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Abstract: Identifying the flooding risk hotspot is crucial for aiding a rapid response and prioritizes
mitigation efforts over large disaster impacted regions. While climate change is increasing the risk
of floods in many vulnerable regions of the world, the commonly used crisis map is inefficient and
cannot rapidly determine the spatial variation and intensity of flooding extension across the affected
areas. In such cases, the Local Indicators of Spatial Association (LISA) statistic can detect heterogeneity
or the flooding hotspot at a local spatial scale beyond routine mapping. This area, however, has not
yet been studied in the context of the magnitude of the floods. The present study incorporates
the LISA methodology including Moran’s I and Getis–Ord Gi* to identify the spatial and temporal
heterogeneity of the occurrence of flooding from super cyclone Amphan across 16 coastal districts of
Bangladesh. Using the Synthetic Aperture Radar (SAR) data from Sentinel-1 and a Support Vector
Machine (SVM) classification, “water” and “land” were classified for the pre-event (16 May 2020)
and post-events (22 May, 28 May, and 7 June 2020) of the area under study. A Modified Normalized
Difference Water Index (MNDWI), and visual comparison were used to evaluate the flood maps.
A compelling agreement was accomplished between the observed and predicted flood maps, with
an overall precision of above 95% for all SAR classified images. As per this study, 2233 km2 (8%) of
the region is estimated to have been inundated on 22 May. After this point, the intensity and aerial
expansion of flood decreased to 1490 km2 by 28 May before it increased slightly to 1520 km2 (2.1%
of the study area) on 7 June. The results from LISA indicated that the main flooding hotspots were
located in the central part, particularly in the region off the north-east of the mangrove forest. A total
of 238 Unions (smallest administrative units) were identified as high flooding hotspots (p < 0.05)
on 22 May, but the number of flooding hotspots dropped to 166 in the second week (28 May) after
Amphan subsided before it increased to a further 208 hotspots (p < 0.05) on 7 June due to incessant
rainfall and riverbank failure in the south-west part of the study area. As such, an appropriate,
timely, and cost-effective strategy would be to assess existing flooding management policies through
the identified flooding hotspot regions. This identification would then allow for the creation of an
improved policy to help curtail the destructive effects of flooding in the future.

Keywords: cyclone Amphan; SVM; LISA; Sentinel-1 C-Band SAR; Google Earth Engine; flood
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1. Introduction

Floods are the most frequent and perhaps the costliest type of natural calamity, accounting for
24% of disaster-related deaths and 50% of the total disaster-affected victims worldwide in 2018 [1].
The frequency and magnitude of flood calamities are becoming more pervasive, and this trend is
expected to continue due to anthropogenic climatic change and land cover change [2]. Faced with
frequent devastating cyclones and floods, Bangladesh is one of the country’s most affected by
climate-propelled disasters [3–5]. Mostly flat terrain, the geographical situation between the Bay of
Bengal and the Tibetan Plateau, frequency of extreme weather and climate patterns, and a very dense
population all contribute to Bangladesh’s high hazard vulnerability [6]. On 20 May 2020, cyclone
Amphan, a severe cyclonic storm struck the densely populated and ecologically sensitive coastal area
of Bangladesh, leading to excessive flooding in 19 coastal districts (Figure 1) along with widespread
environmental and agricultural damages and losses from torrential rain and storm surge [7].
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Monitoring such a disaster and assessing its aftermath is essential [8–10]; data driven rapid 
response and recovery efforts can significantly alleviate damages, costs, and suffering by improving 
relief efforts and guiding rescue operations [11,12]. Remote sensing data from space borne platforms 
provide vital information for emergency support, early warning systems, and strategic decision 
making for pre-disaster and post-disaster occurrences [13–15]. As a result, the use of remotely sensed 
data for disaster management—especially for flooding events—has shown a significant rise in recent 
years with more and more applications in developing countries [16–20]. 

In the existing literature, both passive and active remote sensing data have been utilized to 
delineate flooded and non-flooded areas in disaster-stricken regions [9,21,22]. Passive sensing such 
as the Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance [9,23], 
multispectral Landsat imagery [18,21], Advanced Very High Resolution (AVHR) [24–26], and other 
data from commercial satellites were used for studying the magnitude of flooding [27–29]. The 
example includes Nandi, Srivastava, and Shah (2017) [18] who studied the pre-monsoon and post-
monsoon floodplain of the Ganges River at Varanasi, India using the Near-Infrared (NIR) and Short-
Wave Infrared (SWIR) band of Landsat-8 with Support Vector Machine (SVM) image classification 
techniques. Likewise, Sajjad, Lu, Chen, Chisenga, Saleem, and Hassan (2020) [12] applied Landsat-8 
to delineate the historical flood magnitude and occurrences of the Chenab River in the Punjab Plain 
region of Pakistan. Moreover, Sarker, Mejias, Maire, and Woodley (2019) [30] employed a large pool 
of Landsat-5 imagery and a fully Convolutional Neural Network model (F-CNNs) to study the flood 
events of 2011 in Queensland and New South Wales, in Australia. Their method enables them to 
distinguish flood water from permanent water-bodies, and the authors believe their technique could 
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the left show the excessive surface runoff occurring in the village and crop fields. The image on the
right shows the riverbank failure surrounding the village in Koyra, Khulna. Images were taken on
22 May 2020.

Monitoring such a disaster and assessing its aftermath is essential [8–10]; data driven rapid
response and recovery efforts can significantly alleviate damages, costs, and suffering by improving
relief efforts and guiding rescue operations [11,12]. Remote sensing data from space borne platforms
provide vital information for emergency support, early warning systems, and strategic decision making
for pre-disaster and post-disaster occurrences [13–15]. As a result, the use of remotely sensed data for
disaster management—especially for flooding events—has shown a significant rise in recent years
with more and more applications in developing countries [16–20].

In the existing literature, both passive and active remote sensing data have been utilized to
delineate flooded and non-flooded areas in disaster-stricken regions [9,21,22]. Passive sensing such as
the Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance [9,23], multispectral
Landsat imagery [18,21], Advanced Very High Resolution (AVHR) [24–26], and other data from
commercial satellites were used for studying the magnitude of flooding [27–29]. The example includes
Nandi, Srivastava, and Shah (2017) [18] who studied the pre-monsoon and post-monsoon floodplain
of the Ganges River at Varanasi, India using the Near-Infrared (NIR) and Short-Wave Infrared (SWIR)
band of Landsat-8 with Support Vector Machine (SVM) image classification techniques. Likewise,
Sajjad, Lu, Chen, Chisenga, Saleem, and Hassan (2020) [12] applied Landsat-8 to delineate the historical
flood magnitude and occurrences of the Chenab River in the Punjab Plain region of Pakistan. Moreover,
Sarker, Mejias, Maire, and Woodley (2019) [30] employed a large pool of Landsat-5 imagery and a fully
Convolutional Neural Network model (F-CNNs) to study the flood events of 2011 in Queensland and
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New South Wales, in Australia. Their method enables them to distinguish flood water from permanent
water-bodies, and the authors believe their technique could be used to deduce the flooded areas from
any Landsat images covering floods in Australia. Further, Kordelas, Manakos, Aragonés, Díaz-Delgado,
and Bustamante (2018) [31] used Sentinel-2 data, along with a supervised and unsupervised image
classification approach, to determine flooded and non-flooded areas in southwest Spain.

