrological cycle can modify the impact of warming. Warm air and
ground temperatures, changes in precipitation and deep snow have been recognized as major climatic
drivers affecting permafrost degradation [63], for example, expressed by deepening of the active layer,
RTS and thermokarst lake formation. At our three study sites, warming and increased SWE have been
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identified to act in favor of deepening of the active layer, which consequently results in an increasing
number of RTS and thermokarst lake formation. Changes in vegetation can further amplify the impact
of increasing SWE. For all three regions, an increase in shrub tundra is documented. This type of
vegetation is prone to trap snow, which keeps the ground insulated so that warmer soil temperature
can be maintained during the cold season.

4.2. LULC Changes and River Dynamics

Our analysis revealed accelerated land surface dynamics across three different permafrost zones
in western Siberia and northeastern European Russia. A pronounced increase in the extent of tundra
shrubs was found in all cases. This is in agreement with previous findings, which considered this type
of Arctic disturbance as a critical driver of tundra greening [64–69]. In the three investigated Arctic
study sites, recent expansions in shrublands were associated with the loss of the grassland and sparse
vegetation class. Based on experimental and observational research, previous studies revealed that
climate warming is the driving factor of the so-called Arctic “shrubification” [70]. Compelling pieces
of evidence for the latitudinal shrub lines advancing in response to warming atmosphere temperatures
were presented in different studies [71–74]. Furthermore, the increase in productivity of Arctic tundra
is frequently related to recent summer warming [45,75,76].

The transition from land to water is another spatially extensive change taking place in each of the
three study sites. Water area gain is subject to thermokarst activity, which is responsible for new pond
formation, lake basin expansions and river widening in YAM and URG. In discontinuous permafrost
(URG) the growth of water surfaces was twice as large as in continuous permafrost (YAM), whereas, in
sporadic permafrost (PEC), we noticed only a slight increase. In all three study sites, ponds (below 1 ha)
are the dominant water body type, as elsewhere in the Arctic lowlands [21,25].

Unfortunately, the dynamics of Arctic ponds have received comparatively little attention due to
the limited availability of VHR images. The existing global inventories of lakes derived from Landsat
data [77] have large inaccuracies in permafrost environments [20]. By using VHR images (spatial resolution
< 5 m), ponds as small as 0.01 ha can be accurately delineated [25,78]. A direct comparison with the PeRL
database [25] revealed good correspondence between our findings and similar analyses using VHR data.
Thus, for the YAM site, we mapped 445 water bodies, whereas, in PeRL database, 443 features larger than
0.01 ha were inventoried [25]. The increase in number and surface area of lakes and ponds in the three
Arctic sites agrees with other similar analyses in high latitude environments [79,80].

The variation of channel characteristics relates to transport and deposition of load amount, and
with specific fluvial and thermal erosion [81]. Our results indicate the dominance of erosion during the
last two decades, whereas in-channel accumulation characterized the 1961–1976 period in the Seyyakha
River. Both considered rivers revealed a tendency of a slight increase in their lengths between 2003
and 2017. The imbalance between erosion and accumulation also led to changes in width, sinuosity
and river flow direction [81]. Because erosion of banks is almost twice as large as the accumulation at
Seyyakha, a significant widening of the river was observed in the last decades. Here, the fast retreat of
ice-rich river banks is initiated by a combination of mechanical and thermal erosion [82]. An increase of
the fluvial thermal erosion due to rising water temperature during the flood season was observed in the
last decades [83]. This increase in water temperature might explain the recent widening of Seyyakha.

In the case of Seyyakha, the annual lateral migration of the channel is similar to other results
reported in the Mackenzie Delta [81,84]. The river channel mobility in the Urengoy is twice as high,
mainly due to the rapid evolution of small meandering channels. However, since the annual rates of
fluvial channel changes are subtle in both YAM and URG, the available coarse-resolution products are
inappropriate to resolve local scale river-banks variation.

4.3. RTS Landslide

Because thaw slumps in the Arctic regions are commonly small-sized features, they are below the
detection limit of medium resolution satellite images (e.g., Landsat) [20]. VHR satellite images allowed
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identifying thaw slumps as small as 10 m in diameter within the Bovanenkovo field. The morphology
and distribution of identified RTSs do not differ from similar features described in Central Yakutia [18],
Banks Island [85], Yamal Peninsula [86] or Ellesmere Island [87]. We have identified small features in
the vicinity of Seyyakha River with areas generally lower than 1 ha. Only two RTSs reach a maximum
size of 13,000 m2. In the Yamal Peninsula, the RTS are preferentially localized along the lake/river shores.
The abundance of these features in ice-rich conditions along rivers and lake shores was described in
many other regions in the Arctic [18,88,89]. Our analysis revealed an evident increase in the occurrence
of RTSs between 2004 and 2016. Similar findings were reported by other recent studies in the Arctic
regions [85,87,90,91].

