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Abstract: This study aimed to assess the ability of using visible and near-infrared reflectance (Vis–NIR)
spectroscopy to quantify soil erodibility factor (K) rapidly in an ecologically restored watershed.
To achieve this goal, we explored the performance and transferability of the developed spectral
models in multiple land-use types: woodland, shrubland, terrace, and slope farmland (the first
two types are natural land and the latter two are cultivated land). Subsequently, we developed an
improved approach by combining spectral data with related topographic variables (i.e., elevation,
watershed location, slope height, and normalized height) to estimate K. The results indicate that
the calibrated spectral model using total samples could estimate K factor effectively (R2

CV = 0.71,
RMSECV = 0.0030 Mg h Mj−1 mm−1, and RPDCV = 1.84). When predicting K in the new samples,
models performed well in natural land soils (R2

P = 0.74, RPDP = 1.93) but failed in cultivated land
soils (R2

P = 0.24, RPDP = 0.99). Furthermore, the developed models showed low transferability
between the natural and cultivated land datasets. The results also indicate that the combination of
spectral data with topographic variables could slightly increase the accuracies of K estimation in total
and natural land datasets but did not work for cultivated land samples. This study demonstrated
that the Vis–NIR spectroscopy could be used as an effective method in predicting K. However, the
predictability and transferability of the calibrated models were land-use type dependent. Our study
also revealed that the coupling of spectrum and environmental variable is an effective improvement
of K estimation in natural landscape region.

Keywords: soil erodibility; visible and near-infrared reflectance spectroscopy; model transferability;
model improvement; watershed landscapes

1. Introduction

Soil erosion is a severe eco-environmental issue worldwide that threatens sustainable land utilization
and ecosystem stability [1–3]. It causes serious off-site pollution in channels and reservoirs, thereby
reducing their storage volume, lifetime, and ecological benefits [4,5]. The analysis and quantification
of soil erosion and its linked processes are essential for the conservation of natural resources [6]. Soil
erodibility reflects the inherent susceptibility of soil to exogenic erosive forces, and it is one of the key
parameters for estimating soil loss [7,8]. However, the direct field measurement of soil erodibility is costly,
time-consuming, and method-dependent [9]. Therefore, pedotransfer functions have been adopted as
alternatives, to estimate soil erodibility using easily measurable basic soil properties [10]. In the past
decades, the Universal Soil Loss Equation (USLE) and revised USLE (RUSLE) were the two most widely
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used empirical equations for erosion prediction [11]. In these models, soil erodibility (introduced as the
K factor) is calculated by using several soil properties, including particle size composition, soil organic
carbon (SOC) content, structural stability, soil permeability, and clay minerals [12]. To accurately measure
these properties, field soil samplings and laboratory analyses are necessary, which are labor intensive,
time-consuming, and expensive. Furthermore, for a given soil, K factor changes with the expansion of
space and variation of seasons [13], which further complicate the estimation of K factor. Thus, a reliable,
fast, and economic measuring method is needed to assess K factor.

Visible and near-infrared reflectance (Vis–NIR) spectroscopy is a promising alternative to the
conventional methods used for determining soil properties [14]. Vis–NIR spectroscopy has been proven
to be an easy, fast, nondestructive, and low-cost soil analytical technique [15]. Moreover, several
soil properties can be measured simultaneously from one spectral scan [16,17]. The intrinsic optical
properties caused by the compositional and structural information of molecules (e.g., chemical bonds
O-H, C-H, C=O, N-H, and/or their combination) can be reflected as the distinct absorption features
over the spectral wavelengths of 350–2500 nm [16,18]. A range of soil properties, including SOC, total
nitrogen, iron oxide, CaCO3, and soil texture, have been successfully estimated in many studies based
on these spectral features [19–21].

