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Abstract: The use of the spatiotemporal data fusion method as an effective data interpolation method
has received extensive attention in remote sensing (RS) academia. The enhanced spatial and temporal
adaptive reflectance fusion model (ESTARFM) is one of the most famous spatiotemporal data fusion
methods, as it is widely used to generate synthetic data. However, the ESTARFM algorithm uses
moving windows with a fixed size to get the information around the central pixel, which hampers
the efficiency and precision of spatiotemporal data fusion. In this paper, a modified ESTARFM
data fusion algorithm that integrated the surface spatial information via a statistical method was
developed. In the modified algorithm, the local variance of pixels around the central one was used as
an index to adaptively determine the window size. Satellite images from two regions were acquired
by employing the ESTARFM and modified algorithm. Results showed that the images predicted
using the modified algorithm obtained more details than ESTARFM, as the frequency of pixels with
the absolute difference of mean value of six bands’ reflectance between true observed image and
predicted between 0 and 0.04 were 78% by ESTARFM and 85% by modified algorithm, respectively.
In addition, the efficiency of the modified algorithm improved and the verification test showed the
robustness of the modified algorithm. These promising results demonstrated the superiority of the
modified algorithm to provide synthetic images compared with ESTARFM. Our research enriches the
spatiotemporal data fusion method, and the automatic selection of moving window strategy lays the
foundation of automatic processing of spatiotemporal data fusion on a large scale.

Keywords: spatiotemporal data fusion; ESTARFM; moving window strategy; satellite images

1. Introduction

Recently, remote sensing has become a universal technology to monitor dynamic changes of resources
and the environment [1]. The spatiotemporal heterogeneity, spatiotemporal correlation, and scale
characteristics of geographical phenomena pose great challenges to the monitoring and analytical
methods of remote sensing. Due to the limitation of the satellite revisit period, tradeoff between
scanning swath and pixel size of sensor, observation condition (cloudy and rainy), and other reasons,
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it is difficult to simultaneously obtain images with high temporal and spatial resolution. Fortunately,
spatiotemporal data fusion methods have received extensive attention [2] in remote sensing studies
because of its capability to generate images with high spatiotemporal resolution images from frequent
coarse resolution images and sparse fine resolution images [3]. It is a flexible, inexpensive and effective
solution to cover the data shortage problem in some situations. Spatiotemporal data fusion methods
have been applied to generate synthetic remote sensing imagery from multiple sources with different
spatial, temporal, and spectral characteristics, and the fused results can convey more abundant and
accurate information than individual sensors alone [4]. Spatiotemporal data fusion methods can
provide data foundation for remote sensing field such as environmental dynamic monitoring [5,6],
changes of land cover [7], and land surface temperature [4,8].

There are many spatiotemporal data fusion methods in the remote sensing field. These methods are
based on different principles, assumptions, and strategies. According to Zhu et al. [9], spatiotemporal
data fusion methods can be divided into five categories: unmixing-based methods [10–12], weighted
function-based methods [7,13,14], Bayesian-based methods [15–17], learning-based methods [18–20],
and hybrid methods [21–23]. Among these methods, the weighted function-based methods are most
widely used in practical applications, while the spatial and temporal adaptive reflectance fusion model
(STARFM) [24] was put forward first and gained popularity in generating remote sensing data [25,26].
However, STARFM has some constraints in practical applications. It cannot predict the changing
information that is not recorded in based images. Moreover, it cannot obtain good performance in
highly heterogeneous regions. Furthermore, it does not take the bidirectional reflectance distribution
function problem into consideration. Several improved algorithms have been developed to mitigate
these problems. The spatial temporal adaptive algorithm for mapping reflectance change (STAARCH)
use tasseled cap transformations of input data to detect disturbances [27]. The enhanced spatial and
temporal adaptive reflectance fusion model (ESTARFM) was developed to improve STARFM accuracy
in heterogeneous areas by introducing a conversion coefficient and temporal weight of input image
pairs [28]. The STARFM was also improved to an operational data fusion framework by appending
Bidirectional Reflectance Distribution Function (BRDF) correction, automatic co-registration, and
input data selection [29]. Modified spatiotemporal fusion algorithms based on STARFM spring up
because of the emergence of new satellite data (such as Sentinel) and data processing technology
(deep learning) [30,31].

