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Abstract: Based on the hypothesis of the Manhattan world, we propose a tightly-coupled monocular
visual-inertial odometry (VIO) system that combines structural features with point features and can run
on a mobile phone in real-time. The back-end optimization is based on the sliding window method to
improve computing efficiency. As the Manhattan world is abundant in the man-made environment, this
regular world can use structural features to encode the orthogonality and parallelism concealed in the
building to eliminate the accumulated rotation error. We define a structural feature as an orthogonal basis
composed of three orthogonal vanishing points in the Manhattan world. Meanwhile, to extract structural
features in real-time on the mobile phone, we propose a fast structural feature extraction method based
on the known vertical dominant direction. Our experiments on the public datasets and self-collected
dataset show that our system is superior to most existing open-source systems, especially in the situations
where the images are texture-less, dark, and blurry.
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1. Introduction

Positioning and navigation have attracted much attention in recent years, and many achievements
have been made in the fields of robotics, micro aircraft, and autonomous driving. These devices can
achieve very high accuracy by fusing global navigation satellite systems (GNSS), wheel-encoders, cameras,
lasers, inertial measurement units (IMU), and other sensors [1–3]. Particularly, the fusion scheme of IMU
and camera has been widely used because of its low cost and lightweight computation [4,5]. In general,
the location can be obtained through GNSS outdoors, but in indoor environments, such as shopping
malls and airports where GNSS is easily blocked [6,7], it becomes more difficult for people to obtain
high-precision positioning services. As the smartphone is an indispensable portable device in modern life,
it is particularly important to explore the potential of its positioning abilities [8]. At the same time, with
the rapid development of augmented reality (AR), mobile phones have also received widespread attention
as a platform for the interaction of AR technology. AR requires the mobile phone to estimate the 6 degrees
of freedom (DoF) pose rather than just a 2 DoF or three DoF position [9]. The smartphone is usually
equipped with at least an IMU and a consumer-level camera, which meets the minimum requirement of
visual-inertial fusion.

Due to the inherent shortcomings of the temporal offsets between mobile phone sensors (camera and
IMU), the motion blur generated by rolling shutter cameras [10], and the frequency reduction mechanism
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after overheating, etc., it is difficult to achieve a real-time estimation of the pose on mobile phones.
Simultaneously, the behaviors of people when holding mobile phones are unpredictable, as they may
rotate quickly for seeing the surrounding environment clearly, which may lead to blurred images. Several
studies [11–13] that can estimate pose in real-time on mobile phones have been proposed. However, they
can only eliminate the accumulated drift through loop closure, which may not exist in the paths of users.
Furthermore, these methods still cannot solve the effect of image blur on rotation drift during fast rotation.

At present, the mainstreams of vision-based methods are still using point features [14–16], texture-less
areas such as indoor corridors remain a challenge to point features-based methods. When there are few
point features, the performance and accuracy of the system will be greatly degraded. Existing works use
non-structural line features or structural features in the scene to deal with such difficulty. The monocular
version of PL-SLAM [17] based on ORB-SLAM [15], stereo PL-SLAM [18] and PL-VIO [19] that incorporates
IMU are all systems that use non-structural line features to improve the system accuracy. They match
and triangulate line features between successive frames, and add line feature constraints to the residual
functions by different parameterization methods.

Non-structural line features can help state estimation in the texture-less area. However, line features
are unstable and easily occluded. Meanwhile, the same as point features, line features can only generate
local constraints on the co-visibility graph, not a global one. By contrast, structural features can provide
global observations for constraints, especially in indoor environments where most structures are man-made.
The structure of this environment is usually regular and consists of three mutually orthogonal dominant
directions, which is called the Manhattan world (MW) hypothesis [20]. Straight lines corresponding to
each dominant direction in the space are no longer parallel in the image after projective transformation, but
intersect at the vanishing point (VP) [21]. Some previous works use the structural regularity of the MW on
monocular [22–25], stereo [26] and RGB-D cameras [27,28], respectively, essentially using the orthogonality
of vanishing points to calculate accurate rotation or constrain the relative rotation between frames. From
these works, it can be seen that the structural feature can eliminate the accumulative rotation drift of the
system. Moreover, Zhou et al. [29] show that the rotation error is the main reason for long-term drift.

In our proposed method, we add the structural feature constraint to the tightly-coupled
optimization-based visual-inertial odometry (VIO). We use the reprojection constraint of the point
features and the global observation constraint of the structural features for state estimation. Furthermore,
orthogonality between structural features is taken into account. We also optimize the process of the
structural feature extraction in order to reduce the computing power of the mobile phone. As for precision,
our method outperforms most of the state-of-the-art methods in the test on the public datasets. In
the indoor field experiments with a mobile phone, the results show that our method achieves the best
performance in terms of accuracy. The main contributions of this paper can be listed as follows:

• A fast structural feature extraction method that can run in real-time on the mobile phone is proposed.
We adopt the method of exhausting VP hypotheses to obtain the optimal global solution.

• We propose to directly parameterize the three VPs into an orthogonal basis and define the orthogonal
basis as a structural feature. In mathematics, we use Hamilton quaternion to represent this orthogonal
basis to avoid singularity. At the same time, we use the tangent space of the rotating manifold to
update the structural feature. The orthogonality of the structural feature is considered in this updating
method.

• We propose a tightly-coupled, optimization-based monocular visual-inertial odometry where IMU
measurements, point features, and structural features are used as observation information. As far as
we know, this is the first to add structural regularity constraint to VIO in the form of an orthogonal
basis. Moreover, it can run in real-time on an Android phone with Kirin 990 5G processor at an
average processing speed of 28.1 ms for a single frame.
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2. Related Work

2.1. VI-SLAM and VIO

IMU provides additional observation constraints, effectively improving the robustness of the
monocular vision task with motion blur and occlusion problems. Both visual-inertial simultaneous
localization and mapping (VI-SLAM) and VIO can be generally divided into filtering-based methods [4,
14,30] and optimization-based methods [3,16,31–33]. The filtering-based methods only retain the current
camera state and the landmarks that may be observed in the future. Comparatively, optimization-based
methods usually retain the states of multiple historical cameras and associated landmarks. The most
representative filter-based methods are MSCKF [14] and ROVIO [30]. MSCKF [14] improves the algorithm
efficiency by marginalizing landmarks from the state vector and reduces computation cost caused by the
increase of landmarks. ROVIO [30] proposes an EKF framework that minimizes the photometric error of
the patches around the point feature instead of minimizing the reprojection error.

OKVIS [32] is a classical optimization-based VIO system. It is the first to combine the
optimization-based tightly-coupled method with the sliding window, and the constraints of the old states
to the states in the sliding window are preserved by marginalization. The sliding window mechanism
can help to maintain a constant computational cost. Similar to OKVIS [32], VINS-Mono [16] also uses the
sliding window method as its back-end method. However, it proposes a fast and robust visual-inertial
initialization method that estimates multiple states in the system. A 4 DoF pose graph optimization
method is also adopted to eliminate the accumulated drift on x, y, z, and yaw angles. ORB-SLAM3 [33]
recently released their work into the community, on the basis of the original [31]. Its VI-SLAM estimates
multiple states of the system through Maximum-a-Posteriori (MAP) during visual-inertial initialization.

