
remote sensing  

Article

A Framework for Unsupervised Wildfire Damage
Assessment Using VHR Satellite Images with
PlanetScope Data

Minkyung Chung 1 , Youkyung Han 2 and Yongil Kim 1,*
1 Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu,

Seoul 08826, Korea; mkjung4876@snu.ac.kr
2 School of Convergence & Fusion System Engineering, Kyungpook National University, Sangju 37224, Korea;

han602@knu.ac.kr
* Correspondence: yik@snu.ac.kr; Tel.: +82-2-880-7364

Received: 20 October 2020; Accepted: 20 November 2020; Published: 22 November 2020 ����������
�������

Abstract: The application of remote sensing techniques for disaster management often requires rapid
damage assessment to support decision-making for post-treatment activities. As the on-demand
acquisition of pre-event very high-resolution (VHR) images is typically limited, PlanetScope (PS) offers
daily images of global coverage, thereby providing favorable opportunities to obtain high-resolution
pre-event images. In this study, we propose an unsupervised change detection framework that uses
post-fire VHR images with pre-fire PS data to facilitate the assessment of wildfire damage. To minimize
the time and cost of human intervention, the entire process was executed in an unsupervised manner
from image selection to change detection. First, to select clear pre-fire PS images, a blur kernel was
adopted for the blind and automatic evaluation of local image quality. Subsequently, pseudo-training
data were automatically generated from contextual features regardless of the statistical distribution
of the data, whereas spectral and textural features were employed in the change detection procedure
to fully exploit the properties of different features. The proposed method was validated in a case
study of the 2019 Gangwon wildfire in South Korea, using post-fire GeoEye-1 (GE-1) and pre-fire PS
images. The experimental results verified the effectiveness of the proposed change detection method,
achieving an overall accuracy of over 99% with low false alarm rate (FAR), which is comparable to
the accuracy level of the supervised approach. The proposed unsupervised framework accomplished
efficient wildfire damage assessment without any prior information by utilizing the multiple features
from multi-sensor bi-temporal images.

Keywords: wildfire damage assessment; very high resolution (VHR); image quality assessment;
unsupervised change detection; multi-sensor image application

1. Introduction

Remote sensing techniques have been utilized to monitor ground surfaces in a broad range of
fields, including disaster management. To perform rapid assessment of disaster damage, the acquisition
of post-event very high resolution (VHR) images has been actively cooperated through cross-national
programs such as the International Charter “Space and Major Disasters”’ initiative [1,2]. However,
in most cases, the acquisition of pre-event satellite images is limited by the lack of availability of VHR
images. The pre-event high-resolution images enable multi-temporal image analysis, which is known
to improve the performance of land-cover mapping and change detection [3–5]. Obtaining VHR
images from multiple sensors can increase the likelihood of acquiring adequate pre- and post-disaster
images. Although the use of multi-temporal and multi-sensor images requires careful consideration to
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minimize the errors caused by differences in imaging conditions, such as sensors, orbit configurations,
and atmospheric effects [6]; a well-defined pre-processing sequence could effectively alleviate the
radiometric and geometric differences between the images [7,8]. Another set of crucial factors for the
successful multi-temporal image analysis is the interval of acquisition time and the period in which
change occurs, which affects the separability of the classes [9]. In principle, for rapid and reliable
change detection, the acquisition dates of the two images should be as close as possible; otherwise,
unwanted changes could be included in the results, such as phenological or anthropic changes [10].

Damage assessment studies on wildfire sites have focused on using Landsat imagery,
monitoring the spectral responses from vegetation at 30 m resolution with short-wave infrared
(SWIR) bands [11–13]. In addition, a combination of Landsat and Sentinel images was also studied
based on the high data interoperability between the sensors [14,15]. Recently, with the increased
distribution of VHR images, several studies intended to delineate the spatial details of the burned
areas with VHR satellite images [8,16,17]. However, most of the bi-temporal images for these studies
(WorldView-2 and GeoEye-1) were captured at a minimum interval of 1 year and used to detect
long-term wildfire-induced changes. In other cases, two post-fire images were employed to estimate
the forest recovery at wildfire sites. As mentioned above, the limitations of pre-disaster VHR image
acquisition make it difficult to detect fine-scaled short-term changes.

Since PlanetScope (PS) images with 3 m resolution have become available on a daily basis [18],
it could provide high-resolution pre-disaster information, showing significant potential for use in
disaster management [19–21]. Thus, the integration of VHR and PS images can minimize other
possible changes and enables the focus on targeted changes caused by wildfire. Close acquisition dates
between multi-temporal images naturally reduce the need for highly elaborate image processing and
are expected to produce reliable and accurate change detection results, even without SWIR bands,
which are not available in most VHR images. Even though the availability of a massive PS database
increases the chance of accurate image analysis, the selection of appropriate images through manual
visual interpretation is a time-consuming task and delays overall damage assessment procedures.
Image metadata provide image quality information for the entire scene; however, the image still needs
to be assessed on local image quality and availability within the region of interest (ROI).

The study site is Gangneung–East Sea region and Goseong–Sokcho region, located in Gangwon
province, South Korea, in which the severe large wildfires occurred in 2019. As one of the largest
wildfires in national wildfire history, several researchers have performed wildfire damage assessment
on the 2019 Gangwon wildfire [22–24]. To exploit the advantages of remote sensing images in disaster
management, images from various platforms were included such as high-resolution satellite images
and unmanned aerial vehicle (UAV) images. Won et al. [22] detected the changes in burned area
and burn severity via analyzing satellite images from the Korea multi-purpose satellite-2 and -3
(KOMPSAT-2 and -3). In addition, considering the lack of SWIR bands in PS images, Kim et al. [23]
performed histogram matching to integrate the spectral information of the burn index from Sentinel-2
to vegetation index from PS. Shin et al. [24] analyzed the forest burn severity of the Gangneung–East Sea
region using UAV images with a spatial resolution of 31 cm. Although the aforementioned researchers
produced the wildfire damage assessment results in high spatial resolution, these methods require
manually generated samples to properly train the classifiers.