However, due to the algorithm design, all STARFM-based algorithms have two input control
parameters: the number of land cover classes and the size of the moving window. The landscape and
land cover types of the study area determine the size of the moving window. Most previous studies
used 1500 m × 1500 m as the moving window size when fusing Landsat and MODIS data, which are
similar to Gao’s work [24]. The overlapping moving window technique ensures that the most spectrally
similar pixels are selected for the best interest of the central pixel [32]. Therefore, the size of the moving
window is important for the performance of STARFM-based algorithms [33]. On the one hand, if the
window size is too small, the algorithm cannot search the neighborhood pixels that are similar to the
central pixel in the heterogeneity region. On the other hand, if the window size is too large, it may take
massive noneffective calculations in the algorithm. Furthermore, a universal window in one satellite
image size might not exist because of the inter-class and intra-class heterogeneity of land surface and
the different degree of landscape heterogeneity. With increased spatiotemporal resolution, RS data
becomes denser in the time scale, and data processing efficiency becomes increasingly important.

Hence, this paper concentrated on adopting an adaptive moving window in a spatiotemporal data
fusion algorithm and introducing a spatial statistical method according to landscape heterogeneity.
The adaptive moving window strategy in the spatiotemporal algorithm can reduce the redundancy
and improve the efficiency of the algorithm. It is also conducive to remote sensing data reconstruction
for long time series analysis. Therefore, this improvement using surface heterogeneity information not
only promotes the performance of spatiotemporal data fusion algorithm but also lays the foundation
of automatic processing on a large scale.
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2. Materials

2.1. Study Area

In this paper, we studied two regions to verify the modified algorithm’s accuracy: study area A
and study area B, respectively. As shown in Figure 1, study area A was located in Jiujiang, Jiangxi
province, China (28◦47′N~30◦06′N, 113◦57′E~116◦53′E) while study area B was located in Langfang,
Hebei province, China (39◦28′N~39◦32′N, 116◦38′E~116◦44′E). Jiujiang city is adjacent to Poyang Lake,
which is the second largest lake and largest freshwater lake in China. Jiujiang is located in a subtropical
monsoon climate zone. Jiujiang is relatively complex in terrain and landform. Langfang City is located
in the mid-latitude zone, with a warm temperate continental monsoon climate with four distinct
seasons. It has sufficient light and heat resources, with rain and heat in the same season, which is
beneficial to crop growth.

Figure 1. Location map of study areas. Study area A is located in Jiujiang, Jiangxi Province, while
study area B is located in Langfang, Hebei Province.

2.2. Data

Landsat provided surface monitoring images for 40 years (1972-present) [34]. A large number
of studies showed that spatial resolution of 30 m was well suited for regional-scale and long-term
monitoring of surface changes [35,36]. However, with its 16-day return visit cycle and frequent cloud
pollution problems, Landsat images were hard to apply to monitoring and analysis of short-period
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surface changes. MODIS images had stronger real-time monitoring capabilities for various sudden and
rapidly changing natural disasters because of its less than one day revisit period. However, the spatial
resolution of MODIS only reached 250 m. Landsat images are sparse fine-resolution images and
MODIS images are frequent coarse-resolution images. Therefore, Landsat and MODIS images are
suitable for spatiotemporal data fusion with complementary advantages. In this paper, Landsat 7
ETM+, Landsat 8 OLI, and MODIS data were employed to test ESTARFM and the modified algorithm.
The bands of Landsat and corresponding bands of MODIS are listed in Table 1. It was inevitable
that there were some differences between MODIS’s bands and corresponding bands of Landsat7
ETM+/Landsat8 OLI due to different sensor design.

Table 1. Information of corresponding bands of Landsat7 ETM+, Landsat8 OLI, and MODIS.

Band Landsat7
ETM+

Bandwidth
(nm)

Landsat8
OLI

Bandwidth
(nm) MODIS Bandwidth

(nm)

Blue Band 1 450–520 Band 2 450–510 Band 3 459–479
Green Band 2 530–610 Band 3 530–590 Band 4 545–565
Red Band 3 450–510 Band 4 630–690 Band 1 620–670

Near Infrared (NIR) Band 4 780–900 Band 5 850–880 Band 2 841–876
Short-Wave Infrared 1 (SWIR1) Band 5 1550–1750 Band 6 1570–1650 Band 6 1628–1652
Short-Wave Infrared 2 (SWIR2) Band 6 2090–2350 Band 7 2110–2290 Band 7 2105–2155

Clear Landsat images showed that cloud cover was less than 10% and the MODIS eight-day
composite reflectance data (MOD09A1) that avoided heavy cloud contamination were adopted to
conduct data fusion algorithms. The Landsat images and their corresponding MODIS images that
were selected in this study had four-day intervals. The MODIS images were clipped, re-projected,
and resampled in order to keep consistent with Landsat images. The original reflectance images
were scaled 0-10000. Two observed Landsat images of prediction date were selected to conduct an
accuracy assessment with synthetic images. Relevant remote sensing data with their acquisition date
and application are listed in Table 2.

