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Abstract: Although vegetation phenology thresholds have been developed for a wide range of mapping
applications, their use for assessing the distribution of natural bamboo and the related carbon stocks is
still limited, especially in Southeast Asia. Here, we used Google Earth Engine (GEE) to collect time-series
of Landsat 8 Operational Land Imager (OLI) and Sentinel-2 images and employed a phenology-based
threshold classification method (PBTC) to map the natural bamboo distribution and estimate carbon
stocks in Siem Reap Province, Cambodia. We processed 337 collections of Landsat 8 OLI for phenological
assessment and generated 121 phenological profiles of the average vegetation index for three vegetation
land cover categories from 2015 to 2018. After determining the minimum and maximum threshold values
for bamboo during the leaf-shedding phenology stage, the PBTC method was applied to produce a seasonal
composite enhanced vegetation index (EVI) for Landsat collections and assess the bamboo distributions
in 2015 and 2018. Bamboo distributions in 2019 were then mapped by applying the EVI phenological
threshold values for 10 m resolution Sentinel-2 satellite imagery by accessing 442 tiles. The overall Landsat
8 OLI bamboo maps for 2015 and 2018 had user’s accuracies (UAs) of 86.6% and 87.9% and producer’s
accuracies (PAs) of 95.7% and 97.8%, respectively, and a UA of 86.5% and PA of 91.7% were obtained from
Sentinel-2 imagery for 2019. Accordingly, carbon stocks of natural bamboo by district in Siem Reap at
the province level were estimated. Emission reductions from the protection of natural bamboo can be
used to offset 6% of the carbon emissions from tourists who visit this tourism-destination province. It is
concluded that a combination of GEE and PBTC and the increasing availability of remote sensing data
make it possible to map the natural distribution of bamboo and carbon stocks.

Keywords: bamboo mapping; Google Earth Engine; Landsat 8 OLI; Sentinel-2; vegetation phenology;
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1. Introduction

Bamboos are evergreen perennial flowering plants that can be found in the tropical and subtropical
regions of the world [1]. Bamboos provide important ecosystem goods and services to people:
for example, they serve as sources of food and raw materials for construction [2] and play important
roles in soil erosion control, water conservation, and land rehabilitation [3]. Bamboo forests also have
a potential role in climate change mitigation, acting as sinks or sources of atmospheric carbon [2,4],
depending on how they are managed. Despite such importance, studies on the natural distribution of
bamboos remain limited, making it difficult to assess their abundance or measure and monitor their
carbon stocks. Therefore, it is critically important to map bamboo distributions using fast and timely
technologies for transparent, speedy, and monitoring at scale. Understanding the natural distribution
of bamboos also allows us to assess the roles of bamboos in climate change mitigation and rural
community development.

Bamboos are plants in the subfamily Bambusoideae of Gramineae. More than 1500 species are
found in the tropical and subtropical regions of Asia [1]. Bamboos are considered non-timber forest
products (NTFPs) with the ability to provide food, raw materials [2], and other ecosystem services
to industries and local people [2,5]. Natural bamboo and plantations can be managed to mitigate
climate change [3,6]: as fast-growing, high-yield plants they are capable of sequestering between 5 and
12 tCO2 ha−1 year−1 [3,5,6]. Therefore, the management of bamboo forests can be eligible under the
REDD+ scheme (reducing emissions from deforestation and forest degradation, forest conversation,
sustainable management of forests, and enhancement of forest carbon stocks) of the United Nations
Framework Convention on Climate Change (UNFCCC) [6]. It can also contribute to the achievement
of Sustainable Development Goals (SDGs) 7, 13, and 15 [3]. Nevertheless, effective management of
bamboo forests requires an understanding of their distribution through accurate mapping [7].

Remote sensing imagery has been used for various phenological applications in land use and land
cover classification [8], mapping of rubber plantations [9], cropland [10,11], and bamboo mapping [12].
Researchers have used medium-resolution Landsat satellite data for the assessment of land cover
changes over the past 40 years. Such data have become freely available in global archives that offer
detail on land use and land cover dynamics [13–15]. These Landsat data have 30 m spatial resolution
and a 16-day temporal interval. Launched in February 2013, Landsat 8 is the latest data acquired
using the Operational Land Imager (OLI) and Thermal Infrared Sensor sensors in addition to the
existing Landsat series of NASA. The recent launch of the Sentinel-2 satellite mission of the European
Space Agency in 2015 and 2017 provides a new opportunity for land-based mapping and monitoring
in the tropics using Sentinel-2′s high-resolution multispectral data and 10-day temporal interval.
While Landsat 8 OLI data have been used for phenology-based studies, very few studies have
evaluated the potential use of Sentinel-2 imagery data for phenology-based land cover mapping.
Previous studies attempted to examine surface phenology for land use and land cover classification [13]
and rubber plantation [9,16] and cropland mapping [17] in tropical regions [11]. For example,
Schwieder et al. [18] used remote sensing technologies to assess forest carbon stocks [18]. However,
challenges remain in determining the phenology-based threshold values for bamboo distribution
mapping because of the rapid changes in phenological behavior between seasons [19,20]. Such rapid
changes in phenology make it difficult to avoid the misclassification of bamboo. A recent study indicates
that the mapping of bamboo distribution needs to employ robust classification methods to avoid
misclassification [13]. Freely available moderate-resolution remote sensing data in a cloud-computing
platform offers significant potential [12] as a robust methodology, for example in developing countries
in Southeast Asia such as Cambodia, where remotely sensed reconstructions of past land cover change
have been limited.