Previous unsupervised change detection approaches have included either the automatic generation
of training data with high probabilities of no change or change or intermediate change detection results.
In the case of the former, pseudo-training data were produced by thresholding specific features [25],
e.g., spectral change vector, whereas in the case of the latter, multiple pixel-based change detection
results were fused from three different algorithms into single object-based change detection results [26].
In the paper published by Wu et al. [27], superpixel-based change detection was performed using
training data that were determined by voting from five binary classification results, each derived
from spectral, textural, and contextual features. In both change detection approaches, thresholds are
required to separate the region of change from the unchanged region; however, most of the widely used
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thresholding methods assume a specific data distribution, such as Gaussian distribution [28]. Therefore,
statistical thresholding can limit the wide application of a change detection method, depending on the
variations in data distribution.

To minimize human intervention, we proposed a framework for unsupervised wildfire damage
assessment using VHR images with PS data. In the proposed framework, we substituted manual
image selection to automatic image quality assessment using blur kernel estimation [29,30]. Moreover,
a proposed change detection method was devised to generate pseudo-training data using thresholds
with absolute numerical values, such that it could be implemented in other scenes regardless of the
statistical distribution of the image data. This study is based on the scenario that rapid disaster damage
assessment is required with the aid of available satellite images from different sensors. On the basis
of this assumption, we proposed a fully unsupervised framework from image selection to change
detection, specifically focusing on wildfire damage assessment.

The contribution of this study is that the proposed framework for wildfire damage assessment
performs the overall process from image selection to change detection in an unsupervised manner
without any prior information on data distribution. The only given information is an ROI, which is
defined during the acquisition of the post-fire VHR satellite images. Furthermore, the simple structure
of the proposed method extends the applicability of the method to other sites or other multi-sensor
image combinations. Hence, the proposed unsupervised framework minimizes user intervention and
enables the rapid implementation of the method while achieving high change detection accuracy.

The remainder of this paper is organized as follows. Section 2 illustrates the method used to assess
the local image quality of PS images and to classify the scene using pseudo-training data. Section 3
presents the experimental results from the 2019 Gangwon wildfire in South Korea. In Section 4,
the analysis of pseudo-training data was performed to evaluate the influence of sample data generation
on the change detection accuracy. Finally, Section 5 outlines the conclusions of the study.

2. Methodology

The overall process of the proposed framework is shown in Figure 1. First, PS image selection
was performed based on the image quality assessment using blur kernel estimation to join the pre-fire
PS images with post-fire GeoEye-1 (GE-1) images. Then, the differences in multi-sensor bi-temporal
images were reduced through a series of pre-processing procedures, including orthorectification,
reflectance conversion, image mosaicking, topographic normalization, and relative radiometric
normalization, depending on the processing level of each image (Figure 1a). In the next step,
using the image segmentation results from the post-fire GE-1 images, superpixel-based change features
were calculated and employed to detect wildfire-induced damage with minimum user intervention.
The following sub-sections provide a detailed explanation of each step.
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Figure 1. Flowchart of the proposed approach: (a) pre-processing step; (b) superpixel-based wildfire
change detection step.

2.1. Data Description

The study site is located in Gangwon province, South Korea, which suffered severe wildfires
on April 4–5, 2019. In this area, two wildfires broke out simultaneously on April 4, one in the
Gangneung–East Sea region and the other in the Goseong–Sokcho region. The main causes of the
wildfires are presumed to be dry air from low precipitation and predominant pine stands with volatile
pine resin. The forest areas damaged by the fires were reported as 1260 and 1227 ha for the two
sites, respectively, by a field survey [31]. According to the criteria provided by the Korea Forest
Service [32], which defined the scale of wildfires with burned areas larger than 100 ha as “large”
(from large/medium/small), the 2019 Gangwon wildfire was recorded as one of the most severe large
wildfire events in the nation’s history. The reason for employing both wildfire sites is to show the
applicability of the proposed framework by providing an illustration of how the wildfire-induced
damage could be assessed for two different wildfire sites.

Figure 2 shows the GE-1 VHR satellite images captured on 7 April 2019 after the full containment
of the wildfire. Since GE-1 offers detailed spatial information of the burned area at 2.0 m spatial
resolution for four multispectral (MS) bands, GE-1 was used as post-fire images to estimate the damage
on vegetation (Table 1). Meanwhile, PS images were utilized to obtain the pre-fire spectral responses
from the ground with 3.0 m spatial resolution. With the high temporal resolution of 1 day, PS increased
the chance of bi-temporal image analysis, which is known to improve change detection performance.
However, it requires a significant amount of labor to select appropriate pre-fire PS images from the
massive PS database. Thus, pre-fire PS images were collected for ROI, and local image quality of the PS
images were assessed based on the method presented in Section 2.2. To analyze the proper threshold
for the image quality metric, 25 and 37 images were acquired before and after the wildfire events from
the Gangneung–East Sea region and Goseong–Sokcho region, respectively. Then, 21 and 16 images
were respectively selected for the study sites based on the provided image metadata. As the image
metadata represent the quality of the entire scene, they were used as the minimum criteria to satisfy
the positional and radiometric accuracy: (1) “TRUE” for ground control; (2) cloud coverage lower than
10%; and (3) “standard” for quality category, which was determined by considering the sun altitude,
off-nadir view angle, and percentage of saturated pixels [18]. Additionally, some PS images were also
excluded when the coverage area within the ROI was too small to create image patches of the given
size. All the PS images tested were obtained from the Planet Education and Research program [33].
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Table 1. Description of GE-1 and PlanetScope (PS) images used in this study.