Table 2. Remote sensing data types and acquisition date.

Region Data Type Spatial Resolution Path/Row Acquisition Date Use

Study Area
A(Jiujiang)

Landsat7 ETM+ 30 m

122/40 2013/7/24 Image fusion

122/39 2013/8/9 Accuracy assessment

122/40 2013/9/10 Image fusion

MOD09A1 500 m h27v06

2013/7/20 Image fusion

2013/8/5 Image fusion

2013/9/6 Image fusion

Study Area
B(Langfang)

Landsat8 OLI 30 m

2017/5/23 Image fusion

123/32 2017/7/10 Accuracy assessment

2017/9/12 Image fusion

MOD09A1 500 m h26v04

2017/5/17 Image fusion

2017/7/4 Image fusion

2017/9/6 Image fusion

3. Method

3.1. The Overview of ESTARFM

The main idea of ESTARFM is to obtain the reflectance at a predicted date based on spectral,
temporal, and spatial information from input images at a base date. Its main contribution is to introduce
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conversion coefficients and temporal weight between input data pairs to minimize the system biases
and improve accuracy. In order to predict the surface reflectance, the ESTARFM algorithm can be
reduced to four steps: the selection of similar neighborhood pixels, the calculation of weights for similar
pixels, the calculation of conversion coefficient, and the calculation of reflectance of the central pixel.

(1) The selection of similar neighborhood pixels. The similar neighborhood pixels contain
important spectral and spatial information, which is the basis for predicting surface reflectance on
a predicted date. The ESTARFM employs the threshold method to search for similar neighborhood
pixels. The formula is as follows:

F(xi, yi, tk, B) − F(xw/2, yw/2, tk, B) ≤ σ(B) × 2/m (1)

where F(xi,yi,tk,B) is fine resolution reflectance of neighborhood pixels at a base date(tk), F(xw/2,yw/2,tk,B)
is fine resolution reflectance of central pixel at a base date(tk), σ(B) is the standard deviation of
reflectance for band B, and m is the estimated number of class of land cover.

(2) The calculation of weights for similar pixels. The weight (Wi) is determined by the location of
similar pixels and the spectral similarity between fine- and coarse-resolution pixels. Higher similarity
and smaller distances of the similar pixels to the central pixels produce a higher weight.

(3) The calculation of conversion coefficient (Vi). The algorithm uses a linear regression model to
acquire Vi from fine- and coarse-resolution reflectance of the similar pixels within the same coarse
pixel to obtain conversion coefficients.

(4) The calculation of reflectance of the central pixel. The predicted reflectance of the center pixel
is as follows:

F
(
xw/2, yw/2, tp, B

)
= F(xw/2, yw/2, t0, B) +

N∑
i=1

Wi ×Vi ×
(
C
(
xi, yi, tp, B

)
−C(xi, yi, t0, B)

)
(2)

where C(xi,yi,tp,B) is the reflectance of similar pixel of band B at the prediction time of
fine-resolution images and C(xi,yi,t0,B) is the reflectance of similar pixel of band B at a base time of
coarse-resolution images.

In order to minimize the system biases, ESTARFM introduced a temporal weight to improve
prediction and accuracy. Therefore, the final predicted fine-resolution reflectance at the prediction time
tp is calculated as:

F
(
xw/2, yw/2, tp, B

)
= Tm × Fm

(
xw/2, yw/2, tp, B

)
+ Tn × Fn

(
xw/2, yw/2, tp, B

)
(3)

where Tm and Tn are the temporal weight between the time, Tm, and prediction, as well as temporal
weight between time, Tn, and prediction, respectively.

3.2. The Proposed Methodology

According to Tobler’s first law of geography [37], everything is related but nearby things are
more related [38]. Therefore, spatial dependence is a rule used by nearly all spatiotemporal data
fusion algorithms. The introduction of moving a window strategy ensures that the most spectrally
similar pixels are selected for the best interest of the central pixel. However, the surface landscape
is heterogeneous, and ESTARFM use the fixed size moving window to search for similar pixels.
For example, in a region with homogeneous surfaces, a fixed-size window may bring redundant
calculations and reduce the efficiency of the spatiotemporal data fusion algorithm. If landscape
heterogeneity is high, the number of selected similar pixels may not be enough within a fixed-size
window. If we cannot obtain enough similar pixels when predicting the reflectance in the ESTARFM
algorithm, linear regression cannot be built to obtain the conversion coefficients of similar pixels.
If linear regression is not possible, ESTARFM directly uses reflectance of the center pixel on a base
date to replace the reflectance of the center pixel on a prediction date. Therefore, the accuracy of the



Remote Sens. 2020, 12, 3673 6 of 18

spatiotemporal data fusion algorithm is reduced. The fixed size moving window is not suitable when
there is a difference in the heterogeneity of an image. Therefore, aiming at solving the fixed size of
overlapping moving window, this paper proposed a new methodology to find the optimum size of
a moving window for the center pixel by introducing an adaptive moving window strategy.