Due to the possible limitations caused by cloud cover in using multispectral imagery during
emergency responses, particularly during the monsoon in Southern Asia [11], many other studies have
used active remote sensing data from Synthetic Aperture Radar (SAR) [10,13,32,33]. Uddin, Matin,
and Meyer (2019) [20] investigated the aerial expansion of flooding events of 2017 at national scale in
Bangladesh using SAR images from Sentinel-1. Their study shows that 2% to 7% of Bangladesh was
inundated from April to August by the floods of 2017. Similarly, RADARSAT images were employed
by Islam, Bala, and Haque (2010) [34] to examine the expanse of the inundation area in 2004 and 2007
across Bangladesh. Other studies such as Hoque, Nakayama, Matsuyama, and Matsumoto (2011) [35]
conducted a comprehensive investigation of flood inundation in North-Eastern Bangladesh between
2000 and 2004 by using Landsat and RADARSAT data. SAR images have also been used for flood
mapping in other countries; an example being Ezzine, Saidi, Hermassi, Kammessi, Darragi, and Rajhi
(2020) [36] who studied the hydraulic hazard in North-Western Tunisia. Clement, Kilsby, and Moore
(2018) [37] studied the floods during the winter of 2015–2016 in Yorkshire, UK using SAR images along
with change detection techniques and threshold classification methods.

The above studies suggest that the use of SAR data for crisis mapping has provided an advantage
over optical sensors by enabling data collection despite cloud cover, during all the seasons, day or
night [38–40]. The use of SAR images for mapping the occurrence of floods is now a viable alternative
to conventional multispectral-based flood mapping, thanks to its wide swath, weather-independent
data collection approach, and improved spatial and temporal resolution [41–44].

Flood mapping has been extensively studied in Chinese cities [45–48] and the United States [49–52]
to understand its impact on livelihood, economics, and infrastructure. Many of these existing studies
are mainly dedicated to either simply delineating water inundation areas by mapping pre-flooding
and post-flooding water expansions or focusing on improved techniques on water-land boundary
classification. However, there are concerns about the drawbacks of simple mapping methods [53,54].
One such limitation is the misclassification errors with discrete thematic maps [55–57], which can
undermine the accuracy and reliability of crisis maps [55,58]. Additionally, such conventional flood
mapping techniques do not address the change in magnitude and areal coverage of the occurrence
of floods over a period, which is important for determining if floods are decreasing, increasing,
or stabilizing in areas that are surveyed. Such concerns need to be addressed to prioritize targeted
mitigation efforts over vast disaster-stricken regions. This may be accomplished by integrating GIS,
Earth observation data, and Local Indicators of Spatial Association (LISA) statistics. LISA statistics can
aid in identifying and prioritizing areas of a high risk of flooding intrusions over large areas.

In the context of disaster management and planning, LISA could present new opportunities
to explore the temporal and spatial behaviors of flooding occurrence, particularly for measures of
geographic extent. LISA focuses on identifying variations within the patterns of spatial dependence
and is therefore useful for revealing linkages that might otherwise go undetected. The LISA
measurements include Anselin Local Moran’s I [59], Getis–Ord Gi* [60,61], and Local Geary’s C.
Due to its unique attributes of exploring spatial patterns such as hot and cold spots of any phenomenon
distributed in geographical space, LISA statistics are widely used in many disciplines such as landscape
ecology [62–64], epidemiology [65,66], and hazards studies [67]. The hotspots are spatially explicit
because they are detected at specific geographical locations [59,60]. Since hotspots are regions of high
values that are separated by regions of lower values, it is easy to visualize and trace locations that
experience extensive flooding compared to regions with less or sparse flooding. This information
can assist disaster managers to precisely decide where and to what extent to prioritize successful
mitigation interventions, and rescue missions, enabling managers to be better equipped to steward their
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communities through rapidly unfolding crises. Though LISA statistics could reveal developing trends
of spatial and temporal changes in crisis events such as flooding, these methods remain underexplored
regarding flood extent studies. Hence, the primary purpose of this study is to quantify the extent of
the inundation area caused by cyclone Amphan in the southwest region of Bangladesh using SAR
imagery based on C-band from Sentinel-1. The secondary objective is to use LISA statistics to uncover
spatial patterns and magnitudes of inundation, and identify locations that are most likely to see the
magnitudes and occurrences of flooding increasing, staying constant, or declining. Using such an
approach, flood preparedness, response, adaptation, and mitigation strategies can be implemented in
targeted flood-prone hotspots.

2. Study Area

The landscape that is under study encompasses 16 districts and 164 sub-districts located along
the northern coast of the Bay of Bengal in the south western coast of Bangladesh (Figure 2). It is
surrounded by the urban agglomeration around Dhaka to the north, the Bay of Bengal to the south,
Chittagong to the east, and India to the west. Moreover, the Sundarban mangrove forests are located
in the delta in the far south western portion of the area under study. The area consists of the active
floodplains of the Ganges River and tidal floodplain as well as part of the Lower Meghna River [68].
The average altitude throughout the area is 5.8 m above mean sea level, though some areas exceed
20 m in height, mainly in the far south of the study area. Due to almost flat topography and proximity
to the Bay of Bengal, the area is intersected by numerous rivers, creeks, and coastal estuaries. The giant
Padma River (a Ganges distributary) meets the Bay of Bengal by crossing the Eastern part of this
region of the study area, while a large number of rivers play a significant role in the environmental
and economic development of this region. Diverse economic activities and spatially heterogeneous
population distribution is seen throughout the study region. Jessore and Khulna have the largest
population with 2.76 and 2.32 million respectively. The smallest population is in Jhalokati district,
with around 0.7 million. The total population in the area is approximately 25.1 million with an average
density of 784 people per km2. The greatest density of the population is found in Chandpur district
(1448 people per km2) and the lowest average density is in Bagerhat district (373 people per km2) [69].