Study Site Sensor Product Spatial Resolution Acquisition Date Num. of Images 1

Gangneung–East
Sea region

GeoEye-1 OR2A
(Ortho-ready) 2.0 m (MS) 7 April 2019

(Post-fire) 1

PlanetScope
Level-3B
Analytic

(Orthorectified)
3.0 m (MS) 1–8 April 2019 21 (25)

Goseong–Sokcho
region

GeoEye-1 OR2A
(Ortho-ready) 2.0 m (MS) 7 April 2019

(Post-fire) 1

PlanetScope
Level-3B
Analytic

(Orthorectified)
3.0 m (MS) 24 March–7

April 2019 16 (37)

1 For the PS image, the number of images refers to the number of images captured within the acquisition date,
and the number of selected images based on cloud coverage, ground control, and the quality category from the
image metadata. For example, 21 (25) means 21 images were selected out of 25 images.

2.2. Image Quality Assessment for PS Image Selection

As mentioned above, the following steps were performed in an unsupervised manner, minimizing
user intervention. To select adequate PS images for disaster damage assessment, individual images
were evaluated to detect clouds, haze, and smoke from the fire within the image. Furthermore,
we expected to discern the other factors that may degenerate the clarity of the images by means of an
image quality assessment step.

Blur kernel estimation with L0-regularized intensity and gradient prior was initially devised for
text image deblurring [29,30]; however, this method also showed its effectiveness on natural images
through the implementation of adaptive threshold initialization. Anger et al. [34] applied this method
to assess the sharpness of PS images and analyzed the influence of orthorectification on image quality.
With numerous datasets from various locations, the previous study validated the fact that image
quality of satellite images can be evaluated with the blur kernel.

The principal idea of this blur kernel estimation is the incorporation of the gradient and intensity
prior in L0-regularization form [29]:

P(x) = σPt(x) + Pt(∇x) with Pt(x) = ||x||, (1)

where σ is the weight for the intensity prior and Pt(x) is the number of nonzero values in image x.
The prior is used as a regularization term for image deblurring as

min
x,k
||x ∗ k− y ||22 + γ ||k ||

2
2 + λP(x), (2)

where x and y are the latent image and blurred image, respectively, and k refers to the blur kernel.
P(x) is the L0-regularized intensity and gradient prior, and λ and γ are the weights for P(x) and the
L2-regularized term on blur kernel k. To derive the solution for image x and kernel k, the above problem
is divided into two sub-problems regarding x and k, respectively. Then, the algorithm iterates the blur
kernel k and latent image x alternately through the following equations:

x(t+1) = argmin
x
||x ∗ k(t) − y ||22 + λP(x), (3)

k(t+1) = argmin
k
||∇x ∗ k(t) −∇y ||22 + γ ||k ||

2
2. (4)

As a by-product of blind deblurring, the blur kernel is advantageous in its fully blind and
automatic approach, which in agreement with the goal of this framework. The estimated blur kernel
can be used as a measure for image quality and enables the comparison of images, regardless of image
content. As previous studies on text and natural images [29,30] and on PS images [34] focused on image
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processing on an image-by-image basis, a single blur kernel was calculated for each image for the entire
scene. However, considering the purpose of this study, the PS image selection step of our framework
was formulated to examine the availability of PS images in the ROI. In addition, the micro-satellite
constellation of PS contains an intrinsic inconsistency in the image quality between images [35,36] and,
likewise, within a single image. For this reason, local image quality assessment was performed by
splitting the images into patches and measuring the blur kernel for each image patch. The metric for
image quality was named the sharpness score (S) in [34], defined in the L2-norm of the blur kernel,

S = ||k ||2 =

√∑
x

∣∣∣k(x)∣∣∣2, (5)

which ranges from 0 to 1 by normalization of the kernel. The size of S represents the sharpness of the
image—the larger the S value, the clearer the image. In this study, we assume that image patches with
S values under a certain threshold contain image quality degradation factors, including atmospheric
elements and other radiometric defects. In Section 3.1, the threshold was determined based on the
distribution analysis on S, and evaluation was performed to validate the discrimination ability of the
proposed local image quality assessment method. From the number of low-quality image patches per
image, PS images were sorted depending on their usability. Then, image conditions such as image
coverage and acquisition time were considered to determine the images with the nearest acquisition
time before the outbreak of the event within the ROI.

2.3. Image Pre-Processing

For multi-sensor image applications, image pre-processing is very important in reducing the
differences in images from multiple sources with different sensors and orbit configurations [37].
Pre-processing includes orthorectification, image mosaicking, reflectance conversion, topographic
normalization, and relative radiometric calibration (Figure 1a). In this study, GE-1 and PS images were
adjusted through certain geometric and radiometric calibrations, depending on the processing level.
First, for GE-1, the images were orthorectified using rational polynomial coefficients (RPCs) with a 2.0 m
high-resolution digital elevation model (DEM). DEMs for the two study sites were derived from a digital
topographic map on a scale of 1:5000, which was provided by the Geospatial Information Hub of Korea,
National Geographic Information Institute (http://map.ngii.go.kr). Subsequently, the orthorectified
GE-1 images were projected onto the Universal Transverse Mercator coordinate system (UTM, Zone 52
North) with the World Geodetic System 1984 (WGS84). Considering the scale of change targeted for
detection, the panchromatic band of GE-1 was not employed in the proposed framework because the
spatial resolution of MS bands (2.0 m) was sufficient to delineate the spatial details of the burned area.
Since PS Level-3B Analytic products are geometrically corrected with fine DEM and distributed in
UTM projection with WGS84 datum [18], no additional geometric calibration was performed for PS
images. After orthorectification, VHR satellite images from GE-1 and PS showed subtle misalignment,
despite the absence of a co-registration step.