K factor is determined by the physical and chemical properties of soil, which interacts in
complicated ways to produce a specific spectrum. Few studies have utilized spectral reflectance data
to predict K factor [22–24]. Among these studies, the prediction accuracies were widely variable from
unsatisfactory to satisfactory. Thus, it is necessary to evaluate the ability of Vis–NIR spectroscopy
in estimating soil K and to explore the possible reasons for the diverse performances. In general,
most of the models are location-dependent and data-specific [25,26]. The source of the Vis–NIR (or
soil properties) data together with their statistical characteristics could influence the performance of
developed assessment models significantly [18]. Frequently, successful prediction results are obtained
when homogeneous samples with adequate soil variability of the target site are analyzed [25,27].
However, large bias exists when predicting heterogeneous samples because of the large differences in
soil property and spectra [28]. In different land-use types, the soil parent materials, land cover, and
range of the K factor values might vary [13]. If all the derived models do not contain the spectral
diversity from a new certain (target) site, then it begs another question: Will a model calibrated from
samples in a certain land-use type work in other landscape soils? In other words, can a spectral model
calibrated in a specific land-use type be transferred to other conditions? Thus, studies concerning the
Vis–NIR spectroscopy estimation of the surface K factor with samples from different land-use types
should be conducted.

In recent decades, numerous efforts have been made to develop efficient spectral pre-processing
and noise-canceling techniques and multiple calibration methods [29–31], such as multiple linear
regression (MLR), partial least-squares regression (PLSR), artificial neural networks (ANN), and
support vector machine (SVM), to improve the analytical ability of the calibrated spectral model.
However, these techniques were only conducted from the perspective of spectroscopy, statistics,
and chemometrics methods and did not consider the relationships between soil and environment
factors. Considering that soil properties were strongly affected by parent material and environmental
conditions, the use of spectral data combined with the assistance of environmental factors is expected
to generate more accurate predictions. However, no such study that coupled the Vis–NIR spectral
data and related auxiliary variables is available to predict K factor. In mountain areas with strong soil
erosion, topography is the key factor that controls the spatial distribution of physical and chemical
properties of soil [32]. Thus, we hypothesized that topographic factors are important variables that
affect K factor. If this hypothesis is true, then the prediction model of K could be improved significantly
by incorporating topographic variables.

The Danjiangkou Reservoir is the water source of China’s South-to-North Water Diversion
Project-Middle Route. Several decades ago, the watershed that surrounded the reservoir was
seriously damaged with problems including water erosion, nutrient loss, and soil degradation [33].
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Since the 1980s, a series of ecological restoration measures, such as the “Grain for Green” and “Land
Consolidation” programs, has been conducted to prevent soil erosion [34]. In these projects, large
areas of undesirable lands, such as bare land and slope farmland, have been converted into woodland,
shrubland, or terraces. Meanwhile, the surface soil characteristics have also been changed significantly
because of these restoration practices. In this area, K factor, which suffers from complex topography
and intense human disturbance, exhibited strong spatial heterogeneity [35]. This instance made the
monitoring of the soil’s K factor difficult, especially over large areas and across different land-use
types. Therefore, the potential of using Vis–NIR spectroscopy to estimate soil K, which may provide an
effective method for quick and economic soil erosion monitoring, should be assessed.

This study aimed to evaluate the effectiveness of using Vis–NIR spectral model to predict K factor
in a restored watershed with different land-use types. Specifically, we aimed to assess the performance
of Vis–NIR spectral model to quantify soil K factor in a representative ecologically restored watershed
rapidly, explore the transferability of the developed models among different land-use types, and
develop an improved approach that combined the Vis–NIR spectral data with related topographic
variables to estimate K factor better. We hypothesized that the inclusion of topographic variables
would improve model performance in estimating soil K factor significantly.