3.2.1. The Introduction of Local Variance

One of the biggest features of the landscape is spatial autocorrelation. Spatial autocorrelation
means that the closer a thing or phenomenon in space is, the more similar they are, i.e., changes in
landscape features or variables in the vicinity often show dependence on spatial location. Moreover,
the spatial autocorrelation coefficient also varies when the observed scale changes. In the process
of spatial autocorrelation analysis, it is better to calculate the autocorrelation coefficient on a series
of different scales to reveal the degree of autocorrelation of the variable under the changes of the
spatial scale in study. For the same reason, the spatial autocorrelation coefficient also varies within
different moving window sizes. However, ESTARFM uses the same fixed-size moving window for
the same image when the heterogeneity of an image is different. When the radius of the moving
window is small, the features of the adjacent pixels in heterogeneous landscapes may not have a higher
similarity with the features of target pixels than those of adjacent pixels, so less than enough similar
pixels may be selected to participate in the linear regression of space-time fusion and have an impact
on the prediction of pixel information. When the radius of the moving window is large, it not only
results in an average of the reflectance change information of the spectral similar pixels in the window,
but also may significantly increase the number of operations, especially in heterogeneous regions,
which may lead to a large number of invalid operations. Therefore, moving window size is important
for STARFM-based algorithm performance. Flexible moving window size can enable us to get reliable
and enough information from surrounding pixels by selecting similar pixels of the center pixel in the
spatiotemporal data fusion algorithm. Therefore, we introduced a mean local variance to search the
most suitable moving window size in the spatiotemporal data fusion algorithm. The local variance (s2)
is an index that measures the similarity of neighborhood pixels in remote sensing pixels. The function
is as follows:

s2 =

∑M−1
i=0

∑N−1
j=0

∣∣∣ fb(i, j) − fb
∣∣∣2

MN
, (4)

fb =

∑M−1
i=0

∑N−1
j=0 fb(i, j)

MN
, (5)

where i and j are the horizontal and vertical positions of pixels in satellite image; fb (i, j) is the value
of the reflectance of the center pixel of band b within the window; M and N represent the size of the
moving window; and fb is the average reflectance value for pixels within the window. The mean local
variance (S2

mean) is calculated by averaging the local variance within the window.

S2
mean =

S2

MN
(6)

The mean local variance is based on the difference of reflectance in neighborhood pixels, and it
can reflect the characteristic scale of the landscape in remote sensing images.

3.2.2. The Calculation of Local Variance within Different Moving Windows

The mean local variance is based on the difference of values of adjacent pixels’ reflectance,
which reflects the minimum characteristic scale affected by the landscape. In this paper, mean
local variance index was introduced to indicate spatial heterogeneity in different window sizes.
Local variance is an indicator of similarity between neighborhood pixels in remote sensing images;
however, the mean local variance is different from the local variance. The window corresponding to
the largest local variance can represent the optimal scale of the main land cover within the moving
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window, and the selected similar pixels are likely to come from the same type of land cover. Selected
similar pixels can better reflect the central pixel’s information. Secondly, the window corresponding
to the maximum local average variance can select an appropriate number of similar neighboring
pixels to participate in the fusion, which can either reduce unnecessary calculations and improve
spatiotemporal data fusion algorithm efficiency, or provide enough pixel information to improve fusion
accuracy. Based on the center pixels in the moving window, the local variance index is calculated
under different moving window sizes, then mean local variance index values can be obtained by
averaging the local variance index under different moving window sizes. Figure 2 is a schematic
diagram about the calculation of the mean local variance index in an adaptive moving window strategy
in the spatiotemporal data fusion method. In Figure 2, the center pixel is the building and similar
pixels in the neighborhood of the central pixel are marked by a blue circle. The yellow boxes represent
the different sized moving windows and the average local variance in different sized moving windows,
respectively. Finally, the window size corresponding to the maximum mean local variance is selected
as the size of the window in spatiotemporal data fusion algorithm. In order to simplify the algorithm,
the selection threshold of moving window size within the algorithm is 30 to150, the step length is 10,
and the unit is Landsat pixel.

Figure 2. The schematic diagram of the adaptive moving window strategy in the spatiotemporal data
fusion method.