Previous studies that employed current mapping techniques for bamboo stands either used
very high resolution images without regard to temporal spectral behavior [7,19,21] or time-series
Landsat data [12,21] and the enhanced vegetation index (EVI) [22–27] with an additional focus
on temporal information. The majority of these studies also implemented traditional imagery
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acquisition and processing methods, downloading large-sized images and processing them using image
processing software. This traditional approach is not only time-consuming, especially when dealing
with time-series imagery, but also requires a workstation with a high capacity for image processing
and storage [13]. Available studies on bamboo mapping were mostly carried out in subtropical
China, India, and East Africa. Several studies have used remote sensing applications to estimate
carbon stocks [12,28,29]. Sasaki et al. [30] estimated carbons stocks in Cambodian forest types,
including bamboo, using four carbon pools—above-ground biomass, below-ground biomass,
deadwood, and litter—by applying the Intergovernmental Panel on Climate Change (IPCC) method [31].
Attempts have also been made to study the natural distribution of bamboo in Cambodia using
commercial remotely sensed data such as Phased Array type L-band Synthetic Aperture Radar [32] and
Light Detection and Ranging [33]. Although these studies yielded some information about bamboo
distribution, their methods are labor-intensive and costly in terms of computation power.

The recent launch of Google Earth Engine (GEE) offers an enormous opportunity for time-series
image acquisition and processing in a fast cloud-computing environment [34,35], which can be used to
study the natural distribution of bamboo free of cost. GEE’s fast cloud-computing technology and its
available remote sensing data, specifically Landsat and Sentinel satellite products, have been used
for a wide range of applications at the local and global scales [13,36–38]. Recently, GEE has been
extensively used for surface phenology mapping [15,39]. However, the literature is limited in studies
that used the GEE cloud-computing platform for bamboo mapping using the vegetation phenology
threshold approach. Furthermore, finding low-cost technologies for assessing carbon sequestration is
important to support mitigation efforts in relation to the ongoing climate crisis [18,40].

The present study was designed to determine threshold values for naturally distributed bamboo
using a GEE harmonic and regression model for Landsat 8 OLI and to map the bamboo distribution
and related carbon stocks in Siem Reap Province in Cambodia for the years 2015, 2018, and 2019 using
a phenology-based threshold classification method (PBTC) [13] and freely available Landsat 8 OLI and
Sentinel-2 collections in GEE.

2. Study Materials and Methods

2.1. Study Area

Siem Reap Province, Cambodia, was chosen for this study because it has all forest types found
in Cambodia, except Mangrove forest. Siem Reap (Figure 1) is one of the fastest-developing regions in
Cambodia because of its proximity to the tourist attractions of the Angkor Wat complex and Tonle
Sap Lake. Although tourism is an important income source for some local people, the majority still
depend on forest products and agriculture for their livelihoods [41].

Bamboo grows naturally in Cambodia’s tropical climate. Cambodia has about 10 species in four
genera of bamboo, namely, Bambusa, Arundinaria, Dendrocalamus, and Oxytenanthera. Bambusa has a more
extensive distribution in the country as compared with Oxytenanthera and Arundinaria. Bamboo species
such as Arundinaria ciliata, Arundinaria pusilla, and Bambusa blumeana grow beneath evergreen,
semi-evergreen, and deciduous trees [42]. Several bamboo species in the region have commercial value
as a material for construction and for making agricultural tools, handicrafts, and paper. The above
three species, as well as Dendrocalamus spp., are used as food and for making kitchen utensils, matting,
slat traps, and floats [42].

The major forest types are deciduous, evergreen, flooded forest, and bamboo. Dense bamboo
stands are found in the northern part of Cambodia in evergreen and deciduous forests, around Tonle
Sap Lake, and along stream banks [42]. Some ethnic groups rely heavily on bamboo products for
their livelihoods, especially in the north and northeast regions, which include some parts of Siem Reap
Province [42]. Bamboo remains widely distributed in the remaining forested area and continues to
support rural areas. A recent study by Sasaki et al. [30] showed that Cambodia’s forest carbon stocks,
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including bamboo, are helping the government’s efforts to reach their national emission reduction
targets [30,43]. In 2018, the government included bamboo species as a major forest type [43].
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Figure 1. Map of the study area. Note: Light green points indicate phenology sampling points
for bamboo, evergreen, and rubber plantations. The yellow box indicates the National Park of Phnom
Kulen mountain. Source: The background map is the bamboo distribution derived from Sentinel-2
imagery in 2019 in this study. The provincial and district boundaries were obtained from Open
Development Cambodia [44].

2.2. Remote Sensing Data

Google Earth Engine provides ready-to-use remote sensing data in an up-to-date library
with moderate to high-resolution imagery. To characterize vegetation phenology, we used 297
moderate-resolution 30 m Landsat 8 OLI top-of-atmosphere (TOA) collections from 2015 to 2018 (Table 1).
Forty Landsat 8 OLI collections that cover the study area of Siem Reap Province were sourced between
December and February of 2015 and 2018 for bamboo threshold-based classification [13] (Table 2).
To further explore vegetation threshold values for Sentinel-2 products, we accessed 422 Sentinel-2
images from January to December 2019 (Table 2).