2. Materials and Methods

2.1. Study Area and Sampling

The study was carried out in a typical ecologically restored watershed (32◦45′ N, 111◦13′ E) around
the Danjiangkou Reservoir in Central China (Figure 1). The watershed is characterized by hilly land
with an area of 1.92 km2, and elevation range of 277–379 m a.s.l. The climate in this area is subtropical
monsoon with an average annual temperature of 15.7 ◦C, and the average annual precipitation of
973 mm [36]. The soil types in this watershed, according to USDA Soil Taxonomy, are Inceptisols and
Alfisols, which correspond to purple soil and yellow-brown soil (Chinese soil classification system),
respectively. Terrace farmland and woodland are the two main land-use types, followed by shrubland
and slope farmland. Based on our surveys, the upper- and mid-watershed regions are mainly covered
by coniferous plants (Platycladus orientalis (Linn.) Franco) and shrub-land plants (Sophora davidii
(Franch.) Skeels). Terrace and slope farmlands are mostly located in the mid- and lower-watershed
regions; the typical crops in this area include rape, corn, and wheat.

In total, 138 surface soil samples were collected using a 5.0-cm diameter auger in the spring of 2017
and 2018. The number of samples for each land-use type was determined on the basis of their relative
area. At representative land-use types, soil samples were randomly collected. Terrace, woodland,
shrubland, and slope farmland had 64, 43, 20, and 11 samples, respectively (Figure 1). At each site,
approximately 1.0 kg of soil sample was collected. The geographic positions of the sampling sites were
recorded using a portable GPS.

2.2. Soil Properties and Environmental Variables

The 138 soil samples were air-dried, sieved with a 2-mm sieve, and analyzed for soil texture and
organic carbon content. Soil bulk density (BD) was determined using 100 cm3 soil cores extracted
from each of the locations. Soil pH was measured with a calomel electrode (Mettler Toledo FE20,
SWIT). SOC content was determined by an elemental analyzer (Thermo Fisher Flash 2000, Waltham,
MA, USA). Soil texture (clay, <0.002 mm; silt, 0.002–0.02 mm; and sand, 0.02–2 mm) was measured
by laser diffraction method with a Mastersizer 3000 laser diffraction particle size analyzer (Malvern
Instruments, Malvern, UK).
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Figure 1. Geographical location of the study area and sampling sites.

The soil erodibility factor K values of the collected samples were determined using the widely used
equation in Erosion/Productivity Impact Calculator model (EPIC) [37]. In the Danjiangkou Reservoir
region, the rationality and validity of this model in K value estimation have been reported in previous
literature [33]. In this model, the particle-size composition and SOC content were used to calculate the
algebraic approximation of K:

K =
{
0.2 + 0.3 exp

[
−0.0256Sd

(
1−

Si

100

)]}
×

(
Si

Cl + Si

)0.3

×

[
1−

0.25C
C + exp(3.72− 2.95C)

]
×[1.0−

0.7SN
SN + exp(−5.51 + 22.9SN)

] (1)

where K is the soil erodibility (Mg h Mj−1 mm−1); Sd, Si, and Cl are the percentages of sand, silt, and
clay, respectively; C is the percentage of SOC; and SN = 1− Sd/100. Finally, the equation results were
divided by 0.1318 and converted to the standard international units (i.e., Mg h MJ−1 mm−1) [33].

The topographic variables were extracted from the global digital elevation model (DEM) dataset
(with 30 m × 30 m spatial resolution) as auxiliary variables to predict K factor. Particularly, the slope
position means a relative Euclidean distance from ridgeline, while the watershed location indicates a
ratio of the distances from the northern boundary to the longest watershed length in the south–north
direction. Elevation (m), slope (degree), slope position (percent), and watershed location (percent) were
determined using the ArcGIS 10.2 software (ESRI Inc., Redlands, CA, USA). The topographic indicators,
including topographic position, topographic wetness index, slope height (m), and normalized height,
were calculated using SAGA GIS 7.2.0 software [38].