Several studies deploy SLAM systems on mobile phones for performing real-time estimation of the
6 DoF pose. RKSLAM [11] shows the AR effect of small range movement in the paper and proposes
the use of a homography matrix to calculate inter-frame rotation for dealing with fast-rotating scenes.
When the image is very blurry, and the point features cannot be matched, the homography matrix cannot
be calculated. Piao et al. [12] replace the front end of ORB-SLAM with IMU pre-integration and KLT
sparse optical flow tracking, making the average single-frame processing speed reach 23.2 ms on Android
devices with a Qualcomm Snapdragon 805 processor. However, the performance is poor under fast
rotation because the back end of ORB-SLAM is optimized based on the reprojection error under the local
map, which will be interrupted during rapid rotation and fails to update the landmarks. VINS-Mobile
[13] proposes a fast and robust initialization method to register the pose into the inertial frame and
only optimizes the sliding window of the last few frames during the back-end optimization. However,
maintaining a loop closure thread is a large overhead for a mobile phone and may occupy the computing
resources of back-end optimization, causing frequency reduction after much heating. This paper disables
the loop closure thread and allocates the computing resources to the back-end optimization.

2.2. Vanishing Point Extraction

The conventional process of VP extraction is first to extract the line segments in the image, and then
cluster the extracted lines. Existing real-time VP extraction methods are mainly divided into two categories:
One is the exhaustive method improved by Lu et al. [34]. They exhaustively list VPs hypotheses based
on the orthogonality of VPs and construct a polar grid to speed up the VPs hypothesis query, finally
improving the real-time performance. The other kind is based on RANSAC [22,35–37]. The initial vanishing
point is usually estimated by defining the minimum solution set, namely two line segments. A random
sampling algorithm iteratively generates the vanishing point hypothesis, and the optimal vanishing point
is selected as the final solution. Tardif et al. [36] use the J-linkage algorithm to extract VPs without any
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prior information. Bazin et al. [37] propose a method to solve the VPs using 1-line RANSAC when the
normal vector of the horizontal plane is known. Camposeco et al. [22] then accelerate the RANSAC line
clustering process by getting the direction of gravity from the accelerometer in their VIO system. Though
the RANSAC method is speedy, there is a problem that the optimal global solution cannot be obtained.

2.3. Structural Regularity

A line of works uses structural regularity in MW to improve the performance of pose estimation.
Camposeco et al. [22] combine the VPs with VIO in the framework of EKF and parametrize the VPs
into a tangent space on the unit circle for representation. However, they do not consider that the
VPs should maintain orthogonality after parameterization. StructSLAM [23] does not directly use the
VPs as observation constraints but takes the structural lines corresponding to VPs as the observation.
The structural line is parameterized by the parametric plane in which it is located and the intersection
point across the parametric plane. The work most similar to ours is the system proposed by Li et al. [24].
They add the VP constraints based on PL-SLAM [17] and use the VPs to correct the pose from the aspects
of absolute rotation and relative rotation. The absolute rotation residual is the residual between the
currently extracted MW axes and the global MW axes. Also, the idea of average rotation in Global SFM
[38] is adopted to further optimize the absolute rotation. However, they think that VP measurements are
noiseless, so they do not continue to adjust the extracted VPs. Some studies use the density distribution of
surface normal vectors to improve the accuracy of rotation estimation. LPVO [27] improves a mean-shift
algorithm based on the normal vectors density distribution of the surface proposed by MVO [29]. LPVO
uses the RGB image to extract line segments to generate the vanishing direction hypotheses. The accuracy
of rotation motion estimation is improved using the density distribution of direction vectors and surface
normal vectors. Guo et al. [28] use the cost function composed of point, line, and plane features to estimate
the rotation during tracing. The keyframe rotation is refined by aligning the currently extracted MW axes
with the global MW axes, while Li et al. [25] conduct the surface normal prediction of the RGB image by
the convolutional neural network (CNN) to replace the role of the depth camera. Such studies rely on the
surface normal and are difficult to be deployed on the mobile phone, whether using an RGB-D camera or
CNN. Liu et al. [26] first obtain the rotation estimation after aligning the current MW axes with the global
MW axes. They then separately estimate the translation, transforming the nonlinear optimization problem
into a linear optimization problem. However, they ignore the error in the initialization of the global MW
axes, which would always affect the rotation estimation of the system.

3. Preliminaries

We first define the notations and coordinates used throughout the paper. We employ (·)W to denote
the Earth’s inertial frame, (·)Bk and (·)Ck to denote the inertial frame and camera frame for the kth image.
The body frame is defined to be same as the inertial frame. We use Hamilton quaternion AqB and the
corresponding rotation matrix ARB ∈ SO(3) to represent the rotation from frame {B} to frame {A}, and
R(q) and q(R) to represent the conversion between the quaternion and rotation matrix. ApB represents the
position of frame {B} in frame {A}. We also denote the homogeneous transformation matrix ATB ∈ SE(3):

ATB =

[
ARB ApB

01×3 1

]
(ATB)−1 =

[
(ARB)T −(ARB)T ApB

01×3 1

]
.

(1)

BqC and BpC represent the extrinsic parameters between the inertial frame and the camera frame.
Due to the temporal offset between the two sensors (IMU and camera), it is not easy to calibrate extrinsic
parameters between IMU and camera in the mobile phone through open-source calibration tools such as
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Kalibr [39]. So we manually measure the position of the sensor mount on the printed circuit board (PCB).
We employ ˆ(·) as a noisy measurement or an estimate of the state variable. We denote that [q]L and [q]R
are, respectively, the left and right quaternion-product matrices, moreover, ⊗ represents the multiplication
operation between two quaternions [40]. Since quaternion is four-dimensional, we use the perturbation of
the tangent space of the rotation manifold δθ in order to prevent over-parameterization, and likewise for
the perturbation representation of the rotation matrix. As is illustrated in (2), where [·]× represents the
skew symmetric matrix corresponding to a vector:

q ≈ q̂⊗
[

1
1
2 δθ

]
R ≈ R̂(I + [δθ]×).

(2)

4. Monocular Visual Inertial Odometry Based on Point and Structural Features

4.1. System Overview

Figure 1 shows an overview of the proposed visual-inertial odometry system. The system takes
the image and IMU data flow from the mobile phone as input and outputs the estimated pose of 6 DoF.
The system makes use of the rotation residuals of the structural feature on-manifold, the reprojection
residuals of point feature, and the IMU pre-integration residuals for the Maximum-a-Posteriori (MAP).
These observations are used as local observation constraints, while the structural features can also be used
as global constraints to improve the accuracy of pose estimation. The system is mainly divided into two
modules: front end and back end.

IMU
Measurements

Image

IMU Pre-integration

Point Feature Detection 
and Tracking

Structural Feature 
Detection and Matching

Front End

Initialized?

Tightly-coupled 
Optimization Marginalization

Outlier Culling

Back End

States Feedback

Sliding Window OptimizerY

Figure 1. Pipeline of the proposed visual-inertial odometry system.
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Front End. The front end receives the measurements of the image and IMU from the mobile phone,
and at the same time, the old optimized states are received to match the structural features. Each time
a new image comes, we update the states using IMU in the time interval of the current frame and the
previous frame as the initial value for the next back-end optimization. Simultaneously, the pre-integration
is used as a measurement between the continuous states during the back-end optimization, which will be
described in Section 4.2.1.