With respect to radiometric calibration, the orthorectified images were converted to at-sensor
reflectance using the conversion coefficients from the image metadata. As PS images were acquired in
continuous strips, image mosaicking was performed with edge feathering and histogram matching
to cover the entire area of the ROI. In addition, PS images were resampled to 2 m spatial resolution
to match with the spatial resolution of the corresponding GE-1 data. The reason for the resampling
of the PS images is to preserve fine-scaled spatial information from the higher resolution of GE-1
images through the bi-temporal image analysis. Then, both GE-1 and PS images went through
topographic normalization to eliminate the radiometric distortions caused by the imaging conditions
of the given sensor and roughness of the ground surface. Terrain normalization techniques can
typically be classified as Lambertian and non-Lambertian approaches, depending on the assumed
surface reflectance characteristics [38]. Based on a model that relates the reflectance value to the
imaging conditions, topographic normalization calibrates the brightness differences from the surface

http://map.ngii.go.kr
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curvature [39–41]. In doing so, the above-mentioned high-resolution DEM was also employed to
produce accurate topographic normalization results as a DEM with a lower resolution may serve as a
source of error. In particular, when it comes to a forest in mountainous regions, in-depth consideration
is necessary for the determination of an appropriate technique for terrain normalization. Thus,
our previous study [42] determined the optimal technique for each band for wildfire sites consisting
of heterogeneous land-cover types. The experimental results concluded that the empirical rotation
model [41] and C-correction model [39] could be applied effectively for the RGB and near-infrared
(NIR) bands, respectively. Using the optimal topographic normalization method for each band,
the radiometric influence of imaging and illumination conditions was offset by linear regression with
pixels within the individual image before the inter-sensor radiometric calibration was performed.
Finally, PS images were radiometrically normalized with the iteratively re-weighting multivariate
alteration detection (IR-MAD) method [43] with respect to GE-1 images to reduce the radiometric
differences between the two images and produce more consistent bi-temporal spectral responses,
even without absolute atmospheric corrections [44].

2.4. Unsupervised Object-Based Change Detection

In the unsupervised object-based image analysis procedure, change detection was preceded
by image segmentation and pseudo-training data generation. First, post-fire GE-1 images were
over-segmented to reduce image complexity and preserve the spatial detail of the VHR satellite
images. The simple linear iterative clustering (SLIC) technique is well known for producing uniform
superpixels while maintaining high adherence to edges [45]. Along with the generic images for
computer vision applications, SLIC showed satisfactory performance in the segmentation of VHR
satellite images in a rapid manner, with fewer input parameters than widely used multiresolution
segmentation methods [46]. RGB images serve as input for SLIC with the expected superpixel size
from the desired number of superpixels per image. SLIC performs image segmentation through
local clustering with color and spatial information by projecting the RGB colors into the CIELAB
color space, which was devised to represent human visual perception. However, discrimination of
the burned area from the surrounding vegetation can be difficult depending on the phenological
response from plants. Thus, false-color composite images with NIR, red, and green bands were
used as input images to perform SLIC rather than the original RGB images. Such replacement in
SLIC input images could improve the image segmentation results by visual enhancement with the
proper band combinations. Despite the simplicity and efficiency of SLIC, the segmentation results
may include some mixed superpixels, owing to enforced connectivity by a post-processing step after
local clustering [45]. To overcome the limitations of SLIC, several variants of the SLIC were proposed
for high-resolution remote sensing images, e.g., the integration of textural information within the
clustering process [47] and the purification of mixed superpixels through color quantization [48].
In this study, a modified SLIC [49] method was employed, which introduced the sigma filter to update
the cluster centers and contained additional constraints based on luminance similarity to treat disjoint
pixels. While this method constrained the homogeneity within a superpixel, the number of resulting
superpixels outnumbered the desired number of superpixels because of the superpixels with small
number of pixels. Since too small superpixels make the calculation of superpixel-based features
difficult, we set the minimum size of a single superpixel and assigned the label of the neighboring
superpixel that showed the highest similarity in luminance. The revised method produced superpixels
with reinforced interior homogeneity and reduced the number of clusters to a value close to the desired
number of superpixels. In the following step, the image segmentation results from the post-fire GE-1
images were applied to the corresponding pre-fire PS images, and bi-temporal object-based features
were calculated for each superpixel.

For image analysis on VHR remote sensing images, the integration of different types of features,
such as textural [50,51] and contextual [52] features, is known to improve the performance of the
classifier. Previous studies [25,27] on unsupervised change detection have demonstrated the influence
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of integrating multiple features, as the performance of classification [27] with spectral, textural,
and contextual features outperformed the case [25] when only spectral features were employed
as an input for classification. Likewise, our work focused on the integration of spectral, textural,
and contextual information within the unsupervised change detection framework. Thus, the proposed
change detection workflow is composed of two stages: (1) pseudo-training data generation and (2)
change detection. However, unlike the aforementioned related studies, input features for the two stages
should be independent of each other to fully utilize the different properties. Otherwise, the results
could be biased toward particular features.

Pseudo-training data used for change detection should effectively represent the possibility
of change but should be acquired without site-specific or scene-specific procedures. Accordingly,
we employed bi-temporal superpixel-level contextual information, which is defined as the correlation
between the pre-fire and post-fire normalized difference vegetation index (NDVI), to distinguish the
spatial information (location) of change [27]:

rt1,t2=

∑m
i=1

(
xi

t1
− µt1

)(
xi

t2
− µt2

)
√∑m

i=1

(
xi

t1
− µt1

)2
√∑m

i=1

(
xi

t2
− µt1

)2
(6)

where µ is the mean of NDVI values for a given superpixel i and xi is the mean of NDVI values from
the superpixels neighboring superpixel i. Parameter m refers to the number of neighboring superpixels
with i, and the subscripts t1 and t2 represent the values from the pre-fire PS and post-fire GE-1 images,
respectively. The value of r denotes the bi-temporal correlation of NDVI, showing values ranging
from −1 to 1. Since correlation r is the value representing the degree of consistency in bi-temporal
vegetation responses, simple thresholding can be applied to distinguish the burned area from the
unburned area by the predefined values. To train the binary classifier, the pseudo-training data were
labeled as “changed” and “unchanged”, while the others were left as “undefined”. Superpixels with
negative r values were sampled as “changed”, and superpixels with r values greater than 0.95 were
selected as “unchanged” to distinguish the superpixels with high probabilities of no change and
change, regardless of land cover type.