Table 1. Landsat 8 Operational Land Imager (OLI) collections used for assessing the phenological
behavior of selected land cover categories.

Landsat 8 OLI
PATH ROW 2015 2016 2017 2018

126 50 17 16 16 15
51 21 20 18 16

127 50 20 20 19 18
51 17 22 22 20

Total Collections 75 78 75 69
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Table 2. Landsat OLI and Sentinel-2 image collections used in this study for phenology-based threshold
classification (PBTC).

Cloud-Free Month and Year PATH/ROW Sentinel-2 TILE Landsat 8
Sentinel-2

Number of
Images/Tiles

December–February 126/50
L-8-OLI-TOA 202014–2015 127/51

December–February 126/50
L-8-OLI-TOA 202017–2018 127/51

January–December 2019 48PUA, 48PUV, 48PVA, 48PVV Sentinel-2 442
Total 482

Note: OLI is Landsat Operational Land Imager 8, and TOA is top-of-atmosphere; 48PUA, 48PUV, 48PVA, and
48PVV are Sentinel-2 Military Grid Reference System (MGRS) tiles in the study region.

2.3. Methodology

Figure 2 illustrates the methodological framework of selected vegetation phenological assessment
and phenology-based threshold classification methods for bamboo mapping and bamboo carbon
stock assessment.
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Figure 2. Methodological framework of phenology-based threshold classification to identify the
natural distribution of bamboo forest. GEE, Google Earth Engine; EVI, enhanced vegetation index;
EOS, end of season; SOS, start of season; LSP, leaf-shedding phenology stage; LFP, leaf-flushing
phenology stage.

Here, we used JavaScript programming in GEE to collect time-series of Landsat 8 OLI image
collections from 2015 to 2018 and applied cloud mask functions (less than 45%) to exclude cloud pixels
prior to the assessment of land use classification (Figure 2, Step 1) [10,34,37,45,46]. We then applied an
image compositing and reducer function to select the most recent pixel in the collections.

We applied a composite median reducer function to calculate the median value of each
image collection. The median reducer function removes clouds in the image, which have high values,
and shadows, which have low values [35,47]. The output composite value is the median in each band
over time [34,46]. We applied a clip function to subset the image collections within the study region
and then calculated the EVI using Equation (1) (Figure 2, Step 1) (Appendix A):

EVI = G×
(NIR−RED)

(NIR + C1×RED−C2×BLUE + L)
(1)

where G = 2.5 (gain factor) [48–50]; C1 = 6 and C2 = 7.5 (aerosol correction factors); L = 1
(canopy background adjustment factor) [48–50]; and NIR (near infrared) is Landsat band 5 and
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Sentinel-2 band 8, RED is band 4 in both Landsat and Sentinel-2, and BLUE is band 2 in both Landsat
and Sentinel-2 [49].

In assessing the vegetation phenological profiles of selected land cover classes, we applied a
time-series analysis for EVI by adapting harmonic and regression model JavaScript algorithms from our
recent study [13] (Figure 2, Step 2). We selected 65 geometry locations (Figures 1 and 3D), including 30
for bamboo forest, 30 for evergreen forest, and 5 for rubber plantations, where no large land cover
changes had occurred during the phenological analysis period (2015 to 2018). As we observed during
the field survey in 2019, the larger portion of bamboo distribution was found in and around the Kulen
Mountain area, including Varin, Banteay Seri, and Svay Leu Districts, and in the northern part of Chi
Kreng District (Figure 1). Thus, we selected 10 sites with a large homogeneous extent of bamboo around
the Kulen Mountain for creating the geometry for analyzing the phenological behavior of bamboo.
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Figure 3. Example of original and fitted OLI index time-series profile of evergreen forest and bamboo
between 2015 and 2018 generated by using harmonic regression and a time-series model. (A) is the
GEE JavaScript code window, (B) is the EVI time-series graph, (C) is the geometry inputs for selected
forest land cover categories and (D) shows the map window in GEE.

For the rubber plantation samples, we created four geometry locations in Chi Kraeng District,
two in the northern part of Varin, two in Angkor Thom, and two locations in Banteay Srei Districts.
For evergreen forest geometries, we created three in the Angkor Wat region, where there are permanent
sampling plots for evergreen forest [51], and seven geometries were created within the study area
(Figure 3). Eventually, we generated the time-series and fitted and original EVI profiles for each selected
vegetation category to assess phenological behaviors [52] and determine the threshold values [13] from
Landsat 8 OLI collections during the leaf-shedding phenology stage (December to March) from 2015 to
2018 (Figure 2, Step 2).

In Figure 3A, is the code window for the GEE time-series indices and harmonic regression JavaScript
code developed in GEE to assess the phenological behaviors of selected vegetation categories; Figure 3B
is the graphical window showing the harmonic and time-series phenological behaviors of evergreen,
bamboo, and rubber vegetation’s fitted (blue line) and original (red dots) vegetation index values from
2015 to 2018; Figure 3C shows geometry inputs of selected vegetation categories; Figure 3D is the map
window showing the geometry of evergreen (green), bamboo (yellow), and rubber plantation (purple)
in Siem Reap Province. The background image is Landsat 8 OLI composite EVI data in GEE.