The processing of acquiring point features and structural features is divided into two threads. After
IMU pre-integration, we will track the old point features through the KLT sparse optical flow algorithm
[41] and maintain a minimum number of point features. When the number of point features is insufficient,
new point features will be added. In consideration of the efficiency, a FAST detector [42] is used to extract
the corner features; furthermore, meshing and non-maximal suppression are used to control the uniform
distribution of the extracted point features. We then use RANSAC with an essential model test to remove
outliers. When the inlier rate is too low (lower than 0.7), we use the homograph model to perform further
RANSAC verification to prevent degradation of the essential matrix due to pure rotation. While processing
point features, we extract and match the structural feature of the keyframe as described in Section 4.2.2.
The keyframe is decided based on the following three criteria:

1. There are many newly observed landmarks.
2. There are many untracked landmarks.
3. The average parallax between point features matched between successive frames is large.

Back End. The back end is mainly based on the sliding window tightly-coupled method for state
estimation. First of all, point management is carried out for the tracking results of the front-end point
features. We represent landmark by the back-projection of the first observed point feature and its
corresponding inverse depth. Then, according to the prior residual, point feature residuals, structural
feature residuals, and IMU pre-integration residuals, a Maximum-a-Posteriori (MAP) estimation based
on sliding window is carried out as described in detail in Section 4.3. Finally, landmarks and structural
feature measurements with a large error need to be culled because of the change of the optimized states. If
the inverse depth of the landmarks is negative, we need to cull the observations of the landmark and all
corresponding point features. If the angle error between the corresponding structural feature observation
of a frame in the sliding window and the maintained structural feature state is greater than the threshold
(6 degrees), the corresponding structural feature observation of that frame would be culled.

4.2. Front End

4.2.1. IMU Pre-Integration

The raw measurements of the gyroscope and accelerometer can be obtained from IMU, which
represents the measurements of the body frame. The gyroscope measurement ω̂B and accelerometer
measurement âB are affected by gyroscope bias bB

ω, accelerometer bias bB
a , gyroscope noise nB

ω,
and accelerometer noise nB

a . The measurements of time step t can be expressed as:

ω̂B
t = ωB

t + bB
ωt + nB

ωt

âB
t = R(Bt qW)(aW

t + gW) + bB
at + nB

at

(3)

where R(Bt qW) rotates the acceleration of the body in the inertial frame to the representation in the body
frame, and gW is the gravity vector in the inertial frame. As in [4,16], we assume that the noises of the
gyroscope and accelerometer are zero-mean Gaussian white noises, nB

ω ∼ N (03×1, Σω), nB
a ∼ N (03×1, Σa).
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The noises of gyroscope bias and accelerometer bias are modeled as random walk noises; therefore, its
derivative are Gaussian noises, nB

bω
∼ N (03×1, Σbω

), nB
ba
∼ N (03×1, Σba).

Using the IMU measurements ω̂B and âB in the time interval of [i, j], we can use (3) to propagate the
body states WpBi , WvBi , WqBi at time i to obtain the states WpBj , WvBj , WqBj at time j. The nominal-state
kinematics in continuous time is shown in (4) :

WpBj = WpBi +W vBi ∆t +
∫∫

t∈[i,j]
(R(WqBt)(âB

t − bB
at)− gW)δt2

WvBj = WvBi +
∫

t∈[i,j]
(R(WqBt)(âB

t − bB
at)− gW)δt

WqBj =
∫

t∈[i,j]
WqBt ⊗

[
0

1
2 (ω̂

Bt − bB
ωt)

]
δt

(4)

where ∆t is the time interval between i and j. From (4), we can see that the propagation of states is based on
the position, velocity, and rotation at the time i. When the starting states change, subsequent states need to
be re-propagated. Using an optimization-based approach, we need to re-propagate the IMU measurements
during each iteration that will cause a change in the starting states, which is very time consuming. To
avoid repeated re-propagation, we rewrite (4) as (5) and (6), and decompose the starting states from the
integral, and make the integral being carried out in the local frame:

WpBj = WpBi +W vBi ∆t− 1
2

gW∆t2 + R(WqBi )Bi αBj

WvBj = WvBi − gW∆t + R(WqBi )Bi βBj

WqBj = WqBi ⊗ Bi γBj

(5)

where

Bi αBj =
∫∫

t∈[i,j]
R(Bi qBt)(âB

t − bB
at)δt2

Bi βBj =
∫

t∈[i,j]
R(Bi qBt)(âB

t − bB
at)δt

Bi γBj =
∫

t∈[i,j]
Bi qBt ⊗

[
0

1
2 (ω̂

Bt − bB
ωt)

]
δt.

(6)

As can be seen from (6), the IMU integration measurements in the time interval of [i, j] take Bi as
a reference frame, which is only related to bias and is called IMU pre-integration measurements for
restricting the states of consecutive keyframes. When the bias error is slight in optimization, it will
not be re-propagated, and IMU pre-integration measurement error is considered to be caused by a tiny
perturbation of bias, so we use a first-order approximation to update it:

Bi αBj ≈ Bi α̂Bj + Jα
bω

δbB
ωi

+ Jα
ba

δbB
ai

Bi βBj ≈ Bi β̂
Bj + Jβ

bω
δbB

ωi
+ Jβ

ba
δbB

ai

Bi γBj ≈ Bi γ̂Bj ⊗
[

1
1
2 Jγ

bω
δbB

ωi

] (7)
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where Jα
bω

, Jα
ba

, Jβ
bω

, Jβ
ba

, Jγ
bω

are the Jacobian matrices of IMU pre-integrated measurements with respect to

bias, such as Jα
bω

= ∂Bi α
Bj

∂δbB
ωi

, which can be obtained through the error state transfer matrix.

In practice, IMU measurements need to be pre-integrated in discrete time, and sensor noises need to
be considered. We propagate states at time l by mid-point integration of IMU measurements at the discrete
time of l, l+1. In (8), δtl is the time interval between l and l+1:

Bi αBl+1 = Bi αBl + Bi βBl δtl +
1
2

āBδtl
2

Bi βBl+1 = Bi βBl + āBδtl

Bi γBl+1 = Bi γ̂Bl ⊗
[

1
1
2 ω̄B

]
δtl

(8)

where

āB =
1
2
(R(Bi qBl )(âB

l − bB
al
− nB

al
) + R(Bi qBl+1)(âB

l+1 − bB
al+1
− nB

al+1
))

ω̄B =
1
2
((ω̂Bl − bB

ωl
− nB

ωl
) + (ω̂Bl+1 − bB

ωl+1
− nB

ωl+1
))

(9)

Finally, as manifested in (10), we can derive the error state kinematics in discrete time based on the

mid-point integration method. We represent quaternion as minimum parameterization q ≈ q̂⊗
[

1
1
2 δθ

]
,

and we define Jθl
= R(Bi qBl )

[
âB

l − bB
al

]
×

.