Using the spatial information of pseudo-training data, change detection was performed using
support vector machine (SVM) and random forest (RF) algorithms. SVM was originally designed for
binary classification and is still widely used, owing to its robustness in distribution and dimension
of data with high generalizability [53]. In some cases [54], SVM even showed better performance in
remote sensing image classification than deep learning techniques, such as sparse auto-encoders. RF is
also a widely applied machine learning algorithm that has demonstrated improvement in classification
accuracy through the combination of predictions from individually trained decision trees [55]. As the
input data for the SVM and RF algorithms, spectral and textural features were calculated for the
previously labeled superpixels. These bi-temporal features were computed in the form of normalized
differences, because the change features are known to be more suitable for change detection than
simply stacking the bi-temporal features [51]. Specifically, the normalized differences of the mean
band values of four spectral bands and eight textural statistics from the gray-level co-occurrence
matrix (GLCM) of the NIR band were calculated for each superpixel. Thus, four spectral and eight
textural features were assigned to a single superpixel. GLCM was selected to represent the texture
of the ground surface, owing to its superior performance in various applications [56,57]. In addition,
the NIR band was chosen to produce textural features because NIR well captures distinguishable
spectral responses from burned vegetation. From the bi-temporal images, the co-occurrence textural
statistics [58] was computed with a moving window for eight indicators: mean, variance, contrast,
homogeneity, dissimilarity, entropy, angular second moment, and correlation. To reduce the influence
of direction, each textural statistic was calculated for four directions (0◦, 45◦, 90◦, and 135◦) and then
averaged on a pixel basis. In addition, the window size and shift for GLCM were determined based on
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the spatial resolution of the VHR image and scale of change in the scene—a 7 × 7 window with a shift
of two pixels for post-fire GE-1 images and a 15 × 15 window with a shift of four pixels for pre-fire
PS images.

The simple structure of the proposed change detection methodology is in accordance with the
purpose of the study, which assumes instant disaster damage assessment, using the rapid acquisition of
multi-sensor images without highly elaborate image processing. In other words, the explicit theoretical
background of the proposed method could extend the applicability of the method to various scenes,
regardless of the statistical distribution of the data. Through the experiments on 2019 Gangwon wildfire
sites, three change detection results were obtained for each study site depending on the selection of
input features for change detection algorithms. The input features for change detection was divided
into three cases: (1) spectral features only, (2) textural features only, and (3) both spectral and textural
features. Then, the change detection accuracy was evaluated for each case based on manually sampled
ground-truth data.

3. Experimental Results

3.1. Image Quality Assessment Results for PS Image Selection

Image quality assessment using the blur kernel was performed for two study sites to sort out the
PS images with image quality degradation factors, such as cloud, haze, and smoke from the wildfire.
Blur kernel estimation is advantageous in that it requires no prior information regarding the sensor or
image, and it can be applied to images regardless of its size when proper kernel size is defined. All the
parameters were set in reference to the related study [29]; however, the kernel size was adjusted to
11 × 11, considering the degree of blur in the satellite images. In this study, for local image quality
assessment, each image was segmented into 500 × 500 image patches with a 50% overlap between
the image patches. Such overlapped image patches were intended to increase the probability of
detecting the local defects in multiple patches such that an image-level decision can be made regarding
image availability.

The blur kernel tends to spread out when the image patch contains visual obstruction factors.
Thus, it results in a decrease in the sharpness score, which is in agreement with observations from
previous studies using PS images [34]. To determine the threshold that separates the clear patches
from non-clear patches, pre- and post-fire PS images were employed, and the S value was computed
for each patch: 685 image patches from 21 images and 600 image patches from 16 images in the
Gangneung–East Sea and Goseong–Sokcho regions, respectively. With reference to visual inspection,
the statistical distribution of the S values was compared for clear and non-clear patches (Table 2).
For both study sites, the mean value of S for the clear patches was approximately 0.27, which is higher
than that for the non-clear patches (0.20–0.21). Based on the S distribution derived from the clear and
non-clear patches (Figure 3), the threshold was placed at 0.24 to split between the two classes. Since the
S value is an absolute value from the normalized kernel, it can be applied to other remote sensing
images with an in-depth investigation on blur kernel and its image quality metrics.

Table 2. Statistical distribution of sharpness scores derived from clear and non-clear PS image patches
over the study sites.

Study Site Patch Type
Sharpness Score (S)

Mean Std. Max. Min.

Gangneung–East Sea region
Clear patch 0.2717 0.0301 0.3574 0.0971

Non-clear patch 0.2116 0.0448 0.2931 0.1133

Total patch 0.2587 0.0419 0.3574 0.0971

Goseong–Sokcho region
Clear patch 0.2723 0.0220 0.3169 0.1263

Non-clear patch 0.2011 0.0480 0.2654 0.1187

Total patch 0.2640 0.0349 0.3169 0.1187
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Subsequently, a predefined S value was validated with respect to the detection of a non-clear patch,
which is inadequate for further image processing. Using a threshold value of 0.24 for the sharpness
score, we compared the clear and non-clear patches obtained from the threshold value with the
reference from the visual image interpretation. The discrimination ability of the proposed local image
quality assessment method was evaluated for each study site using four metrics (Table 3): false alarm
rate (FAR), miss rate (MR), overall accuracy (OA), and F1-score. The effectiveness of the method was
verified by showing low FAR (<8%) and high OA (>87%) for both study sites. Misclassified patches
occurred on patches that consisted of a single land cover with low brightness values, such as dense
forest or ocean.