Google Earth Engine generates EVI time-series profile datasets in a comma-separated values file
format (CSV). Using the GEE export option, we exported 25 (10 evergreen, 10 bamboo, and five rubber
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plantations) CSV profiles and used the Pivot Table function of Microsoft Excel to obtain the average
EVI values per year and month over four years, from 2015 to 2018 (Figure 2, Step 3).

The time-series analysis of fitted vegetation indices allowed us to quantify the phenological
behaviors of bamboo, rubber, and evergreen forest categories. To do this, we first assessed the fitted
vegetation index profiles derived from the time-series harmonic regression model using compressed
(15-day intervals) Landsat 8 OLI collections. We then calculated the average of the mean fitted
vegetation index values by creating 120 phenological profiles for selected land use categories (2015,
2016, 2017, and 2018) during the leaf-flushing phenology stage (LFP) at the start of the season
(SOS) and the leaf-shedding phenology stage (LSP) at the end of the season (EOS) over four years.
Previous phenological studies showed that fitted index values have higher accuracy in determining
the vegetation threshold values for mapping during the LSP stage, locally called EOS [13].

We selected the fitted EVI profiles and assessed the phenology-based vegetation index values
from November to April (EOS) or during the LSP season to determine the separation of bamboo
index profiles from evergreen forests and rubber plantations from 2015 to 2018. We then created 12
average-fitted EVI phenological profiles for the three land use categories by year to estimate the average
EVI profiles and determine the threshold values for bamboo forest, evergreen forest, and rubber
plantation and to classify bamboo distribution in the region during the mid-dry season (Figure 2,
Step 3). Because the purpose of this study was to determine the natural distribution of bamboo forest,
we did not consider the vegetation index values for other land cover categories in this study, which fell
below the evergreen forest threshold values.

Since the resulting Landsat 8 OLI phenology threshold values did not match the Sentinel-2
composite EVI for the selected land use categories, to classify the Sentinel-2 composite EVI data by
using the PBTC method, we assigned Min = 0.6712 and Max = 0.7760 for bamboo, 0.6695–0.6623
for rubber, and 0.555–0.660 for the evergreen forest category by modifying Landsat Thematic Mapper
(TM) threshold values from our previous phenological study [13]. We used JavaScript to build the PBTC
algorithm [13] for classifying the median EVI data from composite Landsat OLI and Sentinel-2 images.
As depicted in Figure 2 (Step 4), the steps used for the composite image and pixel-based threshold
mapping of individual land cover categories were as follows:

• Imagery preprocessing and time-series collections were filtered for the dry mid-phenology season
(from December to February).

• Image filter functions were applied to select image collections in the particular phenological
period within the study region [13].

• To develop the mapping function for EVI data, the GEE image reducer and median function was
used to form composite time-series images to obtain a median EVI [35,53].

• The PBTC function was applied to the bamboo forest, evergreen forest, and rubber
plantation categories.

The final PBTC maps were used to map the bamboo distribution and calculate the bamboo carbon
stocks in Siem Reap Province (Figure 4).
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the 10 m resolution Sentinel-2 land use map in 2019. Bamboo forest appears in yellow (inset legend).
The background image is GEE Google Earth imagery.

2.4. Accuracy Assessment

Google Earth higher-resolution imagery (VHR) is free of cost and can be used directly as a base
source for validating land use, land cover maps [54] because it provides the most accurate data for
selecting the most appropriate reference points that are very important for validation. The images
are updated whenever new images become available. Depending on the sensor, the image resolution
ranges from 30 m to 15 cm. Utilizing the time-lapse feature in Google Earth Pro allows the user to view
zoomable images as far back as 30 years, which is ideal for validating land use, land cover maps [55]
and performing investigation and preliminary studies with suitable accuracy [56,57] by applying
recognized protocols, as recommended by [58]. Here, a stratified random sampling technique was
employed for the validation of phenology-based threshold classified maps. From the number of random
points generated in ArcGIS, a total of 1500 accuracy points were selected within the evergreen forest,
bamboo, and rubber plantation land cover categories. We excluded the random points that fell within
the water and other land cover categories. Because the spatial distribution of bamboo and rubber
plantation areas is smaller than that of the evergreen forest and other land cover classes, we selected
random reference points within the three forest categories to acquire a considerable number of reference
points for the bamboo and rubber plantation category areas to better assess mapping accuracy [59].

PBTC maps were exported to Google Drive using the export function in GEE, and we used
these maps in ArcGIS to transform land cover labels into 1500 accuracy points by applying ArcGIS
spatial-join and related tools. We then used these accuracy points in Google Earth Pro to verify and
validate the 1500 points for Landsat OLI (2015 and 2018) and Sentinel-2 (2019) maps (Figure 5).

These accuracy points were compared to the matching land cover labels using the VHR imagery
in Google Earth Pro. The percentage of agreement was recorded in an accuracy table, and classification
accuracy was assessed using a confusion matrix in Microsoft Excel. We then calculated overall accuracy,
producer’s accuracy, user’s accuracy, and kappa coefficients from the confusion matrix [13,58] for
PBTC maps.
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2.5. Bamboo Carbon Stock Assessment

To implement the REDD+ scheme, Cambodia employs a national definition of forest that is
consistent with the Global Forest Resources Assessment [60] and considers bamboo to be one of the
main forest categories for net carbon sequestration from land use, land use change, and forestry [60].
Conventionally, forest inventories are used for measuring, reporting, and verification (MRV) of
deforestation and forest degradation in the tropics to provide the needed information for establishing
baseline emissions against which mitigation measures and performance can be assessed [61–63].