3.2.3. Carrying Out of Modified Algorithm

The implementation of the advanced algorithm includes data processing, the selection of optimal
moving window size and similar pixels, the calculation of weight and conversion coefficient of similar
pixels, and the calculation of predicted pixel reflectance. Data processing includes the processing of
Landsat and MODIS09A1 data. Landsat data requires band composite and clipping. MODIS09A1 data
needs to be re-projected, resampled, and clipped in MRT to maintain the same projection system and
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spatial resolution as Landsat data. For the selection of optimal moving window size and selection of
similar pixels, mean local variances within 30*30 Landsat pixel size windows to 150*150 Landsat pixel
size windows were respectively calculated in the neighborhood of the central pixel. Then, the size of
the moving window corresponding to the largest local variance is taken as the moving window of the
center pixel, and the similar pixel of the center pixel is found in this window. The rules for calculating
the weight and conversion coefficient of similar pixels and reflectance of predicted pixels are the same
as ESTARFM [28]. The algorithm flow is shown in Figure 3.

Figure 3. The algorithm flow of an adaptive moving window strategy in the spatiotemporal data
fusion method.

4. Results

4.1. Subjective Assessment

In order to obtain the prediction accuracy of the spatiotemporal data fusion algorithm based
on surface spatial features, this study compared the result obtained by the modified algorithm,
as well as the results obtained by ESTARFM and real images. The results are shown in Figure 4.
Visually, ESTARFM and the modified algorithm both obtained good composite images, which were
similar to the actual observed image. However, ESTARFMs original code and the modified algorithm
were both written in the Interactive Data Language (IDL) language. The running time of the modified
algorithm was reduced by half that of the ESTARFM when the same input images were processed in
the same computer configuration.
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Figure 4. The comparison of actual images and predicted images using different spatiotemporal data
fusion algorithms. Note: the upper row are true-color-composites of Landsat and Landsat-like images;
the lower row are false-color-composites of Landsat and Landsat-like images; (a,d) are actual observed
images; (b,e) are Landsat-like images predicted by ESTARFM; (c,f) are Landsat-like images predicted
by the modified algorithm.

As shown in Figure 5, in the black box we observed a border of water, as well as vegetation
and buildings. The shape of the river is unclear and the vegetation pixel is fuzzy around the river
in the enlarged figure. The result predicted using the modified algorithm retained more detailed
information and showed a clearer visual effect. However, the spatiotemporal data fusion algorithm
based on the spatial structure information did not show good advantages in the regions with high
surface homogeneity.

Figure 5. The comparison of actual images and predicted images using different spatiotemporal data
fusion algorithms. (a) is the actual image; (b) is the predicted image by ESTARFM; (c) is the predicted
images by the modified algorithm.
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4.2. Objective Assessment

4.2.1. The Ordinary Indicator

Unlike our previous work [39], in this study the spatiotemporal data fusion algorithm using surface
heterogeneity information based on ESTARFM oriented the entire image rather than concentrating on
a type of land cover. Therefore, we observed all four main land cover types and evaluated each, i.e.,
buildings, water, paddy, and non-paddy vegetation. Moreover, the statistical analysis of six bands
were carried out in order to obtain more accurate results. The regression coefficient of the linear fitting
equation (ρ), correlation coefficient (r), and root mean square error (RMSE) were employed to compare
the reflectance of the predicted image with the true observed image. The closer the value of ρ and r
were to 1, the more accurate the result was. The smaller the RMSE value was, the better accuracy the
results were.

Figure 6 shows the scatter plots along the 1:1 line of the observed reflectance values and estimated
value for each band of ESTARFM and the modified algorithm. The left column of scatter plots are
ESTARFM results and the right column are the modified algorithm results. From the results shown in
Figure 6, we observed that the modified algorithm performed well in Bands 1–4 (i.e., blue, green, red,
and NIR). For Band 5 (SWIR1), the accuracy of the two algorithm was almost the same. For Band 6
(SWIR2), ESTARFM obtained the better result.

Figure 6. Scatter plots of the actual reflectance values and estimated values by the ESTARFM
(left column, a,c,e,g,i,k) and modified algorithm (right column, b,d,f,h,j,l).
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Table 3 shows a quantitative comparison of each band for each land cover between the ESTARFM
and modified algorithm. The better results of ESTARFM are highlighted in bold. It can be seen that
different accuracy evaluation indexes of different surface features in different bands did not show
a uniform rule. Most of the pixels in Band 6 (SWIR2) did not obtain better results in the modified
algorithm than in the ESTARFM. Band 6 was a mid-infrared band, which was useful for mineral
discrimination, and could be used to identify vegetation cover and moist soil. Hence, the modified
algorithm was not suitable for rock and mineral discrimination. For other bands, although the modified
algorithm obtained better performance than ESTARFM, the advantage of the modified algorithm were
not obvious. However, the only one we ensured was that the modified algorithm was less than the
ESTARFM, as mentioned above. In general, the subject assessment really verified that the results
predicted by the modified algorithm were more effective than ESTARFM. However, the normal accuracy
evaluation indexes may not be applicable for evaluating the overall accuracy of the spatiotemporal
data fusion algorithm based on the spatial structure information of the surface.