δBi αBl+1

δBi βBl+1

δBi γBl+1

δbB
al+1

δbB
ωl+1

 =


I Iδt − 1

4 (Jθl
+ Jθl+1

(I− [ω]× δt))δt2 − 1
4 (

Bi qBl + Bi qBl+1 )δt2 1
4 Jθl+1

δt3

0 I − 1
2 (Jθl

+ Jθl+1
(I− [ω]× δt))δt − 1

2 (
Bi qBl + Bi qBl+1 )δt 1

2 Jθl+1
δt2

0 0 I− [ω]× δt 0 −Iδt
0 0 0 I 0
0 0 0 0 I




δBi αBl

δBi βBl

δBi γBl

δbB
al

δbB
ωl



+



1
4

Bi qBl δt2 − 1
8 Jθl+1

δt3 1
4

Bi qBl+1 δt2 − 1
8 Jθl+1

δt3 0 0
1
2

Bi qBl δt − 1
4 Jθl+1

δt2 1
2

Bi qBl+1 δt − 1
4 Jθl+1

δt2 0 0
0 1

2 Iδt 0 1
2 Iδt 0 0

0 0 0 0 Iδt 0
0 0 0 0 0 Iδt





nB
al

nB
ωl

nB
al+1

nB
ωl+1

nB
bl

a

nB
bl

ω



(10)

We summarize (10) and use the simplified linear model to propagate the covariance according to the
forward propagation method of covariance [21]. Moreover, we can also iteratively calculate the jacobian
matrix of the pre-integration measurements for the error states and provide the matrix blocks to (7).

ζi,l+1 = Flζi,l + Glnl

Σi,l+1 = FlΣi,l FT
l + GlQlG

T
l

Ji,l+1 = Fl Ji,l

(11)
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where Ql ∈ R18×18 is the covariance matrix of the raw IMU noise and initial condition Σi,i = 015×15,
Ji,i = I15×15. Therefore, we can express the pre-integration noise of IMU in the time interval [i, j] of two
consecutive keyframes as:

ζi,j =
[
δBi αBj

T
δBi βBj

T
δBi γBj

T
δbB

aj

T
δbB

ωj

T
]T
∼ N (015×1, Σi,j) (12)

4.2.2. Structural Feature Detection and Matching

The essence of the structural feature extraction is to classify the line segments in the image and then
calculate the three orthogonal dominant directions {di|i=0,1,2}. The orthogonal vanishing directions can be
expressed as an orthogonal basis form, then we can obtain the representation of the structural feature in
the camera frame CqVPs = q(

[
d0 d1 d2

]
3×3

). We use the EDline algorithm [43] to extract line segments.

Before the initialization of the structural feature is finished, we extract VPs using a combined RANSAC and
exhaustive method proposed by Lu et al. [34]. After the initialization is completed, the quick vanishing
point extraction is carried out based on the known vertical direction. Suppose the angle errors between
the extracted structural feature and the global state of the structural feature in each dominant direction
are small (less than 6 degrees). In that case, it is considered to be a useful measurement of the structural
feature.

Global state initialization for structural features

We maintain each structural feature measurement with a sliding window of the same size as the
back-end sliding window. When the back-end initialization is complete, we begin the global state
initialization of the structural features. Ideally, each structural feature measurement should be the same
rotation WqVPs = WqB ⊗ BqC ⊗ CqVPs after being transformed to the world frame, but noise perturbation
prevents them from overlapping. After the structural features in the sliding window are transformed
to the world frame, spherical interpolation is carried out in turn to obtain W q̄VPs. If the angle error of
each dominant direction between W q̄VPs and the measurement of structural features in the world frame
is less than the angle threshold (less than 6 degrees), the measurement is considered as an inlier. If the
inlier rate is greater than 0.8, it is considered a successful initialization. Otherwise, the structural feature
measurement with the maximum error is discarded.

Structural feature extraction

After the global state initialization of structural features is completed, we propose a fast and
straightforward method to extract structural feature based on the known vertical direction. The whole
process is shown in Figure 2.
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VPimg

Yc

Xc

Zc

VPinit

VP1

(a)

VP1

Yc

Xc

Zc

(b)
Yc

Xc

Zc

P
λ

θ

(c)
Yc

Xc

Zc
VP2

VP1

VP3

(d)

Figure 2. These figures show the extraction process of three orthogonal VPs (structural feature). Figure (a)
shows the vertical direction VPinit obtained after initialization is projected onto the image to obtain VPimg,
and the line segments are classified. The line segments belonging to the vertical direction are recomputed
to obtain the vanishing point VP1 in the vertical direction of this frame. Figure (b) shows VP2 and VP3

hypotheses generated by uniform sampling on the circle where the normal plane of VP1 intersects the
equivalent sphere. Figure (c) shows the VP hypotheses generate by all line segment pairs projected onto
the polar grid. Figure (d) shows all the VP2 and VP3 hypotheses mapped into the polar grid, and the
hypothesis corresponding to the maximum weight is the final global optimal VPs.

First, as shown in Figure 2a, we project the dominant vertical direction into the image to obtain VPinit
and find the line segment set {lv} belonging to this dominant direction. We define the angle between the
vanishing point and the line segment, as shown in Figure 3. When the angle is less than 6 degrees, we
believe that the line segment belongs to this dominant direction. We can use the 3× n matrix L formed by
{lv} to construct the least square problem to get the first vanishing point VP1: LTVP1 = 0n×1. It can be
seen that the known vertical direction only provides us with an initial value so that we can distinguish the
line segments. We consider a disturbance in WqC, which leads to a slight error in the vertical direction
from the world frame to the camera frame.

VPimgp1

p2pmid
 θ

Figure 3. VPimg is the projected position of the vanishing point in the image space, p1 and p2 are the two
endpoints of the line segment, and pmid is the midpoint of the line segment. Ideally, if the segment frame is
in the dominant direction corresponding to the vanishing point, then VPimg should be on the extension of
the segment.

The orthogonal relation is satisfied between VP1 and VP2. VP2 must be on a circle formed by the
intersection of the normal plane of VP1 and the equivalent sphere, as shown in Figure 2b. Therefore, we
take n degree as a step size and sample uniformly on the circle to generate the hypothesis of (360/n) VP2s.
In our work, we set n as 0.5. Meanwhile, VP3 is obtained by the cross product of VP1 and VP2.

To quickly calculate the global optimal vanishing point hypotheses, we use the polar grid proposed
in [34], which maps the intersection points obtained by all line segment pairs in the image to the polar
grid, and calculates the corresponding weight in Figure 2c:

θ = acos(Px/norm(P))

λ = atan2(Px, Py) + π
(13)
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The weight is defined as lresponse
1 × lresponse

2 , where the response is the proportion of the line segment
in the image. This means that the vanishing point hypothesis generated by the more obvious line segment
gets a higher weight. After constructing the polar grid, a gaussian smoothing filter is used to reduce the
influence of measurement noise. Finally, we only need to map all VP2 and VP3 obtained from the vanishing
point hypotheses into the polar grid, and select the vanishing point with the maximum corresponding
weight in the polar grid as the final optimal vanishing point Figure 2d.

Structural feature matching

Our structural feature comprises three orthogonal vanishing points, so the matching problem of the
structural feature is transformed into the matching problem of vanishing point direction. Since the vertical
direction is known, we only have to match one dominant direction. First of all, for continuous keyframes
I and J, we use WqCI and WqCJ to convert their respective structural feature measurement to the world
frame, respectively. When the included angle between dominant directions of I and J is less than 6 degrees,
the structural features are considered to be well matched. In considering that if the pose drift is too large,
the matching will fail. So when the above matching method fails, we use the relative rotation CI qCJ of the
IMU pre-integration between keyframes I and J to transform the structural feature measurement in I to J
for rematching.