Equation (2) was applied for calculating carbon stocks in the existing bamboo areas and is
presented below [30,60]:

TCS =
12∑

i=1

BFi ×CS (2)

where TCS is the total carbon stocks of bamboo forest in 2015, 2018, and 2019; BFi, is the area of bamboo
forest in district i in Siem Reap Province at any given time; and CS is the carbon stocks in bamboo
forest in the respective years (i.e., 2015, 2018, or 2019). Sasaki et al. [30] estimated the bamboo carbon
stocks in Cambodia to be 57.4 Mg C ha−1 [64] for all pools except organic soil carbon. Here, we used
the same value to calculate the bamboo carbon stocks in 12 districts in Siem Reap Province in 2015,
2018, and 2019 (Figure 2, Step 5) [30,60].

If natural bamboo forests are completely cleared, total emissions from such clearing were
estimated using

CE = TCS×
44
12

(3)

where CE is carbon emission (Mg CO2), TCS is the total bamboo carbon stock at any given time of
clearing (in 2015, 2018, and 2019) in Equation (2), and 44/12 is the molecular weight ratio of carbon
dioxide to carbon [30,65].

On the other hand, if all these natural bamboo forests are fully protected and the avoided
carbon emissions (ACE) are used to offset the carbon emissions from tourists visiting the province,
the contribution of bamboo forest to climate change mitigation was estimated using

COR =
ACE

T × EP
× 100 (4)
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where COR is carbon offsetting rate (%), T is the total number of tourists visiting Siem Reap in 2015
(2,100,000) and 2018 (2,200,000) [66]. Due to the lack of data in 2019, tourist-based emissions for 2019
were not included in our carbon offsetting calculation, EP is the tourist’s per capita emissions for
traveling to and staying in Siem Reap (4.14 Mg CO2/person) [67]; ACE is the avoided carbon emissions.
If 100% is avoided, ACE = CE.

3. Results

3.1. Phenological Profiles and Threshold Values

The time-series analysis of fitted vegetation indices allowed us to quantify the differences in
phenological behavior between bamboo, rubber, and evergreen forest land cover categories, as shown
in Figures 6–8.
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Figure 7. Fitted mean vegetation index profiles of Landsat 8 OLI EVI composite data for
rubber plantation. Average index profiles were generated by assessing 40 profiles from 10 geometry
locations of the bamboo category between 2015 and 2018.
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Figure 8. Fitted EVI profile of Landsat 8 OLI EVI composite data for evergreen forest. The average
vegetation index profiles were generated from 10 geometry locations by assessing 40 profiles from 2015
to 2018.

In Figure 6, the yearly average index profiles were generated by analyzing 40 profiles from 10
geometry locations between 2015 and 2018. The highlighted blue color shows the LFP stage and
indicates the local start-of-season (SOS) and end-of-season (EOS) periods from May to November.
The dashed blue lines indicate the SOS and EOS phases. The blue arrow and black dashed line show
the leaf-shedding phenological stage and the amplitude of the minimum and maximum bamboo index
profiles from December to April.

Figure 6 (bamboo), Figure 7 (rubber), and Figure 8 (evergreen) show the overlapping of
average-fitted vegetation index profiles during SOS and EOS and the regular fluctuation of average
EVI profiles of bamboo, rubber, and evergreen forest during the LSP stage (from December to April) in
all 30 of the selected geometry locations from 2015 to 2018. The most distinguishable differences in the
three vegetation cover indices were apparent in the LSP stage. The bamboo average-fitted vegetation
index values were Min = 0.71 and Max = 0.83 from 2015 to 2017 and Min = 0.71 and Max = 0.84 in the
LFP stage in 2018 (Figure 6). The fitted values for evergreen in the LSP stage reveal lower vegetation
index values than those for bamboo in all selected phenology years (Figure 8). We found that evergreen
had fitted average index values of Min = 0.63 and Max = 0.70 in the LFP stage from 2015 to 2018.
The rubber plantation values (Min = 0.75 and Max = 0.80) were higher than the bamboo and evergreen
forest values in the SOS to EOS season, and its vegetation index values were lower than bamboo and
evergreen values during the LSP season (Figure 7).

However, during the start of the LSP stage, bamboo vegetation index values (Max = 0.86 and
Min = 0.83 from November to January) were greater than those of evergreen (Max = 0.71 and Min = 0.69)
and rubber (Max = 0.80 and Min = 0.76) in the overall SOS and EOS or LFP period. The separation of
fitted indices of bamboo, rubber, and evergreen phenological profiles in the mid-LSP stage is shown in
Figure 9.

The cumulative average phenology profile of land use categories (Figure 9), namely, bamboo,
rubber, and evergreen, were assessed by validating 120 index profiles during the LSP and LFP stages.
Comparing the phenology-based index profiles revealed that bamboo had greater index values over
the entire LSP period from 2015 to 2018. The amplitude of bamboo minimum and maximum peak
values (0.860–0.863) occurred at the end of the LSP stage (December–February), and the lowest index
values (0.707–0.716) were found at the start of the rainy season (SOS) in May–July.