2.3. Spectra Measurements and Pre-Processing

The reflectance spectrum of soil samples was measured in a dark room at night using an ASD
FieldSpec® Pro FR spectrometer with wavelength of 350–2500 nm. A 50-W halogen lamp with an
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incident angle of 45◦ and at a distance of approximately 0.50 m from the sample surface was used as
the light source [39]. The spectral data were collected through a fiber probe, which was located in a
nadir position with a distance of 15 cm from the sample. Each soil spectrum was obtained as a mean
value of 10 replicate scans and was converted to the reflectance values using a standardized Spectralon
panel (Labsphere, www.labsphere.com) as the white reference [31].

Before developing K factor prediction models, data pretreatments, including the Savitzky–Golay
smoothing, standard normal variate transformation, and mean centering, were performed to reduce
noise and enhance spectral features in the MATLAB version 2013a (The MathWorks Inc., Natick, MA,
USA). Spectral data with high signal-to-noise ratio (at the wavelength of 400–2350 nm) were used for
model calibration.

2.4. Statistical Analyses and Modeling

The descriptive statistics and Pearson correlation analyses were first implemented using MATLAB
2013a. We adopted the three-level interpretations of coefficient of variation (CV) [40]: most variable
(with CV > 35%); moderately variable (with 15% < CV < 35%); and least variable (with CV < 15%).
One-way analysis of variance (ANOVA) with Tukey’s multiple comparison test (HSD) was performed
to examine the effects of land-use types on K factors. The ANOVA was performed using IBM SPSS
Statistics 21.0 software. The Pearson correlation coefficient with a confidence level of 99.99% (two-tailed)
was used to assess the relationships between the spectra and the K factors and link the soil properties.
Then, partial least-squares regression (PLSR) method was used to establish relations between the
preprocessed spectra with the K factors. PLSR method is a mainstream modeling technique used for the
quantitative analysis of Vis–NIR spectra, mainly because of its superiority in reducing dimensionality of
spectral matrix and avoiding multicollinearity [17,27]. Three PLSR modeling strategies were conducted
to achieve the objectives of this study:

(1) Calibration and cross-validation. All samples were first split into seven datasets according
to land use types (i.e., total samples, natural land, cultivated land, woodland, shrubland, terrace,
and slope farmland datasets). Among them, the natural land dataset was the union of woodland
and shrubland datasets, whereas the cultivated land dataset was the combination of terrace and
slope farmland datasets. All of the samples were united into the total sample datasets. Then, PLSR
calibration model with spectrum was developed for each dataset. The leave-one-out cross-validation
was conducted to determine the optimum latent variables (LVs) for each PLSR model.

(2) External-validation and transferability evaluation. For each dataset, the samples were separated
into a training dataset (with two-thirds of the samples) and a test dataset (with the remaining one-third)
using the Kennard–Stone algorithm [41]. The training dataset was used to calibrate the PLSR model,
and the test dataset was used to evaluate the predictive capacity of the model for K estimation.
To examine the transferability of the Vis–NIR PLSR models among different land-use types, each
calibration model was assessed with each test dataset to evaluate its transferability among different
land use types.

(3) Optimization with topographic variables and external validation. Topographic variables were
combined with the Vis–NIR spectral data to optimize modeling. First, Pearson correlation analyses
between the K factor and topographic variables were implemented, and the significant variables were
selected to be incorporated into the model to predict K factor. The PLSR model was calibrated on
the basis of the training dataset from the total sample datasets, and the test dataset was used for
validation. Before modeling, all topographic variables were standardized to solve the problem of
non-uniform units.

In addition, the important reflection wavelengths in predicting K factor were determined by
the variable importance in the projection (VIP) and PLSR regression coefficients (i.e., b-coefficients).
The wavelengths that have large VIP score (>1) and large coefficient value (>standard deviation of the
K factor values) are considered important [42]. Predictive performance of a model was assessed by the
coefficient of determination (R2), root mean square error (RMSE), and residual prediction deviation

www.labsphere.com
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(RPD). In general, the model with relatively high R2 and RPD values and small RMSE was considered
a better model. Specifically, for the Vis–NIR estimation of the soil properties, R2 > 0.5 and RPD > 1.4
indicate an acceptable predictability (i.e., a good transferability) for the model [43].