4.3. Back End

4.3.1. Tightly-Coupled Nonlinear Optimization

In this work, we first define the state variable X in the sliding window, which consists of body states,
landmark inverse depths, and three orthogonal VPs in the Earth’s inertial frame. In our work, we define
three orthogonal VPs to make up a structural feature and explain in Section 4.2.2 how to initialize the
global structural feature in the inertial frame. Since VPs are calculated based on the image line segments
with noises that may reflect in the global structural feature, we optimize the global structure feature as a
state WqVPs in the sliding window. For the consistency of our VIO system, we use quaternion to represent
the orthogonal basis composed of three orthogonal VPs:

X =
[
{Xl}l∈F , {λm}m∈M , WqVPs

]
Xl =

[
WpBl , WvBl , WqBl , bB

al
, bB

ωl

]
, l ∈ F

(14)

where X is the state of the body frame corresponding to the keyframe in the sliding window, λ represents
the inverse depth of each landmark, the inverse depth refers to the inverse depth corresponding to the
back-projection of the starting point feature of the landmark point-track. We use F andM to denote
keyframes and landmarks in the sliding window. In line with other quaternion state update strategies, we
incrementally update the global structure feature state on the manifold.

Then we denote the measurementZ as the observation on the stateX . In (15), Zv
l represents the point

feature measurement of the mth landmark observed in the lth keyframe. If zv
l,m is the starting point feature

of the landmark point-track, we rewrite it as zv
ls ,m. Cl qVPs represents the orthogonal basis measurement of

the VPs under the camera frame of the lth keyframe. Bp,q represents the IMU pre-integration measurements
between successive keyframes p and q:

Z =
[{

Zv
l , Cl qVPs

}
l∈F

,
{
Bp,q

}
(p,q)∈F

]
Zv

l =
[
{zv

l,m}m∈M
]

, l ∈ F
(15)
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We apply Maximum-a-Posteriori (MAP) criterion to estimate the state of X with the measurement Z ,
i.e.,:

X ∗ = argmax
X

p(X |Z) (16)

With Bayes’ rule, X |Z in (16) can be decomposed by the prior p(X ) and the likelihood p(Z |X ), i.e.,

p(X |Z) ∝p(X )p(Z |X )

=p(X ) ∏
(l,p,q)∈F

p(Zv
l , Cl qVPs,Bp,q|X )

=p(X ) ∏
(ls ,l)∈F

∏
m∈M

p(zv
ls ,m, zv

l,m|Xls , Xl , λm) ∏
l∈F

p(Cl qVPs|Xl ,
WqVPs)

∏
l1∈F

∏
l2∈F

p(Cl1 qVPs, Cl2 qVPs|Xl1 , Xl2) ∏
(p,q)∈F

p(Bp,q|Xp, Xq)

(17)

Under the assumption of Gaussian distribution, we use the negative logarithm to represent the
Maximum-a-Posteriori (MAP) problem, which transforms the problem into a minimum negative logarithm
problem. In other words, we need to find the optimal estimation on the state X , which can minimize the
Mahalanobis norm of all measurement residuals:

X ∗ = argmin
X
{‖rP − HPX ‖2

ΣP
+ ∑

l∈F
∑

m∈M
ρ(‖rF(zv

ls ,m, zv
l,m,X )‖2

ΣF
) + ∑

l∈F
ρ(‖rAr (

Cl qVPs,X )‖2
ΣAr

)

+ ∑
l1∈F

∑
l2∈F

ρ(‖rRr (
Cl1 qVPs, Cl2 qVPs,X )‖2

ΣRr
) + ∑

(p,q)∈F
‖rI(Bp,q,X )‖2

ΣI
}

(18)

where {rP, HP} represent the prior information obtained after the oldest keyframe is marginalized from
the sliding window. rF is the point feature of the reprojection residual. rAr is the absolute rotation residual
between the structural feature measurement of keyframe and the global structural feature state. At
the same time, rRr is the relative rotation residual between the structural feature measurement of each
keyframe. rI is the IMU pre-integration measurement residual between successive keyframes in the sliding
window. ρ is the robust function used to suppress outliers. We use the factor graph in Figure 4 to illustrate
this least square problem. In this work, we use the Levenberg–Marquardt (LM) algorithm to solve this
nonlinear optimization problem in (18). The detailed residual terms and Jacobian matrixes are given in the
following sections.

Prior Factor

Re-projection Factor

Absolute Rotation Factor

Relative Rotation Factor

IMU Pre-integration Factor

Body State 

Landmark

VPs

VPs

M0 M1 M3M2

T3T2T1T0

X0 X1 X2

Figure 4. The factor graph represents our optimization problem. Circles represent the states of being
optimized, and squares represent the factors as probability constraints between states.



Remote Sens. 2020, 12, 3818 13 of 27

4.3.2. Point Feature Measurement Factor

We define the measurement residual of the point feature as the reprojection error on the normalized
image plane. The continuous observations of the same landmark form a point-track, and there is a
reprojection error between the tracked point feature and the first observation of the landmark:

rF(zv
ls ,m, zv

l,m,X ) =


XP̂v

l,m
ZP̂v

l,m

− uPv
l,m

YP̂v
l,m

ZP̂v
l,m

− vPv
l,m



Pv
ls ,m = π−1(zv

ls ,m, λm) =


XPv

ls ,m

YPv
ls ,m

ZPv
ls ,m

 , pv
l,m = π−1(zv

l,m) =

uPv
l,m

vPv
l,m

1


P̂v

l,m = [(BTC)−1(WTBl )−1WTBls BTC(Pv
ls ,m)H ]0:2

= BRCT
(WRBl

T
((WRBls (BRCPv

ls ,m + BpC) + WpBls )−WpBl )− BpC)

=


XP̂v

l,m

YP̂v
l,m

ZP̂v
l,m



(19)

π−1 is the back-projection function. According to the pixel position zv
ls ,m of the landmark in the lsth

keyframe image when it is first observed and corresponding inverse depth λm, the landmark position
Pv

ls ,m in the lsth camera frame can be obtained. H stands for the homogeneous form of the landmark
position. P̂v

l,m is obtained by projecting the landmark to the lth camera frame and pv
l,m is the point feature

measurement on the normalized image plane corresponding to the lth keyframe image. The reprojection
error between P̂v

l,m and pv
l,m on the normalized image plane forms the point measurement residual.