The rubber plantation vegetation index values (0.784–0.798) were greater than the bamboo values
(0.707–0.716) in the SOS (monsoon/rainy season) from May to September, and they were slightly
lower (0.741–0.748) right after the start of the mid-LSP stage (January–April). However, the bamboo
and rubber vegetation index profiles overlapped in the EOS season between September and October,
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as shown in Figure 9. The evergreen phenological values and the phase of amplitudes are smaller
than those for bamboo and rubber in all phenological stages. Therefore, classification confusion of
evergreen forest and that of bamboo or rubber is not likely to occur.

Bamboo was found to have the highest vegetation index in the mid-dry phenological phase.
Amplitudes of the minimum and maximum threshold values were determined (0.854–0.882) and are
shown in Figure 10. Similarly, rubber plantations showed the highest vegetation index, but the range of
the threshold amplitude (0.815–0.841) between bamboo and evergreen forest was smaller (0.581–0.648)
(Figure 10).
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Figure 9. Time-series average index values of bamboo, rubber, and evergreen forest categories during
the middle LSP season from 2015 to 2018. The average phenology index values were generated by
validating 120 index profiles. The box surrounding the profiles indicates the phase of separation of
the EVI profile of the three vegetation categories during the middle-leaf-shedding phenology season.
Locally, May–October is the rainy season (LFP stage), and November–April is the dry season (LSP stage).
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Figure 10. Minimum and maximum threshold values for bamboo forest, rubber plantation,
and evergreen forest determined using Landsat 8 OLI EVI time-series data during the mid-LSP
stage from 2015 to 2018.



Remote Sens. 2020, 12, 3109 13 of 23

3.2. Natural Distribution of Bamboo Forest

Using the obtained threshold values of selected land cover categories, we were able to derive the
natural bamboo distribution for the entire Siam Reap Province in 2015 (Figure 11), 2018 (Figure 12),
and 2019 (Figure 13).

The PBTC map of land use in Siem Reap in 2015 and 2018 (Figures 11 and 12) represents
the bamboo, rubber, evergreen, and other land cover distributions. Evergreen forest is widely
distributed around Kulen Mountain and the Angkor Wat temple. Bamboo distribution was found
largely in the mountain region, and some patches can be observed around the Angkor Wat temple.
Rubber distribution can be seen in only a small area (Figure 11C) in 2015, whereas the increase in
rubber is clearly seen in 2018 (Figure 12C).

In Figure 11A, the map represents the distribution of bamboo around Kulen Mountain and Kulen
National Park. Figure 11B (Boeng Peae Wildlife Sanctuary) shows the distribution of bamboo in natural
evergreen forests in the northwestern part of the study region, including Chi Kraeng District. Figure 11C
shows a mix of vegetation of evergreen forest (green) and rubber (purple) in Chi Kraeng District.
Figure 11D shows the rich evergreen forest cover and small bamboo distribution around the Angkor
Wat temple.Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 24 
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Figure 11. Maps showing the bamboo distribution in Siem Reap in 2015. Inset maps show the locations
of the natural bamboo distributions around the Kulen Mountain (A) and Boeng Peae Wildlife Sanctuary
(B) and of dense evergreen forests in southeastern region of the Boeng Peae Wildlife Sanctuary (C) and
Angkor Wat temple (D).

As shown in Figure 13, bamboo distribution was higher in 2019 compared with that in 2015,
and the distribution of rubber plantations can be seen clearly in Varin and Chi Kraeng Districts
(Figures 12C and 13C). Figure 13 shows a higher bamboo distribution area compared with that in the
Landsat OLI maps (2015 and 2018) in most of the study region. On the other hand, rubber plantation
distribution can be seen clearly in Varin and Chi Kraeng Districts (Figure 13C). Our analysis found
that the bamboo cover was 2674 ha in 2015, 2711 ha in 2018, and 2672 ha in 2019. A larger area of
bamboo was in upland areas and along riverbanks [42], especially in Phnom Kulen National Park and
the northern part of Chi Kraeng District.
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Figure 12. Maps showing the bamboo distribution in Siem Reap in 2018. Inset maps show natural
distribution of bamboo in Kulen Mountain (A) and Boeng Peae Wildlife Sanctuary regions (B),
rubber plantation in southeastern region (C) and evergreen forest around the Angkor Wat temple (D).
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Figure 13. Maps showing the bamboo distribution using the Sentinel-2 in Siem Reap, 2019. Inset maps
show natural distribution of bamboo around the Kulen Mountain (A) and Boeng Peae Wildlife Sanctuary
areas (B), rubber plantation (C) and dense evergreen forest around the Angkor Wat temple (D).
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3.3. Accuracy Assessment

Validation of the 2015 and 2018 maps using VHR imagery in Google Earth revealed that for
bamboo classification, producer’s accuracy (PA) is 95.7% and user’s accuracy (UA) is 86.6% for 2015,
with values of 97.8% (PA) and 87.9% (UA) for 2018. The Sentinel-2 map shows that the PA is 91.7%
with a UA of 86.5% for 2019. The evergreen forest has a UA of 95.7%–89.7% and PA of 84.3%–89.9%
(2015–2018). Rubber plantation PA is 93.6%–68.1% and UA is 81.5%–95.5% (2015–2018) for the Landsat
8 OLI maps. We found that the overall accuracy in VHR is 89.72%–89.56% (2015–2018) with a kappa
coefficient of 0.83–0.82 for the Landsat OLI phenology-based threshold maps of 2015 and 2018 (Table 3,
Figure 14).