The study area is also frequently exposed to deadly tropical cyclones in the form of freshwater
floods and coastal storm surges, with 17 of the 36 deadliest cyclones globally having occurred in the
region [70]. In 1970, cyclone Bhola resulted in the deaths of half a million people [71]. Other devastating
cyclones to hit the region are Sidr (2007), Rashmi (2008), Aila (2009), Komen (2015), Roanu (2016),
Mora (2017), as well as Fani and Bulbul in 2019, all causing great physical and infrastructural damages,
and human fatalities. Super cyclone Amphan impacted the study area with a storm surge, heavy
precipitation, and strong winds from 19 May 2020 to the evening of 20 May 2020, heavily affecting
19 districts of southwestern Bangladesh. According to various estimates, Amphan caused a death
toll of 26 in Bangladesh with half a million people displaced [7,70]. Torrential rains along with tidal
surges washed away villages, livestock, fisheries, and farms with an estimated 55,667 houses and
1490 km2 of farmland being destroyed [7,72]. Such damage, destruction, and the loss of lives inflicted
by cyclone Amphan would have been much worse, covering an even larger area, if there were no
mangrove forests along the southwest coast of Bangladesh. This natural barrier already serves as a
protective wall against floods, storm surges, and tropical cyclones for the millions of inhabitants in and
around the coastal rim.
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3. Materials and Methods

This study used high-resolution C-band Synthetic Aperture Radar (SAR) imagery from the
European Space Agency’s satellites Sentinel-1A and Sentinel-1B. Sentinel-1 is the first satellite mission
of the Copernicus Program, consisting of a constellation of two polar-orbiting satellites, acquiring
C-band synthetic aperture radar images day and night irrespective of the weather [73,74]. Unlike
passive optical sensors that require solar reflectance, an active SAR instrument transmits its microwave
signal to illuminate the earth [73,75]. The advantage of using SAR images is that the radar pulses can
penetrate thick clouds, allowing SAR to capture images in extreme conditions [76,77]. The attributes
of SAR sensors incomputing and retrieving data in almost all weather conditions, irrespective of the
intensity of sunlight, are extremely important for flood and disaster research and particularly important
for a monsoon climate regime such as for Bangladesh.

Google Earth Engine (GEE), a rapidly growing cloud platform, was used to process SAR
images [78,79]. The quality of SAR imagery depends on the mode of acquisition and raw data
processing. To derive the backscatter coefficient in each pixel of SAR imagery, GEE carried out several
computations before making it accessible in the cloud platform (https://developers.google.com/earth-
engine/sentinel1#metadata-and-filtering). The workflow applies a series of standard corrections
including orbit files to ensure accurate position and spatial registration of SAR images. Thereafter,
different categories of artifacts at the image borders are removed and the thermal adaptive noise in
sub-swaths is eliminated to reduce discontinuities between sub-swaths for scenes in multi-swath
acquisition mode. The images are later radiometrically calibrated using a digital elevation model
to produce the unitless backscatter intensity measure. SAR images are susceptible to speckle noise
derived from random signals and backscattered values. The presence of speckle noise seriously
affects the quality of SAR images and the outcomes of analysis as well. Hence, several speckle filters

https://developers.google.com/earth-engine/sentinel1#metadata-and-filtering
https://developers.google.com/earth-engine/sentinel1#metadata-and-filtering
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including Lee filter [80], Frost filter [81] and their enhanced filters [82], and Kuan filters [83] were
used in existing studies. A comprehensive review on SAR image despeckling can be found in [84,85].
Given the flat topography and the SAR polarization used for this study, we employed the commonly
used Lee filter with a window size 7×7 in GEE to suppress random speckle noise of the SAR images.
After processing these steps, the Digital Number (DN) values of each SAR image are converted
into backscatter coefficients in the Decibel (dB) scale as σ0 at a spatial resolution of 10 m. Finally,
the backscattering profile is transformed into a linear shape. The conventional generic workflow to
process/compute Sentinel-1 GRD data is described in Filipponi (2019) [42] and DeVries et al. (2020) [21].
We processed four temporal SAR images with both VV (Vertical Transmit and Vertical Receive) and VH
(Vertical Transmit and Horizontal Receive) from the descending mode of Sentinel-1 in GGE. Cyclone
Amphan affected the study area primarily on 19–20 May; thus, we obtained and analyzed a pre-event
SAR image from 16 May, and three post-event images from 22 May, 28 May, and 7 June. In addition,
slope, elevation, and aspect layers were extracted from a Digital Elevation Model (DEM) from the
Shuttle Radar Topography Mission (SRTM). The detailed dataset and GEE assets implemented in this
study are illustrated in Table 1.

Table 1. Datasets and Google Earth Engine (GEE) assets utilized in this study.

Dataset Used GEE Asset Used
Polarization/Bands Acquisition Dates Spatial Resolution

(Meters)

Sentinel-1 Ground Range
Detected (GRD) COPERNICUS/S1_GRD VV, VH

16/5/2020
22/5/2020
28/5/2020
07/6/2020

10

Sentinel-2 TOA reflectance COPERNICUS/S2 B3, B11, B12 25/5/2020
08/6/2020 10, 20

Landsat-8 TOA
Reflectance LANDSAT/LC08/C01/T1_TOA B3, B10 25/5/2020 30

Climate Hazards Group
InfraRed Precipitation

with Station data
(CHIRPS)

UCSB-CHG/CHIRPS/DAILY - 01/5/2020 to
10/6/2020 0.05 (degrees)

Shuttle Radar Topography
Mission (SRTM) USGS/SRTMGL1_003 SRTM V3 product - 30

3.1. SAR Image Classification Techniques

Flooding extent mapping by utilizing SAR data provides valuable information for crisis response [8,14],
ecology [86], and hydraulic modeling [36]. In the existing literature, a variety of methodologies have been
used to determine the pre-crisis and post-crisis flood extent mapping [37,87]. These techniques range
from unsupervised algorithms, such as ISODATA [88] and K-means, to parametric supervised algorithms,
such as the methodology of ascertaining the highest probability of floods. The radar backscatter threshold
techniques are also commonly used, in which a SAR backscatter pixel value is labeled as a flood or
non-flood by expert analysis [31,37,89]. This process separates water and land pixels for images having
a bimodal histogram and is often used in SAR-based flood mapping [43]. Threshold techniques are
rudimentary and robust but have limited applicability in complexcase studies, such as complex terrains,
and lands with a lot of vegetation [35,90]. These simple methods lack the features for automatic processing,
which may result in inconsistencies in the flood extent mapping for the large volumes of temporal
data. Other complex classification methods of SAR images, using ancillary data coupled with machine
learning algorithms, have proven to be accurate in providing almost real-time flood mapping indirect
situations [91–93]. The most commonly used machine learning-based classification techniques found
in the literature review are artificial Neural Networks (ANN) [30,94], k-Nearest Neighbors (kNN) [95],
Decision Trees (DT), Support Vector Machines (SVM) [96,97], and Random Forest (RF) [41,52].

In earlier analyses, authors such as Rana and Suryanarayana (2019) [87] examined floods in Assam
and Kerala states in India using SAR data with RF and SVM classification techniques. Their analysis
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concluded that SVM performed better with SAR images to determine water and land boundaries for
flood inundation extension mapping. Similarly, Dumitru, Cui, and Datcu (2015) [38] implemented the
SVM classifier with TerraSAR-X images for the quick mapping and assessment of the damages during
the floods in Germany in 2013, and the tsunami in Japan in 2011. Additionally, Nandi, Srivastava,
and Shah (2017) [18] deduced satisfactory outputs with SVMs classification for floodplain mapping in
Varanasi, India. Other research comprises flood susceptibility mapping executing SVM techniques to
assess the likelihood of floods [15,97].