Table 3. Quantitative comparison of the prediction accuracy of ESTARFM and the modified algorithm.

Reflectance ESTARFM The Modified Algorithm

Land Cover Band ρ r RSME ρ r RMSE

Building

Band 1 0.8046 0.7888 168.5 0.8134 0.7926 167.2

Band 2 0.9127 0.8116 173.2 0.9424 0.8198 168.7

Band 3 0.9648 0.8629 288.1 1.0174 0.8760 281.9

Band 4 0.7791 0.7967 370.5 0.8184 0.8095 352.5

Band 5 0.8003 0.7945 421.0 0.8495 0.7974 409.1

Band 6 0.9665 0.8627 389.2 0.9801 0.8598 388.6

Water

Band 1 0.4702 0.6616 199.9 0.5243 0.6845 179.4

Band 2 0.5847 0.7350 247.6 0.6736 0.7649 215.8

Band 3 0.4893 0.6868 281.7 0.5737 0.7285 241.1

Band 4 0.4060 0.5640 527.7 0.4282 0.5867 520.2

Band 5 0.1879 0.3362 548.5 0.2070 0.3607 541.9

Band 6 0.2132 0.3727 251.4 0.2039 0.3674 259.2

Paddy

Band 1 0.5554 0.6530 86.8 0.6335 0.7092 78.2

Band 2 0.7055 0.6651 113.6 0.7727 0.7084 105.8

Band 3 0.7774 0.7306 120.4 0.8718 0.7863 105.2

Band 4 0.5167 0.5206 420.8 0.5442 0.5349 426.8

Band 5 0.6592 0.6865 405.2 0.7154 0.7168 394.4

Band 6 0.8072 0.7448 177.1 0.8036 0.7434 177.3

Non-paddy vegetation

Band 1 0.5211 0.6048 98.6 0.6088 0.6511 88.1

Band 2 0.5443 0.6616 128.5 0.6097 0.6917 125.0

Band 3 0.6514 0.6739 138.0 0.7646 0.7339 121.5

Band 4 0.5833 0.6848 359.7 0.6620 0.7286 316.6

Band 5 0.6419 0.7631 378.2 0.6680 0.7827 359.8

Band 6 0.7698 0.7703 180.0 0.7872 0.7826 174.0

Note: The better results of ESTARFM are highlighted in bold.
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4.2.2. The Mean Difference of Six Bands

As stated above, different selected evaluation indexes of different land cover types in different
bands did not show a uniform rule and thus the evaluation indexes were not appropriate when
evaluating the overall accuracy of the spatiotemporal data fusion algorithm based on the spatial
structure information of the surface. Therefore, this paper put forth a mean difference of a six band
reflectance [40,41] to measure the overall precision of the two spatiotemporal data fusion algorithms.
Thus, we calculated the mean reflectance of six band (Rmean) to be:

Rmean =
RBand1 + RBand2 + RBand3 + RBand4 + RBand5 + RBand6

6
(7)

where Rmean represents the mean reflectance of six bands of participating in fusion and RBand1... RBand6
represent the reflectance of band 1 to 6.

Data normalization pertained of putting data into a characteristic interval. In some index
processing of comparison and evaluation, it is often used to remove the unit limitation of data and
convert data into a dimensionless pure value, so as to facilitate the comparison and weighting of
indexes of different units or magnitudes. Herein, we adopted the process of data normalization before
comparison in order to eliminate the different magnitudes between the six bands. We employed
the extreme value standardization method to obtain data normalization. The calculation formula is
as follows:

x∗i j =
xi j −min

{
xi j

}
max

{
xi j

}
−min

{
xi j

} (8)

where x∗i j represents reflectance after data normalization, xi j represents the original reflectance of
each pixel of each band of images, and min{xi j} and max{xi j} represents the maximum and minimum
reflectance of band respectively. i, j represents the index of the pixel’s location.

The value of six bands falls between 0 and 1 after data normalization. Then, we took the Rmean

of predicted images minus that of the true images. The predicted reflectance were larger than the
reflectance of the true observed images in our previous study. The absolute value of different Rmean

was taken in order to obtain better effects. The results of the absolute difference between the predicted
image and the true image was more intuitive and clearer than the results of precision evaluation
indexes, as shown in Table 3. This is because it can combine the results of spatiotemporal data fusion
algorithms with the spatial structure of surface.