Table 3. User’s accuracy and producer’s accuracy assessment for classifying the bamboo, rubber,
and evergreen forest in Siem Reap.

Forest Category Evergreen Rubber Bamboo User’s Accuracy

Landsat OLI imagery in 2015

Evergreen 268 5 7 95.70%>

Rubber 17 88 3 81.50%
Bamboo 33 1 220 86.60%

Producer’s accuracy 84.30% 93.60% 95.70% Overall Accuracy 89.72%
Kappa 0.83

Landsat OLI imagery in 2018

Evergreen 286 29 4 89.70%
Rubber 2 64 1 95.50%
Bamboo 30 1 225 87.90%

Producer’s accuracy 89.90% 68.10% 97.80% Overall Accuracy 89.56%
Kappa 0.82

Sentinel-2 imagery for 2019

Evergreen 273 11 14 91.60%
Rubber 7 88 5 88.00%
Bamboo 28 5 211 86.50%

Producer’s Accuracy 88.60% 84.60% 91.70% Overall Accuracy 89.10%
Kappa 0.82

Note 1: Bold cells indicate the agreement of the accuracy metrics. Note 2: Total reference points 642.
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3.4. Area of Bamboo Forest and Its Carbon Stocks by Districts

We estimated a total bamboo area of 2674 ha in 2015, 2711 ha in 2018, and 2672 ha in 2019.
Carbon stocks in bamboo forest were estimated at 153,511; 155,583; and 153,367 Mg C in 2015, 2018,
and 2019, respectively. Specifically, among the 12 districts, the Banteay Srei District had a higher
amount of bamboo carbon stocks (47,500 Mg C) between 2015 and 2019, and Svay Leu and Varin
Districts had more than 41,600 Mg C in the same period. Other districts covered smaller portions
of bamboo, and their carbon stocks were less than 3000 Mg C (Table 4).

Table 4. Total carbon stocks and emission reductions in bamboo forests by districts in Siem Reap
Province in 2015, 2018, and 2019.

District Name
2015 2018 2019

Area (ha) (Mg C) Area (ha) (Mg C) Area (ha) (Mg C)

Angkor Chum 26 1504 20 1137 20 1142
Angkor Thum 36 2061 18 1039 55 3134
Banteay Srei 826 47,395 862 49,479 831 47,682
Chi Kraeng 270 15,521 253 14,522 215 12,335
Kralanh 2 121 2 126 3 189
Puok 3 149 1 75 1 69
Prasat Bakong 3 178 3 189 5 258
Krong Siem Reab 20 1165 22 1246 30 1693
Soutr Nikom 14 798 8 448 53 3054
Srei Snam 11 603 2 86 1 63
Svay Leu 757 43,469 787 45,145 734 42,132
Varin 706 40,547 733 42,091 725 41,615

Total 2674 153,511 2711 155,583 2672 153,367

Bamboo Emissions (Mg CO2) 562,872 570,470 562,346

Carbon Emissions by tourists visiting
Siem Reap (Mg CO2) 8,693,652 9,107,635

Carbon Offsetting Rate
(from Tourists-Based Emissions) 6.5% 6.3%

Siem Reap is a popular tourist destination in Cambodia because of its rich historical
temple attraction, Angkor Wat heritage, and natural attractions. Siem Reap welcomed 2.2 million
tourists in 2018, increasing from 2.1 million in 2015. These visiting tourists accounted for carbon
emissions of 8,693,652 Mg CO2 in 2015 and 9,107,635 Mg CO2 in 2018. Carbon emission reductions
from the full protection of natural bamboo forests can offset 6% of carbon emissions from tourists
visiting Siem Reap Province.

The spatial distribution of bamboo forest by districts in 2015, 2018, and 2019 is shown in Figure 15.
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4. Discussion

Our method has limitations in identifying bamboo in dense and tall vegetation areas such as
evergreen forest, as well as in smaller bamboo patches in other forests. There are possible errors in our
study due to data limitation and the occurrence of natural stands of bamboo. Limited ground-based
data also constrains potential accuracy. Different stages of bamboo growth in the study areas were
obtained through remotely sensed temporal data. Different species at various growing stages show
different phenological behaviors [20], and their spectral values vary during phenological stages [19,20].
Nath et al. [20] found that ground-based data are needed to reduce the possible errors while increasing
the map accuracy. For example, in Sichuan Province, China, where small patch of bamboo could be
identified through the use of ground-based data and k-nearest neighbor classifier for the Worldview-2
imagery [21]. Even in such a difficult situation, they achieved a bamboo map producer’s accuracy of
82.65% and a user’s accuracy of 93.10%.

The second source of error could be the distribution of bamboo mixed with other vegetation types.
During the field survey, we found that other lowland areas in Siem Reap have small bamboo patches,
usually along riverbanks and intermingled with tall, dense areas of evergreen and deciduous forests.
This makes it difficult to identify bamboo from moderate-resolution satellite imagery, which might
account for the omission errors in Table 3 and Figure 16.
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Figure 16. Images showing the locations of our field survey and unmanned aerial vehicle (UAV)
Phantom 4’s captured locations for detecting bamboo. (A). evergreen forest and bamboo patches
(red boxes outline bamboo distribution). (B). field survey of bamboo distribution along the river.
(C). dense evergreen forest and bamboo distribution. (D). young bamboo patches in a deciduous forest.