3. Results

3.1. Description Statistics of Soil, Topographic Variables, and Spectral Property

The chemical and physical properties of soil exhibited a wide range of variation (Table 1).
Soil texture showed a moderate variability (with CVs of 16.93–33.45%) and a wide range: clay content
ranged from 4.33% to 34.64%, silt content ranged from 22.35% to 70.26%, and sand content ranged from
15.02% to 73.32%. The mean values of all soil properties were similar to those of the median values.
The soil pH of this study area ranged from 5.37 to 8.64 with a mean value of 8.09, thereby suggesting
the slight alkalinity for most of the soil samples. SOC had a mean value of 7.61 g kg−1 with a range of
2.49–18.65 g kg−1. SOC had the highest variability with the CV of 49.67%, whereas the CVs of pH, bulk
density, and K factor were 7.27%, 12.02%, and 13.10%, respectively (Table 1). Most soil properties were
approximately normally distributed on the basis of the skewness and kurtosis values. Only pH was
non-normal distributed (with the skewness of −2.69 and kurtosis of 10.30).

Table 1. Descriptive statistics of soil properties in the study area (n = 138).

Soil Properties Range Mean Median Std CV Skewness Kurtosis

Clay (%) 4.33–34.64 14.48 14.60 4.84 33.45 0.52 4.48
Slit (%) 22.35–70.26 43.82 44.35 7.42 16.93 −0.14 3.81

Sand (%) 15.02–73.32 41.70 40.79 10.62 25.46 0.54 3.46
pH 5.37–8.64 8.09 8.27 0.59 7.27 −2.69 10.30

Bulk density (g cm−3) 0.92–1.61 1.30 1.31 0.16 12.02 −0.10 2.23
SOC (g kg−1) 2.49–18.65 7.61 6.25 3.78 49.67 0.96 3.29

K (Mg h Mj−1 mm−1) 0.027–0.057 0.042 0.042 0.006 13.10 −0.56 3.48

SOC, soil organic carbon; K, soil erodibility factor; Std, standard deviation; CV, coefficient of variation.

In Table 1, the measured K factors varied from 0.027 to 0.057 Mg h Mj−1 mm−1. Significant
differences were observed in K factors between natural and cultivated land, and among the four
land-use types (Figure 2). Natural land had a significantly lower K value than cultivated land. However,
its variation was higher. Soil K factor in woodland was significantly lower than the three other land-use
types, but its variation was the highest. Shrubland, terrace, and slope farmland had comparable K
values, whereas the variations in K followed the rank of shrubland > terrace > slope farmland.

Figure 2. Boxplots of the K factor under different land-use types. The uppercase letters represent
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significant differences in K factor between natural land and cultivated land; the lowercase letters
represent significant differences in K factor among woodland, shrubland, terrace, and slope farmland.
n, number of samples; CV, coefficient of variation; NL, natural land; CL, cultivated land; W, woodland;
S, shrubland; T, terrace; SF, slope farmland.

Table 2 shows the result of the statistical analysis of the topographic variables that may influence
K. The slope position and watershed location varied from 1.53% to 99% and from 0.64% to 96.54%,
respectively. The CV values for the slope position and watershed location were 60.40% and 47.34%,
respectively. The mean elevation was 313.98 m and the mean slope was 5.45◦, indicating that the
terrain of our study area consisted of mountains and hills of low elevation and gentle slope. Moreover,
the CVs of the elevation and topographic wetness index were 7.40% and 31.71%, respectively. The CVs
of slope, slope height, normalized height, and topographic position index were quite large (with values
of 101.37%, 80.69%, 49.50%, and 438.96%, respectively).