Given the properties to distinguish between two vectors (see Appendix A), this study used a SVM
supervised classification algorithm to differentiate the “water” and “land” backscatter values of SAR
data. SVM is a non-parametric statistical learning algorithm which was originally aimed at binary
classification by defining an optimal hyper plane and providing maximum parameters by segregating
two classes [98–100]. In the classification algorithm, only a subset of the data points nearest to the class
boundary is used in the computation of the optimal hyperplane, and these data points are known as
support vectors. In the case of nonlinear classifications, SVM can execute the classifications by using
various categories of kernels which convert nonlinear boundaries to linear ones in high-dimensional
regions to determine optimal hyperplanes. More detailed information and mathematical functions of
SVM are provided in Vapnik (1995) [98] and Cortes and Vapnik (1995) [99].

In previous studies, either single-polarization, such as VV or VH, or both polarizations were
used in floodwater monitoring [32,37]. Since SVM is a regression-based classification model, we used
the VV and VH polarizations including the Digital Elevation Model (DEM), slope, and aspect as
predictors to build the SVM classification model. The choice of kernel function in SVM is paramount for
classification performance, and we prefer the linear kernel function due to its mathematical simplicity
and computation efficiency [93,97]. The training samples were collected from composite SAR images.
Water surfaces are regarded as slow intensity areas in SAR images due to low specular reflectance,
whereas the surrounding terrain corresponds to a brighter intensity due to higher specular reflectance.
Therefore, land and water properties of SAR images can be easily visible and divisible, and permanent
water-bodies such as rivers, lakes, and ponds look darker in SAR images. These darker intensity areas
in SAR images were chosen to collect training samples for various water-bodies. On the other hand,
urban, infrastructure, and apparently non-flooded land sites look as brighter, and were used for the
land categories training sample. In this way, we collected nearly 500 to 700 pixel values from each
SAR image and used them to classify four temporal data sets with two classes—land and water—to
produce one map before cyclone Amphan (16 May) and three maps after cyclone Amphan (22 May,
28 May, and 8 June).

Subsequently, the map generated before Amphan was used to exclude the perennial water from
the post-Amphan thematic map; thus, we determined the extent of flood inundation water for the
post-crisis periods. Finally, the inundation water was aggregated to districts, sub-districts, and the
Union level for further analysis. We classified images using GEE and the raster package and we
produced graphs using ggplot2 in R Studio.

3.2. Computation of LISA Statistics

LISA statistics identify local statistical patterns in spatial data. In contrast with global measures of
spatial autocorrelation that outline the degree of spatial association in a single value, LISA assesses the
extent to which the occurrences of similar and dissimilar values are agglomerated for each location [59].
This method is applicable for this study because the magnitude and extent of flood inundation can
be measured within a defined spatial scale. Though there are many methods to compute patterns in
spatial data, the most common and popular LISA statistics are Local Moran’s I and the Getis–Ord Gi*
statistic [61]. To compute the LISA statistics, we combined flooding areas at a lower administrative
level, locally called “Union” and the percentage of each Union affected by flooding were calculated.
Later, two LISA statistics; the Local Moran’s I index [59] and Getis–Ord Gi* index [101], were computed
at the Union level to map spatial clustering and flooding hotspot across the affected region of cyclone
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Amphan. The LISA statistics enable us to detect pockets of spatial association that may not be visible
when using global statistics.

3.3. Getis–Ord Gi*

Getis–Ord Gi* statistics examine the places or regions where there is a statistically significant
spatial clumping of higher magnitudes of a variable, independent of the number of observations [101].
The Getis–Ord Gi* statistic displays z-scores (standard deviations) and p-values (statistical probabilities)
that indicate if the attribute results are statistically clustered, and the larger z-scores and lower p-values
indicate a spatial clustering of high occurrences of hotspots or a high probability of flooding in the
given period. Conversely, a spatial unit with low z-score and high p-value indicate a spatial clustering
of a lower occurrence of hotspots or a low probability of flooding in the given period. A z-score near
zero indicates no apparent spatial clumping for the geographical unit being studied. The z-score for
every region i is computed as:

G∗i (d) =

∑n
j=1 wi j(d)x j −W∗i x

s
[

W∗i (n−W∗i )
n−1

] 1
2

where x represents a probability of flooding within given spatial units (i.e., Union), Wi j is a spatial
weight which defines the neighboring Union j to i, Wi is the sum of weights Wi j, X is the mean of the
Union level inundation rate, and s is the standard deviation of the x values.

3.4. Univariate Moran’s I

The Local Moran’s I compute the degree to which geographic objects or events are clustered,
dispersed, or randomly distributed [59,60,102]. Moran’s-I is a useful tool for deriving hotspots, and for
classifying them into spatial clusters and outliers. The Local Moran’s-I differs from the Getis–Ord Gi*
statistic where the covariance rather than the sums are computed. The standard univariate Moran’s I
statistics for remote sensing applications take the following form:

Ii = zi

n∑
j=1

wi j × z j

zi =

(
Xi −X

)
σ

Where n is the number of spatial units (in this study, n = 1165), wi j is the spatial weight between
unit i and j, Xi is the value of unit i, X is the mean value and σ is the standard deviation. The weight
wi j can be determined using a distance band or a spatial contiguity matrix. This statistic calculates a
z-score, a p-value, and a code representing each class of clump into four statistically relevant results.
A highly positive Local Moran’s I value implies that the locations under investigation have high
or low values similar to its neighbors; thus, the locations are considered spatial clusters [59,103].
Spatial clusters can be categorized as “high-high” (high values in a high-value/risk neighborhood)
and “low-low” (low values in a low-value/risk neighborhood) [103]. A high negative Local Moran’s
I value means that the location under observation is a spatial outlier. Spatial outliers have values
that vary from the values of their surrounding locations. Again, these include “high-low outliers”
which mean high value in low value neighborhoods and “low-high outliers” that exhibit low value
in high value neighbourhoods. To compute LISA statistics, the estimated flooding areas of 22 May,
28 May and 7 June were calculated for the 1162 Unions (lowest level of administrative units, locally
called “Unions”) in the area under survey. In determining the spatial weight for the Getis–Ord Gi* and
Moran’s-I, the second-order queen’s contiguity index of the neighborhood was assigned for individual
Unions. Contiguity weight measure was preferred as this weight measure performs better with a
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problem of the uneven distribution of neighbor cardinality. The contiguity weight matrices and both
LISA statistics were computed in the GeoDa software. The hotspot and cluster of flooding waters
were deduced to be statistically significant at 99.99% (p < 0.001), 99% (p < 0.01), and 95% (p < 0.95)
confidence levels. We assume that the application of LISA statistics will provide useful and critical
data on change and variation of floodwater coverage and intensity over larger geographical areas and
such information can be used as important indicators for flood disaster management.