We use the chain rule to derive the Jacobian matrix of the point feature factor, and the states to be
optimized can be expressed as: X F =

[WpBls , WqBls , WpBl , WqBl , λm
]
. The Jacobian matrix is derived as

follows:

JF =
∂rF

∂P̂v
l,m

[
∂P̂v

l,m
∂XW p

Bls

∂P̂v
l,m

∂XW q
Bls

∂P̂v
l,m

∂XW pBl

∂P̂v
l,m

∂XW qBl

∂P̂v
l,m

∂X λm

]

∂rF

∂P̂v
l,m

=


1

ZP̂v
l,m

0 −
XP̂v

l,m
(ZP̂v

l,m
)2

0 ZP̂v
l,m
−

YP̂v
l,m

(ZP̂v
l,m

)2


∂P̂v

l,m

∂XW pBls

= BRCTWRBl
T

,
∂P̂v

l,m

∂XW qBls

= BRCTWRBl
TWRBls [PvB

ls ,m]×

∂P̂v
l,m

∂XW pBl

= −BRCTWRBl
T

,
∂P̂v

l,m

∂XW qBl

= BRCT
[PvB

l,m]×

∂P̂v
l,m

∂X λm

= − 1
λm

BRCTWRBl
TWRBls BRCPv

ls ,m

(20)
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where

PvB
ls ,m = [BTC(Pv

ls ,m)H ]0:2

PvB
l,m = [(WTBl )−1WTBls BTC(Pv

ls ,m)H ]0:2.
(21)

4.3.3. Structural Feature Measurement Factor

In order to make use of the orthogonality and parallelism of the structural feature, absolute rotation
residual and relative rotation residual are defined, respectively, as the constraint factors of structure
features. The absolute rotation residual is used to reduce accumulated rotation errors of our VIO system
over a long time and refine the global VPs state. The relative rotation residuals are used to constrain the
relative rotation between the keyframes where the structural feature can be observed.

Absolute Rotation Residual

rAr (
Cl qVPs,X ) = 2[(WqVPs)−1 ⊗WqBl ⊗ BqC ⊗ Cl qVPs]xyz (22)

where Cl qVPs is the measurement of the structural feature corresponding to the lth keyframe in the camera
frame. WqVPs is a global structural feature state. The structural feature observed in this keyframe can be
represented in the world frame by the body rotation WqBl of this keyframe, forming an absolute rotation
residual with WqVPs.

The states to be optimized in the absolute rotation factor are X Ar = [WqBl , WqVPs], and the
corresponding Jacobian matrix is as follows:

JAr =
[

∂rAr
∂XW θBl

∂rAr
∂XW θVPs

]
∂rAr

∂XW θBl

= ([(WqVPs)−1 ⊗WqBl ]L[
BqC ⊗ Cl qVPs]R)br

∂rAr
∂XW θVPs

= ([(WqVPs)−1 ⊗WqBl ⊗ BqC ⊗ Cl qVPs]R)br

(23)

where (·)br represents the 3× 3 submatrix block in the bottom right corner of matrix [·]. Quaternion is
represented by three-dimensional error state δθ to prevent over-parameterization, when updating the

quaternion state, q̂⊗
[

1
1
2 δθ

]
is used for updating.

Relative Rotation Residual

rRr (
Cl1 qVPs, Cl2 qVPs,X ) = 2[(WqBl1 ⊗ BqC ⊗ Cl1 qVPs)−1 ⊗WqBl2 ⊗ BqC ⊗ Cl2 qVPs]xyz (24)

where Cl1 qVPs,Cl2 qVPs are the measurements of the structural feature corresponding to l1th and l2th
keyframes in the camera frame, respectively. The structural feature measurement Cl2 qVPs in the l2th
keyframe can be represented in l1th keyframe by the relative rotation between keyframes. Similar to the
absolute rotation residual, we define the rotation error between Cl2 qVPs after the rotation transformation
and Cl1 qVPs as the relative rotation residual.

For the relative rotation factor, the states associated with it to be optimized are X Rr = [WqBl1 , WqBl2 ],
and the corresponding Jacobian matrix is:
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JRr =

[
∂rRr

∂X
W θ

Bl1

∂rRr
∂X

W θ
Bl2

]
∂rRr

∂X
W θ

Bl1

= −([(WqBl2 ⊗ BqC ⊗ Cl2 qVPs)−1 ⊗WqBl1 ]L[
BqC ⊗ Cl1 qVPs]R)br

∂rRr
∂XW θ

Bl2

= ([(WqBl1 ⊗ BqC ⊗ Cl1 qVPs)−1 ⊗WqBl2 ]L[
BqC ⊗ Cl2 qVPs]R)br

(25)

4.3.4. IMU Measurement Factor

IMU pre-integration (Section 4.2.1) can be used to constrain the states between two consecutive
keyframes in the sliding window. IMU measurement residual is defined as follows:

rI(Bp,q,X ) =


rp

rv

rθ

rba

rbω

 =



WRBp T
(WpBq −WpBp −WvBp ∆t + 1

2 gW∆t2)− Bp αBq

WRBp T
(WvBq −WvBp + gW∆t)− Bp βBq

2[(Bp γBq)−1 ⊗ (WqBp)−1 ⊗WqBq ]xyz

bB
aq − bB

ap

bB
ωq − bB

ωp

 (26)

where Bp αBq , Bp βBq and Bp γBq are the IMU pre-integration measurements, and ∆t is the time interval
between the pth and qth consecutive keyframes.

IMU measurements constrain all body states of two consecutive frames, so we need to optimize
X I = [Xp, Xq]. The Jacobian matrix corresponding to the IMU measurement residual can be obtained as:

J I =
[

∂rI
∂X Xp

∂rI
∂X Xq

]

∂rI
∂X Xp

=



−WRBp
T −WRBp

T
∆t [WRBp

T
(WpBq −WpBp −WvBp ∆t + 1

2 gW ∆t2)]× −Jα
ba
−Jα

bω

0 −WRBp
T

[WRBp
T
(WvBq −WvBp + gW ∆t)]× −Jβ

ba
−Jβ

bω

0 0 (−[(WqBq )−1 ⊗WqBp ]L[
Bp γBq ]R)br 0 Jγ

bω

0 0 0 −I 0
0 0 0 0 −I


15×15

∂rI
∂X Xq

=


−WRBp

T 0 0 0 0

0 WRBp
T 0 0 0

0 0 (−[(Bp γBq )−1 ⊗ (WqBp )−1 ⊗WqBq ]L)br 0 0
0 0 0 I 0
0 0 0 0 I


15×15

(27)

5. Experimental Results

We evaluate the performance of the proposed Manhattan world based VIO system on the public
benchmark datasets and also in the mobile phone based indoor field tests. The state-of-the-art optimization
methods are compared in both tests. We analyze the computing complexity of the proposed method, the
running time of each main module is compared on the mobile phone. All of our comparative experiments
are carried out on a computer with an Intel Core i5-8250 CPU at 1.6GHz, and 16 GB RAM. The Android
phone we use to record the running time is HUAWEI Mate30 equipped with a Kirin 990 5G processor and
8 GB memory.
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5.1. Dataset Comparison

We evaluate our VIO system on two public datasets: EuRoC dataset [44] and TUM-VI dataset
[45], and we compare the performance of our system with OKVIS [32], VINS-Mono [16], PL-VIO [19],
and ORB-SLAM3 [33], respectively. These are all optimization-based systems, among which OKVIS,
VINS-Mono, PL-VIO are sliding window optimization-based systems, and ORB-SLAM3 is a SLAM system
based on local map tracking and map reuse. OKVIS is the first VIO system to combine a sliding window
approach with a tightly-coupled optimization approach. Based on the sliding window optimization,
VINS-Mono adds loop closure optimization of 4 DoF and robust initialization, which results in a complete
VI-SLAM system. PL-VIO adds line features based on VINS-Mono, which improves the performance
of the point feature-based approach in texture-less regions. ORB-SLAM3 is a complete SLAM system
containing visual, visual-inertial, and multi-map SLAM; the use of a local map for optimization can help
to achieve extremely high accuracy on public datasets within centimeters.