In Figure 6, it is obvious that the spatiotemporal data fusion algorithm using surface heterogeneity
information based on ESTARFM performed better than ESTARFM on the whole. The modified
algorithm’s accuracy was higher than ESTARFM, especially in the heterogeneous region. At the land
cover boundary, such as water and land, the result of modified algorithm was clearer than ESTARFM.
In order to objectively evaluate the results’ accuracy, we counted all pixels that took part in the
spatiotemporal data fusion and processed them in Figure 7. These results showed that, in the modified
algorithm, 85% of pixels had an absolute difference of Rmean between the true observed image and
the predicted image between 0 and 0.04 after data standardization, while in ESTARFM, the number
was 78%. In general, the spatiotemporal data fusion algorithm’s accuracy using surface heterogeneity
information based on ESTARFM was higher than that of ESTARFM.
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Figure 7. The comparison of the absolute difference of Rmean between the true observed image and
predicted image by ESTARFM (a) and the modified algorithm (b).

4.3. Robustness Validation

In order to remove the influence of regions when evaluating the modified algorithm’s prediction
accuracy, another remote sensing image from Langfang city, Heibei province, China was selected to
verify the robustness of the modified algorithm. In this study, Landsat 8 OLI images on 23 May 2017,
10 July 2017, and 12 September 2017, as well as MODIS eight-day composite reflectance data (MOD09A1)
on 17 May 2017, 4 July 2017, and 6 September 2017 were selected to evaluate the accuracy of the results
for the two spatiotemporal data fusion algorithms. The size of the verification area was consistent with
the size of the study area. In the spatiotemporal data fusion algorithms, the number of land cover types
in the two algorithms was 4, which was comprised of buildings, water, crop, and non-crop vegetation.
For the moving window size in the ESTARFM algorithm, this study used 50 Landsat pixels [28]. In
other words, the moving window size was 1500 m*1500 m. The moving window of the spatiotemporal
data fusion algorithm using surface heterogeneity information based on ESTARFM was adaptive and
did not need to be set in advance. Finally, we evaluated the prediction accuracy of the predicted image
obtained via two spatiotemporal data fusion algorithms. The Rmean of predicted images was selected
to compare the accuracy of the two spatiotemporal data fusion algorithms; the results are shown in
Figure 8. Moreover, the frequency statistics histogram for the absolute difference of Rmean is shown in
Figure 9. Results showed that, in the modified algorithm, 51% of pixels had absolute difference of Rmean

between the true observed image and predicted image between 0 and 0.1 after standarization, while
it was only 6% in ESTARFM. The spatiotemporal data fusion algorithm using surface heterogeneity
information based on ESTARFM had a higher accuracy, as shown in Figures 8 and 9. In addition, the
running time of the modified algorithm was less than ESTARFM.

Figure 8. Frequency statistics histogram of the Rmean absolute difference of results predicted by
ESTARFM (a) and the modified algorithm (b) in Jiujiang.
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Figure 9. The comparison of the absolute difference of Rmeanbetween the true observed image and the
predicted image by ESTARFM (a) and the modified algorithm (b) in Langfang.

5. Discussion

The modified spatiotemporal data fusion algorithm used mean local variance as the index to
measure the spatial heterogeneity of a moving window. Further, the optimal moving window size
was selected in the spatiotemporal data fusion algorithm according to the average local variance.
The modified algorithm took full advantage of the correlation between the neighborhood pixel and
center pixel. The optimal moving window size not only ensured that the appropriate number of similar
center pixels participated in the fusion but it also reduced the computation redundancy of the algorithm.
Therefore, the spatiotemporal data fusion algorithm efficiency improved. Subjective assessment results
showed that the modified algorithm obtained more details than ESTARFM, and objective assessment
results showed that the modified algorithm performed better than ESTARFM. Verification test showed
the robustness of the modified algorithm. In conclusion, the modified algorithm improved efficiency
while still maintaining its prediction accuracy. The flexible moving window strategy provided the
basis of the automatic algorithm on a global scale. The modified algorithm provides new idea to
spatiotemporal data fusion methods and enriches the spatiotemporal data fusion family. The modified
algorithm can be used in heterogeneous regions such as southern China to cover the data shortage in
remote sensing time series analysis.