4. Results

4.1. Accuracy of Flood Mapping

To ensure the authenticity and accuracy of the analysis, a flood map evaluation was performed
based on visual comparison and testing samples that were retrieved from the Modified Normalized
Difference Water Index (MNDWI). The MNDWI maximizes the high reflectance of water by using
the green wavelength and minimizing the low reflectance of the Mid-Infrared (MIR) wavelengths
of water features. Thereby, water attributes with their positive values are amplified in the data,
whereas vegetation, soil, and other non-water attributes with close to zero or negative values are
suppressed. Owing to its ability to delineate water and non-watery features using MIR and Green
bands of multispectral imagery, MNDWI has been widely used in many remote sensing applications,
especially in assessing flood maps derived from SAR imagery [12,104–106]. Using Green and MIR
wavelengths of available multispectral imagery from Landsat-8, and Sentinel-2, MNDWI was computed
(Green-MIR/Green+MIR) in GEE. The accessible multispectral imagery that is close to the SAR-acquired
date in the study regions are 16 May, 25 May and 8 June. Since large sections of these images are
under a thick cloud cover (ranging from 30% to 70%) during the researched periods, a relatively
cloud-free area was chosen to extract the testing samples. Thus, we collected 170 testing samples
from the computed MNDWI on 16 May, 53 samples from 25 May, and 103 samples from 8 June to
evaluate the flood maps of 16 May, 22 May, and 7 June respectively. The accuracy of the flood maps
were assessed using the omission and commission errors within the confusion matrix and kappa
statistics. The kappa statistics compute the similarity between signature samples and control samples.
The overall classification accuracy obtained from all the images ranged between 95% to 97% with a
kappa coefficient that ranged between 0.92 to 0.98. The highest overall accuracy of 97% was quantified
from the images of 16 May and 22 May (98%), while the least overall accuracy was 95% for the
image accessed on 7 June. Similarly, the derived average user and producer accuracy of both classes
was almost 95%. The highest user accuracy was derived for water classes which correspond to 98%
precision for 16 May, 22 May, and 7 June respectively. The overall high classification accuracy for the
flood inundation mapping before and after cyclone Amphan indicates that the flood maps are reliable
for further statistical analysis. Due to the lack of available multispectral imagery, the validation for the
flood map on 28 May was not possible. However, a close examination using the nearest acquired-date
multispectral imagery such as 25 May and 3 June shows that both of the categories (land and water)
were well distinguished. We provided a comparison of flood extents with multispectral imagery in
Appendix B.

4.2. Extent of Post-Amphan Flooding

Information on flood inundation extent and change over time is important for understanding
changes in societal exposure, volumes of water storage, flood water attenuation, and for management
of flood hazards. Super cyclone Amphan struck the coast of Bangladesh accompanied by strong winds
and torrential rain on 19–20 May 2020, and these conditions persisted for several days.

The rainfall data derived from CHIRPS in the study area shows that an average of 200 mm
of rainfall fell in association with Amphan. Among the 16 affected districts surveyed, the highest
rainfall measurement was recorded at Jessore (220 mm), Satkhira (136 mm), and Narail districts
(132 mm), while the lowest rainfall was recorded at Bhola (23 mm) and Lakshmipur (22 mm) districts.
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Such widespread rainfall within a short duration coupled with the storm surge resulted in flooding
across vast areas in the coastal regions of Bangladesh.

The flood water derived from the post-Amphan SAR image shows that 2233 km2 of land
was inundated on 22 May, revealing the repercussions and severity of cyclone Amphan (Figure 3).
Among the affected districts, Bagerhat, Pirojpur, Satkhira, Barisal, Jessore, Patuakhali, and Khulna
received the highest water inundation during the cyclone. The flood areas obtained from SAR images
of 22 May show that these seven districts were inundated by 335, 248, 213, 211, 190, 188, and 173 km2,
respectively. In terms of percentage of land inundated by floodwater for each district, Jhalokati,
with the smallest area of the districts surveyed, had nearly 19% of its area inundated by floods on
22 May, while Pirojpur and Bagerhat were flooded 17% and 12% by area, respectively. Barisal and
Satkhira were inundated over 7% by area. Jessore and Barguna were each inundated 6% by area.
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Figure 3. The top row of maps show the composite bands of vertical transmit and vertical receive
(VV) and vertical transmit and horizontal receive (VH) polarizations of synthetic aperture radar (SAR)
images, while the bottom row of maps are the classified SAR images of water and land corresponding
to the images for 16 May, 22 May, 28 May, and 7 June.

Later, the floodwaters had abated to 1490 km2 on 28 May, before the affected areas jumped to
1520 km2 on 7 June, linked to floodwaters upstream making it to the lower coastal regions. Similarly,
following the immediate consequences of cyclone Amphan, floodwaters started receding from nearly
all the flooding districts except Satkhira where extended flooding was observed through 7 June. In the
district of Pirojpur, the flood subsided to 85 km2 on 28 May from 249 km2 on 22 May and it further
reduced to 29 km2 on 7 June. The districts of Barisal, Jhalokati, Patuakhali, Jessore, and Bagerhat had a
similar trend where the flood abated by 109, 104, 53, 103, and 11 km2 respectively between 22 May and
7 June. The districts of Lakshmipur and Barguna had consistent floodwater by the end of the duration
of the study. The fairly rapid reduction in flood water extent does highlight the need for rapid analysis
following such events, to accurately map impacted areas and prevent under estimation of impacts.

At the sub-districts level (Figures 4 and 5), several sub-districts such as Rajapur and Kathalia
in Jhalokati district, were submerged by 32% and 27%, respectively on 22 May. Morrelganj and
Sarankhola in Bagerhat district were inundated by 26% and 23% respectively. In Pirojpur district,
Zianagar and Mathbaria were flooded at 23% and 22% respectively. Other major flooded sub-districts
were Bakerganj in Barisal district, Betagi in Barguna district, Koyra in Khulna, and Shamnagar



Remote Sens. 2020, 12, 3454 11 of 26

in Satkhira. These sub-districts were inundated to the extent of 79, 34, and 52 km2 respectively.
The changes of inundation areas (as percentages) in each sub-district are illustrated in Figures 4 and 5.
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4.3. Spatial and Temporal Variability of Getis–Ord Gi*

Getis–Ord Gi* depicts the statistically significant spatial clustering of incidences where the high
and low values are located, and thus it identifies the occurrences of hotspots and non-hotspots. In this
study, we employed this technique to deduce the precise location of statistically significant clusters
of inundated areas, i.e., flooding hotspots. The results of Getis–Ord Gi* (Figure 6) indicate that the
statistically significant flooding hotspots are mainly clustered in the central part of the study area,
adjacent to the north eastern region of the mangrove forest. The statistically significant negative
z-scores of Getis–Ord Gi* are less concentrated geographically, and they are mainly found in the far
north eastern regions of the study area.
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Figure 6. Hotspot and unaffected regions of cyclone Amphan triggered flooding on (A1) 22 May,
(A2) 28 May, and (A3) 7 June. The red colors in maps (B1), (B2), and (B3) correspond to the locations of
high Getis–Ord Gi* z-scores corresponding to the maps in (A1), (A2), and (A3) signifying the location
of flooding inundation hotspots.