When observing Figures 9 and 10, the rubber category is the main source of confusion for the
bamboo category because the ranges of the minimum and maximum threshold values are close to
each other. To avoid this problem, big data [35] and deep learning-based technology [68,69] may
be employed. In addition, because bamboo is usually mixed with evergreen forest in most of the
study region, selection of ground-reference points for accuracy assessment without ground data can
create confusion between bamboo and evergreen forests. If such incidence occurs, evergreen or bamboo
can be mistakenly classified into just one category. One possible solution would be to use very high
resolution imagery such as Planet’s daily imagery for bamboo phenological assessment and IKONOS,
QuickBird, WorldView [21], GeoEye, and Pleiades, with 0.5 meter or finer spatial resolutions, or to
acquire ground-based inventory data [30] or imagery from advanced unmanned aerial vehicles
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(UAV) [70,71]. Apart from the problems stated earlier, other possible errors when classifying the
bamboo forests could occur if we want to classify the bamboo distribution by ages. Chen et al. [28] and
Langner et al. [72] noted the difficulty in obtaining an integrated phenological cycle for young and
mature bamboo using moderate-resolution remote sensing data.

Errors in estimating carbon stocks in bamboo forest could arise from the use of generalized
data of carbon stocks per unit area from Sasaki et al. [30] which was based on average data for the
whole country. To improve the accuracy of carbon stocks assessment, field measurement of the targeted
bamboo forest in the study region could be a solution, but this is costly and time consuming.

5. Conclusions

Using PBTC method and GEE with remote sensing imagery from Landsat 8 OLI in 2015, 2016, 2017,
and 2018, we were able to determine the minimum and maximum vegetation thresholds for bamboo
forest, evergreen forest, and rubber plantation in Siem Reap province, Cambodia. With these thresholds,
we could classify and map the distribution of natural bamboo forest in 2015 and 2018. We achieved
the overall Landsat 8 OLI bamboo maps for 2015 and 2018 UAs of 86.6% and 87.9% and PAs of 95.7%
and 97.8%, respectively. Similarly, we achieved UAs of 86.5% and PAs of 91.7% for Sentinel-2 imagery
for 2019. Accordingly, spatial distribution of carbon stocks by districts in the Siem Reap was estimated
and mapped across the province. We found that area of bamboo was 2674 ha in 2015, 2711 ha in 2018,
and 2672 ha in 2019. Total carbon stocks in the respective years were 153,511, 155,583, and 153,367 Mg C.

It can be concluded that GEE can be used to classify and map the natural distribution of the
natural bamboo forest and related carbon stocks with the aid of PBTC method, multi-spectral Sentinal-2
and Landsat 8 OLI imagery. However, using very high-resolution imagery, UAV, big data technology,
and deep learning could improve the misclassification during the closer ranger of threshold values
of various land cover categories. To avoid confusion between natural bamboo and evergreen forests,
it is important to select the ground reference points through field visit, forest measurement, and/or
using UAV.

If bamboo forest is fully protected, the avoided emissions could offset about 6% of carbon
emissions by tourists visiting the province, indicating that bamboo can also play an important role
in climate change mitigation in addition to providing non-timber forest products to the local people.
As bamboo forest has multiple roles in local livelihood improvement as well as climate change mitigation,
management of this forest through proper mapping and zoning could increase awareness of the benefits
of the bamboo forests, which could help promote effective management for long-term sustainable use.
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Appendix A

Table A1. GEE JavaScript function for calculating the Landsat 8 OLI EVI.

Landsat 8 OLI EVI function
// Add an EVI function for the Landsat 8 TAO collections.
function addEVI(Landsat8){
return Landsat8.addBands(Landsat8.expression)
‘2.5 * ((NIR - RED) / (NIR + 6 * RED - 7.5 * BLUE + 1))’,
{
‘NIR’: Landsat8.select(‘B5’),
‘RED’: Landsat8.select(‘B4’),
‘BLUE’: Landsat8.select(‘B2’)
}).rename(‘L8EVI’)).float();
};
Sentinel-2 EVI function
// Add an EVI function for the Sentinel-2 (SNL) collections.
function addEVI(SNL){
return SNL.addBands(SNL.expression(
‘2.5 * ((NIR - RED) / (NIR + 6 * RED - 7.5 * BLUE + 1))’,
{
‘NIR’: SNL.select(‘B8’),
‘RED’: SNL.select(‘B4’),
‘BLUE’: SNL.select(‘B2’)
}).rename(‘SNLEVI’)).float();
};
where L = 1 (canopy background adjustment factor) [49,50]; C1 = 6 and C2 = 7.5 (aerosol correction factors)
and G = 2.5 (gain factor) [49–51]; and NIR (Landsat band 5 and Sentinel-2 band 8 (B8), RED (band 4 (B4) in
both Landsat and Sentinel-2), and BLUE (band 2 (B2) in both Landsat and Sentinel-2) are atmospherically
corrected for surface reflectance in near-infrared, red, and blue bands of Sentinel-2 imagery in GEE [50].
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