In order to demonstrate the optimal window selected for each pixel in the study sites, we outputted
half of the window size in the modified algorithm in Jiujiang and counted the number of pixels that
corresponded to each window size. The result is shown in Figures 10 and 11. When comparing the
original Landsat image of Jiujiang, it is obvious that the heterogeneous regions became larger in the
modified algorithm, while homogeneous regions became smaller. However, this was not the case
for the entire study area. The inside reason still requires further study. For the effectiveness of the
modified algorithm, we discovered the reason the number of pixels corresponded to each window size.
ESTARFM used 25 as the half window size in the modified algorithm, which was 25 of 250,000 pixels
for the half window size in ESTARFM. However, 15 of 121,404 pixels (about 48.5%) were used for the
half window size in the Jiujiang modified algorithm, which saved a lot of calculation time. Therefore,
the modified algorithm efficiency was higher than for ESTARFM in Jiujiang.
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Figure 10. Frequency statistics histogram of the Rmean absolute difference of results predicted by
ESTARFM (a) and the modified algorithm (b) in results of Langfang.

Figure 11. The use of different window sizes in the algorithm in Jiujiang. (a) is statistical table of
number of pixels corresponding to each window size and (b) is the distribution map of the half window
size of each pixel in the modified algorithm.

Arguably, the spatiotemporal data fusion algorithm that used surface heterogeneity information
based on ESTARFM obtained good results in this study to some degree, yet there are still some
problems in the research. Firstly, the inconsistency of input image pairs could have affected the fusion
results. Although the consistency between Landsat and MODIS data was high, there were some
inevitable differences in image angles, acquisition time, geographic registration problem, and data
processing methods due to different satellite sensor design. Recent studies have fused Sentinel-2
with Sentinel-3 to generate daily Sentinel-2 images [3], or only fused bands within Sentinel-2 by
downscaling bands [42], which partly solved data consistency. However, with the development of
unmanned aerial vehicle (UVM) images, it is urgent to fuse UVM images with satellite images in
future studies [43]. Hence, it is necessary to develop spatiotemporal data fusion algorithms that can
solve the problem of data consistency. Then, the spatial autocorrelation index is often used to measure
the spatial correlation degree of natural or social attributes in order to explore the spatial pattern or
distribution characteristics of natural or social phenomena. The magnitude of the correlation degree
can characterize the spatial pattern and distribution characteristics of the attribute. In this study,
average local variance was employed to indicate the surface spatial feature within different sized
moving windows, yet other spatial autocorrelation indicators such as local Moran’s I and Getis-Ord Gi*
could also have been suitable for adaptive moving windows. Therefore, they deserve to be featured in
comparison experiments. Finally, this study was an exploration of the adaptive moving window in the
spatiotemporal data fusion algorithm, and the relationship between the surface spatial feature and
optimal moving window size needs further study.
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Spatiotemporal data fusion algorithms focus on solving the problem of missing data in earth
observation. It predicts the reflectance of images according to the time, space, and spectral information
of the input images. Although spatiotemporal data fusion methods have been used in many fields,
they still have some shortcomings and future development can be improved in the following aspects:
accurate calibration of input remote sensing image; capture of land cover changes in fusion; standard
methods of precision evaluation of results; and efficiency improvement of algorithms.

6. Conclusions

In order to automatically attain moving window size in a spatiotemporal data fusion algorithm, we
introduced surface spatial information in a spatiotemporal data fusion method to improve ESTARFM
prediction accuracy and efficiency. A modified spatiotemporal data fusion method using spatial
heterogeneity based on ESTARFM was proposed. The modified algorithm concentrated on the
contradiction between surface heterogeneity and a fixed-size moving window, and mean local variance
was selected to indicate the spatial heterogeneity of the surface. For each center pixel in the modified
spatiotemporal data fusion algorithm, the mean local variances in the moving windows with different
sizes were calculated, then the moving window of the size corresponding to the maximum mean local
variance was selected as the best window to search the similar pixels to the center pixel. To evaluate
the accuracy and robustness of the modified algorithm, we used satellite data from two regions.
The predicted images of ESTARFM and the modified algorithm were compared with the observed
image. The results indicated that the modified algorithm obtained better performance in blue, green,
red, and NIR bands than ESTARFM, while accuracy of SWIR1 band remained mostly the same.
However, ESTARFM did better in the SWIR2 band than the modified algorithm. Experiments in
two regions showed that the running time of the modified algorithm was shorter than ESTARFM.
Therefore, this modified algorithm is helpful for vegetation phenology monitoring, change of land cover,
and chlorophyll inversion, but it is not suitable in retrieving land surface temperature and mineral
discrimination. In general, the results showed that the modified algorithm obtained better performance
than ESTARFM in accuracy, efficiency, and robustness. An adaptive moving window strategy in
spatiotemporal data fusion method not only enriches the spatiotemporal data fusion methods but
provides the possibility for automated processing of spatiotemporal data fusion algorithms at a
large scale.
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