On 22 May, a total of 238 Unions were identified as hotspots of flooding (p ≤ 0.05), 101 of them
being highly significant hotspots with p < 0.001, 60 of them were hotspots with p < 0.01, and 77 flooding
hotspots with p < 0.05 (Table 2). Bagerhat district exhibited the maximum number of flooding hotspots
triggered by cyclone Amphan (p ≤ 0.05) where a total of 52 flood hotspots were identified on 22 May
followed by Pirojpur (46), Jhalokati (26), Barisal (16), Bhola (16), and Khulna (15) (Table 3).

Table 2. Hotspot analysis of Getis–Ord Gi* and their corresponding z-scores and p-values.

Cluster Type
22 May 28 May 7 June

Z-Score p-Value
Number Area

(km2) Number Area
(km2) Number Area

(km2)

Cold Spot 83 1233 94 1480 62 910 <−3.78 p < 0.001

Cold Spot 130 2167 97 1889 135 2395 <−2.56 p < 0.01

Cold Spot 157 3243 156 2923 142 2783 <−1.71 p < 0.05

Not Significant 553 14,030 649 16,063 615 14,970

Hot Spot 101 2511 8 280 0 0 >+3.78 p < 0.001

Hot Spot 60 1500 33 877 19 529 >+2.56 p < 0.01

Hot Spot 77 2024 125 3226 189 5195 >+1.71 p < 0.05
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Table 3. Number of flooding hotspots and their corresponding areas by district levels.

Districts
22 May 28 May 7 June

Area
(km2)

Number of Hotspot
(p < 0.05)

Area
(km2)

Number of
Hotspot (p < 0.05)

Area
(km2)

Number of Hotspot
(p < 0.05)

Bagerhat 335 52 274 50 229 44
Barguna 108 14 95 14 104 18
Barisal 211 16 61 2 102 5
Bhola 105 16 54 0 98 3

Chandpur 69 1 74 0 36 1
Gopalganj 126 13 142 27 110 16

Jessore 190 4 120 3 87 4
Jhalokati 162 26 21 5 58 13
Khulna 173 15 142 17 129 16

Lakshmipur 21 1 18 0 20 13
Madaripur 19 2 24 9 20 2

Narail 27 0 82 6 45 0
Patuakhali 188 15 109 7 135 14

Pirojpur 249 46 85 19 114 23
Satkhira 213 11 159 3 213 27

Shariatpur 32 0 28 0 25 1

Among these high statistically significant flooding hotspots, 35 hotspots with p < 0.001 were
identified in Pirojpur districts, while 23 are located in Bagerhat, followed by Jhalokati, Barisal,
and Barguna. Each district had a flooding hotspot with p < 0.001 at 15, 9, and 8 respectively on 22 May.
Later, the number of flooding hotspots identified in the study area dropped to 166 (p ≤ 0.05) in the
2nd week (28 May) after cyclone Amphan. During this period, 8 high flooding hotspots with p < 0.001
were identified in the central region, where 33 hotspots had p < 0.01 and 125 were identified flooding
hotspots with p < 0.05. Again, Bagerhat district had the highest number of flooding hot spots; a total of
50 hotspots with p < 0.05, and 7 of them had p < 0.001. Though it was observed that the flood affected
areas had decreased in the second week of Amphan, some new areas were reported as having increased
flooding at the beginning of June due to additional rainfall and riverbank failure across the southwest
part of this study and the inland waters making their way towards the coast within the rivers with their
flood waters. As a result, both affected areas and the number of flooding hotspots witnessed a surge on
7 June, when the total flooding hotspots were identified as 208 (p ≤ 0.05). This time, increasing hotspots
were found in the Satkhira district; 27 Unions were identified hotspots (p ≤ 0.05); then 3 Unions on
28 May and 11 Unions on 22 May.

In areas where Getis–Ord Gi* values were substantially contrasting to the surroundings; they were
considered as neither hot spots nor cold spots. They are indicated as not significant because they did
not have as great of a geographic extent of flood water compared to the more widely affected areas.
Such areas of “Not statistically significant” increased through the study period. As such, on 22 May a
total of 457 Unions detected a non-statistically significant inundation rate, while on 28 May, this number
rose to 658 and then to 614 on 7 June. This illustrates that some areas were inundated after Amphan
due to heavy downpours but eventually rainwater flowed back into the river. As a result, flood-free
zones increased considerably once the immediate flooding in the aftermath of cyclone Amphan began
to subside.

4.4. Spatial and Temporal Variability of Local Moran’s I

The Local Moran’s I statistic quantifies the degree of spatial autocorrelation at each specific
location [59]. The result of Local Moran’s I and z-scores (Figure 7) illustrate the locations over which
Amphan-triggered inundation occurred and how the spatial distribution of the flood extent changed
over the fortnight after cyclone Amphan. In Figure 7, regions in red High-High clusters (HH) indicate
higher than average inundation values located by neighbors that also have higher than average
flooding. Similar to the Getis–Ord Gi* analysis, the Moran’s-I statistics depicts those Unions that are
located in the central areas and demonstrate the exceedingly high statistically significant cluster of
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flooding. The most significant cluster of positive spatial autocorrelation decreased in size from 22 May
to 7 June (Figure 7(B1–B3)); the global mean values of local Moran’s-I statistic decreased from 0.46 to
0.17. This result indicates a general decrease in spatial clustering of flooding in the second week after
cyclone Amphan. In the immediate aftereffects of Amphan, 188 Unions had high Moran’s-I values with
a statistically significant p-value of less than 0.001. In the weeks following the cyclone, the number of
Unions associated with highly significant p-values (p < 0.001) declined to 112 on 28 May but showed a
bounce back up to 144 at the end of the study period. Similar to the Getis–Ord Gi* analysis, these highly
significant spatial associations using Moran’s-I are mainly observed in the Bagerhat district as well as
the Pirojpur, Jhalokati, Barisal, and Khulna districts.
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Figure 7. Local spatial cluster of flooding hotspots in (A1) 22 May, (A2) 28 May, and (A3) 7 June.
Red color in the map corresponds to a high cluster of floodwater with statistically significant p < 0.001.
The bottom row of images shows the output of Moran’s I index, within the parameters of −1 and
+1. Similarly, (B1) constitutes 22 May, (B2) 28 May, and (B3) refers to 7 June. The positive and
negative values of Moran’s I characterize the change direction of target variables between neighboring
and non-neighboring regions. The closer it is to 1, the stronger the positive autocorrelation of
the data, the higher the regional agglomeration; the closer the value to 0, the more dispersed the
spatial distribution.

Areas in light blue (in Figure 7) indicate a Low-Low cluster (LL), having lower than average
inundation located by neighbors with lower than average inundation rates. During the post-Amphan
periods a total of 345 Unions were detected as being in LL inundation clusters (p < 0.001) on 22 May,
whereas 313 and 311 Unions were in LL clusters on 28 May and 7 June respectively. These LL clusters
were mainly located in the Chandpur, Barisal, Madaripur, Khulna, and Shariatpur districts. Areas in
the blue Low-High outlier category (LH) revealed locations where inundation rates are below average,
but neighbors have above average inundation. They have a low negative z-score for the location and
were classified as a Low-High outlier. These LH outliers of flood occurrence were found in 50 Unions
on 22 May, 54 Unions on 28 May, and 64 Unions on 7 June with a statistically significant p-value
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(p < 0.001). Areas in pink demonstrate High-Low outliers (HL) where inundation rates are above
average, but neighbors have below average values. In total, HL flood occurrences were identified
in 25 Unions on 22 May, 34 Unions on 28 May, and 27 Unions on 7 June. These HL and LH clusters
are sporadically distributed across the study area but mainly detected in the districts of the Barisal,
Khulna, Bhola, and Chandpur.