5.1.1. EuRoC Dataset

EuRoC dataset [44] is captured by a micro aerial vehicle (MAV) in two scenes. It contains 752 × 480
resolution stereo images from global shutter cameras at 20 fps and synchronized IMU measurements at
200 Hz. The ground truth of the entire trajectory is obtained by using the VICON motion capture system.
In this work, we use IMU and images from the left camera as inputs for each system.

Unlike point features and line features, structural features encode global rotation information.
Regardless of the running time of the system, we can always observe the same structural feature, which
can effectively reduce the accumulated rotation error of the system, as well as decrease the translation error
accordingly. As shown in Figure 5, Figure 5a is processed by our system in MH_03_medium sequence,
while Figure 5b is processed in V1_02_medium sequence. Red, green, and blue lines represent the three
orthogonal orientations in the scene, respectively. Meanwhile, × is used to indicate the position of the
vanishing point corresponding to the dominant direction of red in the image. Machine Hall in the EuRoC
dataset is a scene that fully conforms to the Manhattan world hypothesis. Simultaneously, the VICON
Room has some interference in other directions besides the three orthogonal directions of the room.
However, our initial structural feature method can help us filter out other directions and find the three VPs
corresponding to the room structure. It can be seen that the structural features are global and the MAV can
observe the structural features in different places so that the accumulated errors are eliminated.

(a) Structural features in MH_03_medium

Figure 5. Cont.
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(b) Structural features in V1_02_medium

Figure 5. The performance of structural features in MH_03_medium and V1_02_medium sequences of the
EuRoC dataset. The structural features encode the global rotation information and effectively restricts the
accumulated rotation error, thus reducing the translation error.

The trajectories are estimated by four open-source VIO/VI-SLAM systems and our proposed system
from all sequences of the EuRoC dataset. For numerical analysis, we first use SE(3) to align the estimated
trajectory with ground truth. Absolute pose error (APE) is used as the evaluation metric of trajectory error.
For the fair comparison, we use the default parameters of these open-source systems and turned off the
loop closure of VINS-Mono and ORB-SLAM3. In Table 1, we give the root mean square error (RMSE)
of translation and rotation between the estimated trajectories and ground truth, and corresponding line
charts, as shown in Figure 6.

Table 1. The root mean square error (RMSE) of translation and rotation in all the EuRoC dataset sequences.
To be easily recognized, the top 2 results of translation and rotation estimation are represented in bold fonts.

Seq. OKVIS VINS-Mono PL-VIO ORB-SLAM3 Proposed
Trans. Rot. Trans. Rot. Trans. Rot. Trans. Rot. Trans. Rot.

MH_01_easy 0.432 0.108 0.171 0.038 0.152 0.032 0.0341 0.0321 0.1062 0.0322

MH_02_easy 0.339 0.109 0.146 0.069 0.172 0.062 0.0731 0.0211 0.1002 0.0292

MH_03_medium 0.241 0.083 0.285 0.039 0.339 0.050 0.0401 0.0281 0.1352 0.0302

MH_04_difficult 0.360 0.084 0.345 0.038 0.332 0.041 0.0961 0.0232 0.1432 0.0231

MH_05_difficult 0.472 0.073 0.296 0.0192 0.278 0.026 0.0501 0.0141 0.2182 0.023
V1_01_easy 0.100 0.160 0.083 0.150 0.084 0.149 0.0391 0.1362 0.0522 0.1261

V1_02_medium 0.167 0.128 0.121 0.0812 0.202 0.115 0.0151 0.0491 0.1072 0.091
V1_03_difficult 0.227 0.146 0.178 0.174 0.191 0.132 0.0411 0.0561 0.1052 0.0712

V2_01_easy 0.113 0.087 0.092 0.051 0.099 0.051 0.0612 0.0171 0.0431 0.0232

V2_02_medium 0.185 0.121 0.175 0.112 0.1522 0.0662 0.0281 0.0221 0.170 0.100
V2_03_difficult 0.276 0.125 0.231 0.066 0.265 0.079 0.0671 0.0171 0.1612 0.0262

(a) Translation RMSE (b) Rotation RMSE

Figure 6. The comparison of root mean square error (RMSE) of translation and rotation in the EuRoC dataset.

It can be seen from Table 1 and Figure 6 that ORB-SLAM3 achieves the best performance in the EuRoC
dataset, which is superior in accuracy to other systems, except for V2_01_easy sequence. The reason is
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that it utilizes a local map for reprojection residual constraint, which can maximize the use of historical
information without loop closure. This strategy generates high map consistency when tracking point
features stably. However, in addition to point feature extraction, ORB-SLAM3 also needs to calculate point
feature descriptors. The point feature matching in local map tracking is O(n2), which presents a challenge
to pose estimation on mobile phones in real-time.

Compared with the methods based on sliding window optimization such as OKVIS, VINS-Mono,
and PL-VIO, we significantly improved the trajectory accuracy by utilizing the structural features. Except
for MH_05_difficult, V1_02_medium, and V2_02_medium, the translation error and rotation error of other
sequences are all lower than the existing similar systems. At the beginning of the V2_02_medium sequence,
MAV is in a scene with a lot of outlier structure interferences, making it difficult to initialize structural
features and form global constraints for an extended period. This is the main reason why the trajectory
error of the proposed system in this sequence increases significantly.

We also compare the trajectory errors versus time of several sequences to show the advantages of our
proposed system with structural features. Figure 7a–c represents the performance of our system in the
three sequences of MH_02_easy, MH_04_difficult, and V2_01_easy, respectively. From top to bottom are
the estimated trajectory, the rotation error versus time, and the translation error versus time, respectively.
The rotation error of our proposed system is much smaller than that of other optimization-based methods
throughout the trajectory, especially in the MH_02_easy sequence where the MAV moves stably, without
too much fast motion and rotation.

(a) MH_02_easy (b) MH_04_difficult (c) V2_01_easy

Figure 7. The comparison of the trajectories of our proposed system with the ground truth and the
comparison of rotation and the translation errors among all systems.
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5.1.2. TUM-VI Dataset

The TUM-VI dataset [45] is composed of 28 sequences collected in 6 different scenes. In order to verify
the algorithmic performance of our proposed VIO system, we used the corridor scene, which satisfies our
assumptions of the Manhattan world. The TUM-VI dataset provides ground truth from a motion capture
system at the start and end of the sequences. We chose 512 × 512 resolution images and used the default
parameters provided by the TUM-VI dataset to evaluate other open-sourced systems. Our parameters are
consistent with those of VINS-Mono.

This scene has texture-less regions, illumination changes, and other factors that affect the precision of
pose estimation. As shown in Figure 8, when the camera is in pure rotation motion Figure 8a or a scene
with texture-less region Figure 8b and light changes Figure 8c, our system can use structural features to
represent the three dominant directions of the corridor to eliminate the accumulated pose error.

(a) Pure rotation motion. (b) Texture-less region. (c) The light changes.