Table 3. Non-clear patch detection results from PS images based on thresholding of the sharpness score.

Study Site FAR MR OA (%) F1-Score

Gangneung–East Sea region 0.080 0.297 87.299 0.705
Goseong–Sokcho region 0.064 0.271 91.167 0.658

However, the miss rate was quite substantial, and these false-negative detections occurred mostly
on image patches that contained clouds in a very small portion of the patch or thin haze, which were
transparent enough such that the ground surface could be identified, but it was inappropriate for
image analysis. Therefore, image availability was determined based on the number of non-clear
patches within the image to reduce the influence of local terrain and atmospheric conditions. Tables 4
and 5 show the image-level decision regarding image availability in the Gangneung–East Sea and
Goseong–Sokcho regions, respectively. In most cases, the number of non-clear image patches well
represents the quality of the image. Notably, from the “20190324_022022” product on 24 March 2019,
11 patches were detected as non-clear patches out of a total of 57 image patches, even though the image
was clear without blurring factors. With careful visual inspection, the corresponding image was found
to contain image distortion resulting from band misalignment, which could not be identified with the
image metadata. Thus, the proposed method can assess the image quality, including atmospheric
conditions as well as image distortion induced by inconsistencies of micro-satellites on a local scale.

After the image quality assessment of the PS images, we assumed an actual situation in which
appropriate pre-fire images were selected from the PS database. From 4 April 2019, the day before the
outbreak of the wildfire, the clear images were stacked so that the stacked images covered the entire
area of the ROI. The coverage of the images is thought to be more important than the acquisition time
because the bi-temporal image analysis cannot be conducted with partial images. Hence, based on
the last stacked image, the PS images were again stacked toward the time of wildfire occurrence to
minimize the number of images required to cover the area. Consequently, two PS images captured
on 4 April 2019 were used to cover the study site for the Gangneung–East Sea region; meanwhile,
four images from 24 March 2019 and 26 March 2019 were selected for the Goseong–Sokcho region,
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such that the stacked images could be close in its acquisition time. Since multiple images are likely to
be selected as pre-fire PS images, image mosaicking should be performed to merge these images into a
single scene. In addition, as PS images are collected in continuous strips, image mosaicking is also
inevitable in most cases to fully cover the ROI. Along with image mosaicking, an image pre-processing
sequence was applied to post-fire GE-1 and pre-fire PS images, as described in Section 2.3, to minimize
the radiometric and geometric differences from multi-sensor satellite images.

Table 4. Image-level decision of image availability based on the number of non-clear patches over the
Gangneung–East Sea region.

Acquisition Date Product Name Total Num.
of Patches

Num. of
Non-Clear Patches Reference 1

8 April 2019

20190408_015327 16 0 O
20190408_015325 70 1 O
20190408_014857 41 2 O
20190408_014856 30 4 O
20190408_014742 14 0 O
20190408_014740 7 0 O

7 April 2019 20190407_015522 20 3 O

5 April 2019
20190405_014628 47 27 X
20190405_013759 50 29 X
20190405_013758 21 17 X

4 April 2019 20190404_014158 14 1 O
20190404_014157 50 1 O

3 April 2019

20190403_014559 68 5 X
20190403_014558 4 0 O

20190403_005542_1 20 5 X
20190403_005542 51 7 X

2 April 2019 20190402_014510 4 0 O
20190402_014509 68 5 X

1 April 2019
20190401_014438 72 40 X
20190401_005834 3 0 O
20190401_005833 15 0 O

1 The mark implies the availability of the image by the visual image interpretation depending on whether the image
contains the image quality degradation factors (cloud, haze, or smoke) or not.

Table 5. Image-level decision of image availability based on the number of non-clear patches over the
Goseong–Sokcho region.

Acquisition Date Product Name Total Num.
of Patches

Num. of
Non-Clear Patches Reference 1

7 April 2019
20190407_015731 77 1 O
20190407_005941 14 0 O
20190407_005940 63 0 O

4 April 2019 20190404_005839 14 0 O

3 April 2019 20190403_005827 35 0 O
20190403_005826 14 0 O

1 April 2019 20190401_014748 49 47 X
20190401_014747 28 0 O

26 March 2019
20190326_015027 28 2 O
20190326_015026 28 1 O

25 March 2019
20190325_015008 76 20 X
20190325_015007 3 2 O

24 March 2019

20190324_022022 57 11 O
20190324_022020 45 0 O
20190324_014903 42 0 O
20190324_014902 27 1 O

1 The mark implies the availability of the image by the visual image interpretation depending on whether the image
contains the image quality degradation factors (cloud, haze, or smoke) or not.
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3.2. Unsupervised Object-Based Change Detection Results