5. Discussion

Super cyclone Amphan caused massive flooding and destruction along its path across the coastal
belt of Bangladesh. This study utilized publicly available SAR data from Sentinel-1 to quantitatively
examine the spatial variation of flooding triggered by cyclone Amphan within 16 coastal districts of
southwestern Bangladesh. Our study demonstrates that the image collected on 22 May shows the
greatest flooding extent, demonstrating the widespread consequences of cyclone Amphan. On 22 May,
approximately 2233 km2 was inundated, which accounted for 8% of the study area. An initial decrease
in the flood extent was observed by 28 May when the total inundation area dropped to 1490 km2.
The results also revealed that there was a further spike in flooding in the third week after Amphan,
when some areas reported consistent flooding. As a result, flood-affected areas under the survey were
estimated to be as much as 1520 km2 on 7 June. One probable hypothesis for some regions becoming
newly flooded on 7 June is due to additional downpours in the first week of June and rainwater,
which landed upstream making it downstream as a storm surge, causing additional stream flooding.
The rainfall data presented in (Figure 8) show that the average rainfall received in the study area was
approximately 40 mm between 2 June and 5 June. Moreover, riverbank failure along with coastal
polders and dikes were reported to have broken out due to increased volumes of surface runoff in
south western regions of the area that was eventually resulting in incessant flooding [7]. This extended
duration of flooding was observed in Satkhira districts where 13 Unions were reported to have been
newly flooded on 7 June.
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The ubiquity of flooding may correspond with favorable geophysical, topographical, and land cover
elements. Within the academic framework, such a geophysical variable has been prioritized in earlier
research across the area under study [107–110]. Many of the existing studies [8–10,12,13,16,19,20,26],
however, are dedicated to simply flood mapping which undermine the need of rapid flood assessment
and subsequent relief implementation. It is paramount to determine how such floodwaters are
distributed and how their locations are fluctuating in time and space, and how they are related to
specific geographical territories. Having knowledge of spatial and temporal distribution patterns of
flooding and the trend of their agglomerating or dispersing that are statistically distinct from random
spatial patterns, disaster managers can ascertain better measures in responding to the evolving crisis.
As such, disaster managers need actionable data highlighting the regions that need prioritization
compared to other regions across the large affected area. Hence, we assert that a simple flood mapping
or ratio computation of flooding water at a local spatial scale would not suffice for studying this
heterogeneity, as this measure would not indicate how different regions compare with each other in
terms of statistical significance. As such, the methodologies presented in this research are superior
in performance, as LISA statistical techniques enable us to categorize and provide a quantitative
assessment of spatial data that emphasizes the probability and extent of potential disasters that are
clustered, dispersed, or simply randomly distributed in a geographical area. LISA has been utilized
to reveal emerging trends in spatial data and this application has been reported in a wide range
of ecological studies. The application of LISA in the mapping of the geographical discrepancy of
flooding occurrence, however, has not been seen in any previous application. Hence, this study
contributes new knowledge in several ways. Firstly, we combine active remote sensing data with
LISA statistics to quantify the extent and regional variation of flooding at different spatial scales. We
employed commonly used LISA statistics such as Moran’s-I, which calculates the degree to which
geographic events are clustered, dispersed, or random at a local spatial scale. Hence, the simplicity
of our employed method, readily available data sources, and rapid assessment post-disaster which
is critical for management and disaster relief implementation are actually a huge strength of this
research—making this approach readily useable across the world. The other frequently used LISA
index is Getis–Ord Gi*, which measures the degree of clustering for either high or low values. The main
strength of the Getis–Ord Gi* analysis is that it identifies clusters that are not merely regions of
high-flooding density but regions of statistically significant high-flooding density, which provides
analysts with an empirical measure of spatial heterogeneity. Alternatively, the advantage of using
Moran’s-I is that it computes the spatial dependence in a given set of geographic data. In other words,
it measures the spatial autocorrelation of a variable according to its geographical location [100]. In our
study, both LISA statistics of Getis–Ord Gi* and Local Moran’s I were able to explicitly delineate
regions associated with homogenous and heterogeneous patterns of flooding. The more homogenous
flooding areas revealed a high positive spatial autocorrelation as observed by both Local Moran’s-I
and Getis–Ord Gi* statistics. Small, isolated, and scattered flooding belts were characterized by a low
positive and negative spatial autocorrelation.

Such spatial variances of disaster occurrence highlight their concentration on the map and can
be an important objective tool for the experimental investigation of causes of flooding occurrence
upon which an effective flood response and mitigation strategy can be implemented to control future
flooding occurrence and damages. Therefore, this methodology is an important contribution to quickly
identify flooding hotspots given the need for timely response especially in the developing countries
with limited resources, such that these methods will allow for quicker and more effective targeted
response efforts where most critically needed.

In previous studies, single-polarization images with either VV or VH of the SAR band were
used to examine the extent of flooding. Some studies used both VV and VH polarizations and
compared their suitability to flood mapping. Such examples include Clement et al. (2018) [37] who
compared the inundation results between VV and VH, and found that VV polarization had fewer
misclassifications than VH. Similarly, Twele et al. (2016) [111] and Uddin et al. (2019) [20] deduced
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that VV polarization provided slightly better accuracy to VH. Meanwhile, other studies including
Carreño Conde, and De Mata Muñoz (2019) [8] and Ezzine, Saidi, Hermassi, Kammessi, Darragi,
and Rajhi (2020) [36] concluded that using VH polarization in their studies accomplished the best
results for flood mapping. However, it is still unclear which of the two Sentinel-1 polarizations is the
primary choice for delineate flooding. In this study, we employed ensemble techniques with both VH
and VV polarizations combined with DEM, slope, and aspect to delineate flooding areas from SAR
images. In such methods, the contribution of each band and the associated predictors to the model
performance and classification are estimated and reported individually in scales between 0 and 100.
By implementing this approach, we could avoid the uncertainty and ambiguity of selecting the best
polarization band, permitting a cumulative contribution of each indicator to the best classification
performance and output.