Retrogressive thaw slumps and “baydjarakhs” are generally considered as indicators of permafrost
degradation in continuous permafrost zones [18,58,92]. Once the scarp of the RTS is created by ice-rich
permafrost thawing, a further thaw is expected as permafrost is more exposed in this way [58].
Thus, the thaw slump expands by retrogressive thermo-erosion with rates usually ranging from centimeters
to tens of meters per year [93]. The analysis of 22 RTSs in the Yamal Peninsula during the period from 2004
to 2016 provided a mean headwall retreat rate for all RTSs of 1.86 m/y. In comparison, Ward-Jones et al. [87]
reported a mean retreat of 6.2 m/y for Ellesmere Island and Lantuit and Pollard [94] found 9.6 m/y for
the coast of Herschel Island (Canada). On the other hand, our headwall retreat rates appear to be higher
than the values provided by Lantz and Kokelj [88] for the Mackenzie Delta (0.5 to 1 m/y), but similar to
Séjourné et al. [18] for Central Yakutia (0.5 to 3.16 m/y).

4.4. Infrastructure

An expansive industrial infrastructure occurred in the Yamal Peninsula between 2004 and 2016.
In YAM, the intense human pressure is associated with hydrological disturbances and vegetation
disappearance. The increased human pressure stimulated the initiation of new thermokarst features
(Figure 13), such as in other ice-rich permafrost landscapes [95]. The observed land cover disturbances
are usually accompanied by the modification of the ground thermal regime [63], causing substantial
adverse impacts on fragile and sensitive Arctic ecosystems.

The main disadvantages of VHR satellite imagery are their high price and limited availability.
However, previous studies have shown the capabilities of both VHR and medium-resolution satellite
images. Thus, the surface area of water extracted from Landsat-5 TM amounted to 44–95% of the total
surface area [21], whereas Sentinel-2 show promising results when mapping water bodies larger than
350 m2 (Freitas et al., 2019). However, the delineation of small water bodies’ boundaries is problematic
when the pixel footprint does not lie entirely within the water body [96]. Landsat satellite images
allowed the identification of only 25% of the total number of landslides in Himalaya [97] while SPOT
images prevent the identification of about 30% of the small landslides in Hong Kong [98]. In the
Western Russian Arctic the majority of the thaw slumps are too small to be detected by medium
resolution satellite imagery, whereas the calculation of headwall retreat rate is feasible only if using
VHR satellite or aerial images with sub-metric accuracies. The river’s water surface delineation revealed
that Planet imagery (3 m spatial resolution) allows accuracy of only 3% greater than Sentinel-2 data [99].
Because the size of individual features of infrastructure (e.g., roads and buildings) is very small
specific spatial resolution imagery is required for their identification. The inventories of build-up areas
based on Landsat are incomplete and lack subcategories [100]. In particular cases, Sentinel-2 allows
identification of 3 m wide roads [101].

5. Conclusions

Our study demonstrates the usefulness of VHR satellite data for the detection of smaller features
and quantifying subtle changes in Arctic environments. These data allow assessing a wider variety of
changes in the permafrost environments compared with medium and low-resolution satellite images.
In addition, we linked the scale of regional climate drivers inferred from global ERA-Interim reanalysis
via the intermediate resolution ESA Permafrost CCI product to the scales at which the processes
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hypothesized to affect local vegetation and landscape dynamics operate. The three investigated sites
in the Western Russian Arctic experienced a range of land cover changes. Our results indicate a
pronounced increase in the extent of tundra shrubs in all cases. The proportion of land covered by
water also increased significantly in the Yamal and Urengoy sites. The total area covered by lakes and
ponds and the number of water bodies increased in all sites, especially in Urengoy, where 317 new
lakes and ponds were initiated between 2003 and 2017. The most obvious consequence of the interplay
between fluvial accumulation and erosion is the recent increase in river lengths. Relatively high annual
rates of lateral channel migration were documented in Urengoy, whereas Seyyakha River experienced a
significant widening of the channel. The number of retrogressive thaw slumps in the Yamal Peninsula
increased by 54% over the observation period, whereas the mean annual headwall retreat rate is
1.86 m/y. The impact of human activities on the hydrology and land cover in the Yamal Peninsula has
intensified in the last two decades.

Since the image resolution is a crucial factor for the detection of subtle disturbances in the Arctic
there is a great need for accessible VHR data over large circumpolar areas to improve our understanding
of their response to climate changes. Currently, the low availability and the high costs of the images
impede more comprehensive research at larger spatial scales.
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