Image segmentation was performed for post-fire GE-1 VHR images using the improved SLIC [49]
with additional clustering constraints. Considering the scale of change and spatial resolution of
the image, the only parameter required for SLIC—the expected size of a single superpixel—was
set as 20 × 20 pixels. From the experiment, the image was segmented into 30,083 superpixels from
3160 × 3730 pixels for the Gangneung–East Sea region, and 33 816 superpixels were clustered from
3315 × 3810 pixels for the Goseong–Sokcho region. In comparison with the desired number of
superpixels for each site (29,467 and 31,575), the number of resulting superpixels showed a difference
within 10% of the expected number. Based on the image segmentation results, bi-temporal change
features were calculated for each superpixel, including the spectral, textural, and contextual features.
As mentioned in Section 2.4, the contextual feature was employed to identify the superpixels that can
be utilized as pseudo-training data, whereas the spectral and textural features were used as input
features for SVM and RF classifiers. Figure 4 shows the bi-temporal NDVI correlation (Figure 4a,b)
and distribution of pseudo-training data (Figure 4c,d), which were determined by thresholding the
NDVI correlation. The superpixels labeled as “changed” were mostly selected from the burned area,
and “unchanged” samples were found to be distributed over the surrounding area, regardless of
its land-cover type. Using the spectral and textural features of superpixels previously labeled as
“changed” and “unchanged”, binary classifiers were trained to classify the entire scene. Not only the
undefined superpixels but also the labeled superpixels were involved in the prediction with trained
classifiers to refine the change detection results. Since the proposed change detection was performed
with superpixel-based features, the computational burden in training was highly reduced compared
with that of pixel-based image analysis. In summary, the entire workflow from image selection to
change detection was achieved in an unsupervised manner, as intended for the purpose of the study.
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The performance of the proposed unsupervised change detection was compared with that of the
supervised change detection to verify the usefulness of the pseudo-training data. To perform supervised
change detection, the sample data were manually labeled on a superpixel basis through the visual
interpretation of the 0.5 m post-fire GE-1 panchromatic images. The labeled superpixels were roughly
divided into two classes, “changed” and “unchanged”, and herein, the change denotes the burned
vegetation from the wildfire. Meanwhile, “unchanged” superpixels were collected for three subclasses,
namely, unburned vegetation, cropland, and urban area, to reflect not only the intact vegetation but also
other unchanged regions with different land covers. Hence, we manually produced sample data for a
total of four labels, 1000 superpixels per label. From the collection of 1000 “changed” samples and 3000
“unchanged” samples, we used 70% of the sample data to train the classifier and the remaining 30% as
test data to evaluate the performance of the binary classifiers. The same test data were also utilized to
assess the proposed change detection results for the comparison of accuracy. As quality metrics to
assess the change detection accuracy, FAR, MR, OA, kappa coefficient, and F1-score were calculated for
the three input cases with two machine learning algorithms (Tables 6 and 7). The kappa coefficient
was calculated through the following equation, which is known as Cohen’s kappa coefficient [59]:

κ =
p0 − pe

1− pe
, (7)

where po is the observed accuracy and pe is the chance agreement. The accuracy assessment results
from RF were averaged over 10 trials.

Table 6. Assessment of change detection accuracy results for the Gangneung–East Sea region.

Change Detection
Algorithm

Input Change
Feature FAR MR OA (%) Kappa F1-Score

Support vector
machine (SVM)

4 band 0.001 0.103 97.333 0.926 0.944
GLCM 0.004 0.033 98.833 0.969 0.976

4 band + GLCM 0.003 0.027 99.083 0.975 0.982

Random forest (RF) 1
4 band 0.006 0.033 98.683 0.965 0.973
GLCM 0.006 0.023 99.000 0.973 0.980

4 band + GLCM 0.002 0.017 99.442 0.985 0.989

SVM with
pseudo-training data

4 band 0.006 0.060 98.083 0.948 0.961
GLCM 0.008 0.017 99.000 0.973 0.980

4 band + GLCM 0.004 0.013 99.333 0.982 0.987

RF with
pseudo-training data 1

4 band 0.050 0.038 95.292 0.879 0.911
GLCM 0.046 0.021 95.992 0.897 0.924

4 band + GLCM 0.046 0.020 96.042 0.898 0.925
1 Accuracy assessment results for RF algorithm were averaged values over 10 trials.

Table 7. Assessment of change detection accuracy results for the Goseong–Sokcho region.

Change Detection
Algorithm

Input Change
Feature FAR MR OA (%) Kappa F1-Score

Support vector
machine (SVM)

4 band 0.002 0.047 98.667 0.964 0.973
GLCM 0.002 0.017 99.417 0.984 0.988

4 band + GLCM 0.000 0.013 99.667 0.991 0.993

Random forest (RF) 1
4 band 0.004 0.014 99.317 0.982 0.986
GLCM 0.002 0.024 99.225 0.979 0.984

4 band + GLCM 0.000 0.013 99.667 0.991 0.993

SVM with
pseudo-training data

4 band 0.000 0.070 98.250 0.952 0.964
GLCM 0.017 0.023 98.167 0.952 0.964

4 band + GLCM 0.002 0.013 99.500 0.987 0.990

RF with
pseudo-training data 1

4 band 0.058 0.065 93.992 0.845 0.886
GLCM 0.052 0.020 95.600 0.888 0.918

4 band + GLCM 0.048 0.026 95.767 0.891 0.920
1 Accuracy assessment results for RF algorithm were averaged values over 10 trials.
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In all cases, the integration of spectral and textural features improved the change detection
accuracy and showed higher OA, kappa coefficient, and F1-score values than the cases in which
only the spectral features or only the textural features were involved. These observations coincided
with results from related studies [51,60–63] and validated the fact that the use of multiple features
could enhance the change detection accuracy. The unsupervised change detection results from SVM
showed high OA of over 99% with a low FAR below 0.5%, as well as high values of kappa and
F1-score for both study sites. In the Goseong–Sokcho region, the SVM results from pseudo-training
data nearly reached the accuracy level of SVM results using manually labeled data. Even in the
Gangneung–East Sea region, the unsupervised SVM results outperformed the supervised SVM results,
implying the effectiveness of the proposed framework. However, in the case of RF, the unsupervised
change detection results also showed a high OA of over 95% and a high F1-score above 0.920 but
with increased FAR of over 4.6%, which was more than 20 times greater than the FAR values from the
supervised RF results. Such differences could be explained as the RF classifiers being more sensitive to
the accuracy of sample data. As shown in Figures 5c and 6c, the unsupervised RF results from both
study sites contain much noise within the burned and unburned area, that is, the missed superpixels
and falsely detected superpixels. The experimental results confirmed that the proposed method could
produce very accurate change detection results, even in an unsupervised approach, by employing the
bi-temporal images with relatively short time intervals.Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 23 
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4. Discussion