Table 2. Results of the descriptive statistical analysis of the topographic variables in the study area.

Variable Minimum Maximum Mean Std CV (%)

Slope position (%) 1.53 99 53.75 32.47 60.4
Watershed location (%) 0.64 96.54 59.66 28.24 47.34

Elevation (m) 277.00 379.00 313.98 23.23 7.40
Slope (◦) 0.00 27.00 5.45 5.52 101.37

Slope height (m) 2.99 38.14 10.83 8.74 80.69
Normalized height 0.11 0.93 0.50 0.25 49.50

Topographic position index -4.11 7.90 0.60 2.64 438.96
Topographic wetness index 4.86 17.15 7.57 2.40 31.71

Std, standard deviation; CV, coefficient of variation.

Figure 3a illustrates the effects of land use type on spectral reflectance. The spectral reflectance
characteristics were similar among different land use types across the full range of wavelength.
In particular, reflectance in the visible wavelength region increased with wavelength, and three specific
absorption bands around 1400, 1900, and 2200 nm were presented in the near-infrared wavelengths.
The average soil spectrum of shrubland has the highest reflectance, followed by woodland, terrace,
and slope farmland. Soil K factor and the reflectance spectra had significant correlations in the visible
wavelength region at the 0.01 significance level (Figure 3b). These relationships implied the possibility
in estimating K factor using the Vis–NIR spectra.

Figure 3. Soil reflectance spectra in different land-use types (a); and the Pearson correlation coefficients
(r) between K factor and Vis–NIR spectra (b).
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3.2. Model Calibration Using PLSR Method

The calibration results of the PLSR models in estimating soil K are presented in Table 3.
Wide variations in the cross-validation accuracies of Vis–NIR spectral models for the seven different
datasets were observed. For the total samples, the calibrated PLSR model can effectively estimate
the K factor with R2

CV value of 0.71, RMSECV value of 0.0030 Mg h Mj−1 mm−1, and RPDCV value
of 1.84. The PLSR model for natural land achieved better cross-validated accuracies than that for
the cultivated land. In particular, the best cross-validation result was achieved by using the natural
land dataset (R2

CV = 0.79, RMSECV = 0.0029 Mg h Mj−1 mm−1, and RPDCV = 2.20) followed by the
woodland (R2

CV = 0.74, RPDCV =1.99) and shrubland datasets (R2
CV = 0.62, RPDCV =1.56). By contrast,

calibrations that use cultivated land datasets failed to generate acceptable models to predict soil K
factors (R2

CV = 0.19–0.46, RPDCV = 0.96–1.32).

Table 3. Calibration and cross-validation results of PLSR models for predicting soil K factor for different
land-use types.

Dataset n
Calibration Cross-Validation

LVs R2
C

RMSEC
(Mg h Mj−1 mm−1) R2

CV
RMSECV

(Mg h Mj−1 mm−1) RPDCV

Total Samples 138 9 0.79 0.0025 0.71 0.0030 1.84

Natural land 63 6 0.86 0.0024 0.79 0.0029 2.20
Woodland 43 6 0.86 0.0022 0.74 0.0030 1.99
Shrubland 20 9 0.97 0.0009 0.62 0.0032 1.56

Cultivated land 75 7 0.53 0.0024 0.30 0.0030 1.18
Terrace 64 15 0.96 0.0007 0.46 0.0028 1.32

Slope farmland 11 6 0.93 0.0005 0.19 0.0020 0.96

n, number of samples; LVS, number of latent variables; R2
C and R2

CV, coefficient of determination of calibration and
cross-validation models; RMSEC and RMSECV, root mean square error of calibration and cross-validation models;
and RPDCV, residual prediction deviation of cross-validation models.