Though the outcomes of LISA statistics to ascertain potential flooding hotspots or agglomerations
are promising, the study has several methodological limitations. The first limitation is the combination
of flooding data into Unions (smallest administrative units) which have different spatial extents.
The study area consists of 1162 Unions, covering an area of 26,738 km2 (excluding mangrove forest).
The dimensions of the 1162 polygons range from a minimum of 0.22 to 127 km2, with a mean value of
23 km2. Data aggregation within such ranges of sizes of geographical units may have affected our
analysis of LISA statistics. In such circumstances, the Modifiable Areal Unit Problem (MAUP) occurs
with a high probability of affecting the result. Referring to the data aggregation problem stated above,
we further examined whether data aggregation to Unions influenced the performance and output
of LISA. Since the calculation of an appropriate grid cell size is highly controversial and there is not
currently a consensus in academia, we determined each grid cell size by considering the average areal
size of Unions, which is 23 km2. Hence, we created a rectangular grid of the size of 4796/4796 m which
corresponds to the area of each gird cell that is approximately 23 km2. In this way, we created a total
of 1665 grid cells covering the entire studied area. Later, the proportions of the inundation rate were
computed and aggregated to individual grid cells before they were used for LISA analysis. The scaling
of data aggregation at Union versus gridding and its influence on clustering and hotspots analyses are
presented in Appendix C. The comparison of the results based on a grid cell with the results based on
aggregation by Unions shows that the LISA output was affected by zonation effects. Data aggregation
by the grid cell increased the number of inundation clusters and hotspots while reducing the number of
unaffected locations. This is because the number of analysis units for the grid is higher than the Unions.
However, a thorough examination of the output of both Union and grid-based LISA outcomes shows
that the inundation hotspots and agglomerations within the grid and Union are very similar. In both
spatial scale analyses, inundation hotspots and clusters are mainly spotted in the central regions of
the surveyed area; though several hotspots for the 7 June map at the grid-scale are eliminated in the
north eastern belt of the studied area. Since the objective of this research is to ascertain the hotspots of
flooding; such minor effects on the performance of LISA from zonation would not largely affect the
importance of these detections. Hence, our analysis was conducted solely upon Unions.

Additionally, each of the techniques adopted in this study has its advantages and deficiencies.
The Getis–Ord Gi* identifies clusters of high or low values, but it does not detect a negative spatial
autocorrelation (spatial outliers). Local Moran’s I, on the other hand, can detect both positive and
negative spatial correlations. The Getis–Ord Gi* statistic has been preferred in some case studies as it
matches the usual definition of a cluster and is indicated for use with variables that constitute the natural
origin [112]. Geary’s C is another computation method of spatial autocorrelation, which emphasizes the
variances in small neighborhoods and is statistically less well-behaved than local Moran’s I. Therefore,
Moran’s-I is usually preferred to Geary’s C [113].

Though SAR data provide excellent delineation of flood extent mapping during all weather
conditions and day and night, uses of such data, however, is not exclusively straightforward.
SAR images are effective for mapping smooth, and open water bodies, however, emergent vegetation,
dense tree cover, rough winds, and a turbulence environment can increase radar back-scatter returns,
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making delineation of inundated areas problematic [114]. Hence, a combination of visible and near
infrared bands (e.g., Normalized Difference Vegetation Index) from passive remote sensing data and
multi-frequency polarimetric SAR data with other ancillary data including land cover maps, DEM,
river network, etc., will be used for future study.

Since a majority of the flood-prone areas were inaccessible due to COVID-19 lockdown and
due to the communication network being completely cut off due to the flooding, a robust validation
from ground observation data was infeasible. Hence, flood maps were validated using a surrogate
computation methodology from MNDWI, derived from NIR and Green bands of Sentinel-2 data.
This approach has been extensively used in earlier studies for extracting floodwaters and validation of
SAR-based binary mapping [12,18,104–106]. We also used the visual comparison of SAR backscatter
reflectance, MNDWI, and classified flood maps to verify that floodwater extracted using SVM learning
corresponds well with apparently shown water-bodies on existing SAR images and MNDWI (Figure A2
of Appendix B). Such methodologies were also employed in studies conducted by Gan et al. (2012) [77];
Grimaldi et al. (2020) [114], and Martinis et al. (2018) [115]. For more validity and accuracy in the
flood maps derived from SAR images, further evaluation is recommended using robust ground truth
data combined with stream gage information.

6. Conclusions

Quantifying the spatial heterogeneity of flooding disasters is of considerable importance, both for
an immediate response and understanding the areas of greatest need for assistance, but also in the longer
term for developing adaptive management measures for communities and building location-specific
resilience to impede the impacts of the disaster. Simple flood mapping and analyses at local scales,
however, bear a challenge to differentiate a region that is highly vulnerable to flooding disaster
occurrence from a location that is vulnerable in general. Here, we analyzed the post-Amphan flooding
extent and spatial variation across the affected coastal districts of Bangladesh. We employed LISA
statistics, a powerful computational method for extrapolating the degree of flooding occurrence at
Unions, which can be used to complement the visual assessment of flooding propensity at a local
scale by disaster managers. In particular, we have shown that identifying the region of flooding
using the image analysis can allow the application of spatial statistical tools to effectively compute
the spatial heterogeneity in the flooding incidents, which can add valuable information for rapid,
proactive, and operational flood management. The results indicate that there is a high spatial
variability in the occurrence of flooding that was characterized by LISA across the surveyed region.
Predominantly, the area of the central locales associated with low altitudes (i.e., Bagerhat, Khulna,
Barguna, and Barisal districts) demonstrated the highest inundation caused by cyclone Amphan.
This area was also associated with a high z-score and Moran’s I, signifying that the identified locations
are more vulnerable to any type of flooding. Additionally, the average mean z-scores and I-scores
reveal a receding trend over time, indicating that the spatial variation and magnitude of flooding
clusters occur initially with a high magnitude and larger clusters, which convert to the low magnitude
with comparatively smaller clusters by the end of the study period. By maximizing the advantage of
LISA utilities, this study enabled us to uncover the flooding anomalies of high and low concentrations
in what is otherwise characterized as a homogenous inundation area when using simple flood mapping
techniques. The approach presented in this study may be of great interest for disaster managers for
future study such as local regions of spatially explicit high or low flooding. The shortcomings of
this study included the use of MNDWI to evaluate the flood maps, which may be good for interim
validation purposes. However, a robust validation incorporating ground-based training samples
combined with information over stream flow discharge is recommended for improved reliability and
performance of the products. Refinement in the methodology can be addressed, particularly in the
flood data aggregation at the Union or artificial grid cell, which may have affected our results. Hence,
a sensitivity analysis with different spatial scale data aggregations is needed to adopt and implement
the best combination for examining flooding hotspots and clusters. Future work is recommended to
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integrate ground data, land cover information, stream gage data, and predictive models to achieve a
long-lasting flood management goal throughout the coastal regions of Bangladesh.
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Figure A2. Comparison and validation of flooding extent for a subset of the region against Sentinel-2
and Google Earth Imagery. Map in (A1) false-color composite images of Sentinel-2 for 16 May,
(B1) 25 May, and (C1) 7 June. Map in (A2), (B2), and (C2) corresponds to the computed MNDWI and
testing samples sites. Similarly, A3, B3, and C3 represent the VV and VH composite SAR images of
16 May, 22 May, and 7 June. While the map in (A4) shows the pre-Amphan SAR image classification,
in (B4) and (C4) extracted flooding areas of 22 May and 7 June were imposed on Google Earth imagery.
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