Figure 8. In the scenes of texture-less region, light change, and pure rotation motion, pose estimation
method based on point features are easily affected. In contrast, structural features provide scene structure
information, an excellent supplement to the point-features based approach.

Consistent with the analysis method of the EuRoC dataset in Section 5.1.1, RMSE of translation
and rotation after the estimated trajectory aligned with the ground truth is given, respectively, as shown
in Table 2 and Figure 9. It is important to note that the aligned parts are only the start and end of the
sequences. It is mentioned in [33] that pose RMSE calculated in this way is about half of the accumulated
drift.

Table 2. The root mean square error (RMSE) of translation and rotation in the corridor sequences of the
TUM-VI dataset. The results of the top 2 translation and rotation performances are represented in bold.

Seq. OKVIS VINS-Mono PL-VIO ORB-SLAM3 Proposed
Trans. Rot. Trans. Rot. Trans. Rot. Trans. Rot. Trans. Rot.

corridor1 0.565 2.403 0.591 1.831 1.206 1.748 0.3162 0.3152 0.1331 0.1661

corridor2 0.434 1.045 0.951 0.640 1.716 0.502 0.0171 0.0231 0.2912 0.3662

corridor3 0.457 1.063 1.334 0.555 1.465 0.498 0.2782 0.0841 0.2581 0.1502

corridor4 0.234 0.557 0.310 0.455 0.2342 0.391 0.255 0.1301 0.1171 0.1312

corridor5 0.387 0.545 0.723 0.235 0.682 0.268 0.0711 0.0841 0.1512 0.0922
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(a) Translation RMSE (b) Rotation RMSE

Figure 9. The line charts represent root mean square error (RMSE) of translation and rotation in the TUM-VI
dataset.

As shown in Table 2 and Figure 9, our proposed VIO system is significantly better than other
open-source systems based on slide-window optimization. In addition to the corridor1 and corridor5
sequences, our translation performance is superior to ORB-SLAM3 without loop closure among the other
sequences. In the corridor sequence, except for the three dominant directions of the corridor itself, there
are few outlier line segments that belong to other directions in the image, which leaves us less noise of
structural feature measurement. Some scenes with texture-less regions in the corridor pose a significant
challenge to the point features-based system, but they have little impact on systems based on structural
features. At the same time, it can be seen from the pose errors of PL-VIO that the addition of line feature
residuals to the optimization items may bring adverse effects.

In Figure 10, we show the result of each system in the corridor1 sequence. We use our proposed
system as a reference trajectory for alignment. As shown in Figure 10a, except for ORB-SLAM3 and our
proposed system, the other methods have an apparent Z-axis drift. From Figure 10b, it can be seen that the
Z-axis drift of PL-VIO and VINS-Mono significantly increase from 220s onwards. We check the motion
state of the camera around this time and find the camera moves rapidly in a texture-less room. As shown
in Figure 11, most point features are lost in VINS-Mono and our system due to darkness and image blur
at this moment. However, our structural features are well extracted. Our system can still measure and
correct rotation according to the structural features in this scene, thus reducing the Z-axis drift.
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(a) The estimated trajectory in corridor1 sequence

(b) Z-axis translation versus time in corridor1 sequence

Figure 10. The performance of each system in the corridor1 sequence is shown in the figure. We give
the estimated trajectory and side view of each system after alignment, and we give the curve of Z-axis
translation versus time.

5.2. Field Test

We also carried out experiments on a mobile phone to compare the performance of various systems.
We evaluated the performance of each system by walking back and forth along the same straight line in a
48-meter corridor scene. Because of the limitation of not having expensive motion capture devices, we
strictly tried our best to restrict the position and height of the phone to make sure that the phone was
moving along a straight line and at a steady height (along the line on the floor). For real-time performance,
we used 480 × 480 resolution images to conduct experiments on the phone. Simultaneously, we collected
640 × 640 resolution images from the mobile phone to do offline experiments to compare the system
performances. As shown in Figure 12a, our movement in the corridor is different from that in the TUM-VI
dataset. We turn more quickly, which makes images very blurred. Figure 12b shows how our system
works on a mobile phone in real-time.
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(a) Raw image (b) VINS-Mono (c) Proposed

Figure 11. The feature extraction performance of VINS-Mono and our proposed system when the camera
does fast motion. In VINS-Mono, the blue point features represent the lost track.
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(a) Raw image (b) Proposed system in phone

Figure 12. Subfigure (a) are images we collect in the corridor using an Android phone. It can be seen that
texture-less area and the image blur appear in our experiment. Subfigure (b) shows the real-time operation
of our system on the mobile phone, where the top of the image is the estimated trajectory. As can be seen,
after we walk back and forth along the corridor three times, the trajectory is still in a straight line.

For a more intuitive comparison, we compare our trajectory with those estimated trajectories by other
systems in Figure 13a. It can be seen in Figure 13b that after walking back and forth twice, the cumulated
angle drift of our proposed system is significantly smaller than those of other methods. Moreover, the
reduction of angle drift also makes the Z-axis drift of our system much smaller than those of other systems.
In our corridor sequence, ORB-SLAM3 has the most significant drift. Because point features are wholly lost
when we turn quickly, the continuity of the local map is broken. PL-VIO is second only to our proposed
system, indicating that line features create useful constraints in our environment.

(a) The trajectory estimated by our system is respectively compared to the trajectories of other systems.

(b) The translation of the estimated trajectories in the Z-axis.

Figure 13. We show the estimated trajectories of other systems aligned with our trajectory and show the
translation of the Z-axis of each system trajectory in time and space, respectively.
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We also record the elapsed time of each major module while the phone is running, as shown in Figure
14. As can be seen from the cyan curve, even using EDline [43], the fastest line segment detector, it still
takes 18 ms on average to extract on the mobile phone. At the same time, the red curve represents the
elapsed time of structure feature extraction. It can be seen that when the global structural feature is not
initialized, the method in [34] is used to extract the vanishing points in three directions, and the elapsed
time is about 36 ms. After the successful initialization, the proposed structural feature extraction method
can reach below 6 ms.

Figure 14. The time consumption of each main module in the mobile terminal.

6. Conclusions and Future works

In this work, we propose a novel tightly-coupled monocular vision-inertial odometry, which is based
on the sliding window optimization method. The property of the structural feature is incorporated into
the residual term for tightly-coupled optimization. The method is effective in the Manhattan world where
the structural feature as a global measurement can constrain the rotation error, and thus improve the
translation accuracy of the system. When considering the noise in extracting the structural feature, we take
the global structure feature as the state variable, and update it on the rotation manifold. The performance
of our system has been tested on two benchmark datasets and the field tests. Both of the results show that
the proposed system is superior to the listed mainstream open-source systems based on sliding window
optimization. We achieve higher precision in some sequences than the ORB-SLAM3 without loop closure,
especially in the situations when the images are texture-less, dark, and blurry. In order to achieve low
computation complexity, we further propose to quickly extract structural features based on the known
vertical dominant direction. With the improvements, the VIO system we proposed can run in real-time
on a mobile phone and the whole extraction process can be completed within 6 ms on the tested mobile
phone.

With respect to future work, it has been noticed that there are cases of the Atlanta world (AW) [46],
which consists of multiple Manhattan worlds with the same vertical dominant direction. How to optimize
rotation error with multiple structural features in the Atlanta world will be left to future research.
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