The most critical point in the proposed method is that change detection is performed with
automatically generated training data that have high probabilities of no change and change. To minimize
user intervention within the framework, pseudo-training data were obtained from the bi-temporal
NDVI correlation. The key aspect of this process is to collect the spatial information of the samples
in which the occurrence of change or no change is evident while maintaining a low error level.
The generation of pseudo-training data is constrained by two predefined thresholds for bi-temporal
NDVI correlation, in which samples with correlations lower than the lower threshold are labeled as
“changed”, and samples with correlations higher than the upper threshold are labeled as “unchanged”.
We set the lower threshold to 0, implying that superpixels with negative correlation have high
probabilities of vegetation change. Meanwhile, the upper threshold can vary as predefined by the
user. Therefore, the proper threshold needs to be determined by sufficient investigation to effectively
separate the unchanged samples from the samples containing uncertainty. As a result of the trade-off

between the quality and amount of training data, it is critical to find a properly balanced threshold
value. For example, setting the upper threshold close to 1 produces samples with high probabilities of
no change but also reduces the number of unchanged samples.

To analyze the influence of the upper threshold for bi-temporal NDVI correlation, we performed
the change detection process using the threshold with values between 0.7 and 1.0 at an interval of
0.01. According to the superior performance of SVM with spectral and textural features in Section 3.2,
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SVM was employed to discriminate the wildfire-induced change region from the unchanged region,
with spectral and textural features as input features. From the analysis, the upper threshold for
correlation controls the number of superpixels to be used as training data and the accuracy of the
subsequent change detection procedures (Figure 7). As higher values are assumed for the upper
threshold, MR decreases from approximately 10–14% to nearly 0%. Meanwhile, FAR maintains
extremely low rates of under 0.5% until the threshold increases up to a value of 0.95. The other
metrics, that is, OA, kappa, and F1-score, showed similar trends with an increase in the threshold,
which indicates that the selection of training data with considerably high probabilities is important in
effectively training the classifiers. Then, OA, kappa, and F1-score decreased for threshold values greater
than 0.96–0.97. This is because of the insufficiency of training data, which is caused by the decrease in
the number of unchanged samples to below 5000. These observations validate the trade-off between
the quality and amount of training data, along with the effect of the variation of the upper threshold on
the change detection results. In addition, the drastic drop in accuracy in the Goseong–Sokcho region
can be explained by its more heterogeneous landscape, whereas the Gangneung–East Sea region is
mostly composed of sheer forests with less heterogeneity. Despite the differences between the two
study sites, in Section 3.2, we set the upper and lower threshold value to 0.95 and 0 for both sites.
Using the pseudo-training data from the defined values, the proposed framework produced relatively
stable change detection results. In the Gangneung–East Sea region, the numbers of pseudo-training
data for the changed and unchanged classes were 3989 and 7488, respectively. In the Goseong–Sokcho
region, the numbers of samples for the two classes were 3421 and 9328. When compared with the
original size of the images, the generated pseudo-training data reduced the computation in the training
process and successfully represented the entire image with the superpixel-based features.
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Figure 7. Comparison of number of samples labeled as “unchanged” through the proposed
pseudo-training data generation method and accuracy rates, depending on the value of the upper
threshold for bi-temporal NDVI correlation in the Gangneung–East Sea region: (a) number of unchanged
samples; (c) false alarm rate (FAR) and miss rate (MR); (e) overall accuracy (OA), kappa coefficient,
and F1-score, and in the Goseong–Sokcho region: (b) number of unchanged samples; (d) FAR and MR;
(f) OA, kappa coefficient, and F1-score. All the change detection results were obtained from SVM with
spectral and textural change features.

Other than training data generation, input features for classifier and classifier itself also affected
the performance of the change detection. First, the overall experimental results clearly indicated the
fact that multiple features could enhance change detection accuracy. Such observations coincided
with the results from the numerous previous studies as mentioned in Section 3.2; therefore, for more
information, the reader can refer to the related studies [51,60–63]. Second, the selection of classification
algorithm could influence the change detection accuracy by RF showing high accuracy values but lower
than SVM due to the noise in the change detection results. In this study, we used the basic spectral and
textural features as input features, and with the given features, SVM represented the best performance
within the proposed unsupervised framework. However, the performance of RF can be improved by
integrating additional features. For example, features from morphological operations [51,64] showed
the potential to introduce more diverse information into the classifiers.

5. Conclusions

In this study, we proposed an unsupervised framework for wildfire damage assessment using
post-fire VHR images with pre-fire PS data. As the proposed method assumed the need for instant
disaster damage assessment, the process of PS image selection and change detection was performed
without any prior information on data distribution. The use of blur kernel enabled the automatic and
blind evaluation of local image quality and successfully selected the adequate pre-fire PS images from
the PS database. Moreover, the unsupervised change detection was conducted with the integration
of spectral, textural, and contextual information on a superpixel basis to fully exploit the multiple
features with reduced computation costs. Comparative analysis with the supervised results validated
the superior performance of the proposed unsupervised change detection method by showing high
OA of over 99% with low FAR, as well as high values of kappa and F1-score, which is comparable
with the accuracy of the supervised results. The essence of this study is in the automatic generation
of training data by thresholding the bi-temporal NDVI correlation without any supervision, and the
influence of the predefined threshold was investigated thoroughly with respect to the quality and
amount of sample data.

Although our method was focused on wildfire cases, it could be applied to other types of disasters,
which include changes in vegetation. Furthermore, the proposed framework also has the potential to
be extended to other disaster types with non-vegetational changes by the proper replacement of the
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following three factors: input image for image segmentation, spectral index to calculate bi-temporal
correlation, and input band to produce GLCM textural features.
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