Figure 4 illustrates the important wavelengths for K factor monitoring based on VIP and
b-coefficient over the entire wavelength range (400–2350 nm). According to these two indicators, the
wavelengths centered near 468, 1408, 1899, 1932, 2207, and 2300 nm were identified as the optimal
wavelengths for K estimation.

Figure 4. Variable importance projection (VIP) scores (blue line) and b-coefficients (black line)
associated with the cross-validation of PLSR model for K factor prediction using Vis–NIR spectroscopy.
The threshold for VIP was set to 1 (blue horizontal dashed line), and the threshold for the b-coefficients
was based on their standard deviation (σ = 0.0057; black horizontal dashed lines).
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3.3. Performance and Transferability of PLSR Models

In this study, R2
P and RPDP values were used to assess the performance and transferability of

PLSR models in estimating K. The index matrices of these values are mapped in Figure 5. The colors
scaled from dark red for high values to dark blue for low values, where the higher values indicate
stronger transferability.

Figure 5. Transferability of PLSR models for the K factor estimation in different sample datasets as
assessed by: (a) determination coefficient for validation (R2

P); and (b) RPDP. TS, total sample; NL,
natural land; W, woodland; S, shrubland; CL, cultivated land; T, terrace; SF, slope farmland.

Figure 5 shows that the Vis–NIR spectra performed well in predicting the soil’s K factors for the
total sample (R2

P = 0.59 and RPDP = 1.52), natural land (R2
P = 0.74 and RPDP = 1.93), and woodland

(R2
P = 0.61 and RPDP = 1.57) datasets. The prediction accuracy of the model for shrubland soil dataset

was marginally acceptable (R2
P = 0.45 and RPDP = 1.34). However, for the cultivated land dataset, the

prediction accuracy was not acceptable (R2
P of 0.22–0.92 and RPDP of 0.97–1.01).

Moreover, the transferability results of the PLSR models were quite variable. Similar to the
cross-validation results, most of the PLSR models could be transferred (RPDP > 1.4, R2

P > 0.5) within the
natural land datasets (i.e., natural land dataset, woodland dataset, and shrubland dataset). Especially, the
calibrated PLSR model using natural land dataset could predict the K factors of the shrubland sample
dataset (with R2

P of 0.92, and RPDP of 2.82) satisfactorily. However, the models for the cultivated land
datasets (i.e., cultivated land, terrace, and slope farmland datasets) showed low transferability (with
RPDP < 1.4, R2

P < 0.5). In addition, R2
P matrices (in Figure 5a) showed a greater difference in colors

than the RPDP matrices (Figure 5b), especially for the slope farmland dataset (n = 11).

3.4. Performance of the Improved Models

Pearson’s correlation was used to analyze the relationships between the topographic characteristics
and K factor. As presented in Figure 6, K factor showed significant negative correlations with elevation
(r = −0.24, p = 0.03), watershed location (r = −0.22, p = 0.04), slope height (r = −0.32, p = 0.00), and
normalized height (r = −0.24, p = 0.03). However, other topographic characteristics (i.e., slope, slope
position, topographic position index, and topographic wetness index) have no significant relationships
with K factor (p > 0.05). We attempted to develop an optimized model using the significant correlated
topographic variables in combination with the Vis–NIR spectral data to improve the prediction
accuracies of K factor.
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Figure 6. Pearson’s correlation coefficients between topographic variables and soil K: (a) elevation
(m); (b) slope (degree); (c) slope position (percent); (d) watershed location (percent); (e) topographic
position index; (f) topographic wetness index; (g) slope height (m); and (h) normalized height.

Figure 7 summarizes the performance of the initial and improved PLSR models to predict K factor.
In contrast with the initial model (R2

P = 0.59 and RPDP = 1.52), the improved model that used total
samples provided a higher accuracy in K factor estimation (R2

P = 0.69 and RPDP = 1.78). However,
model improvements for different land-use types showed a marked difference. In particular, the
improved model could strengthen the prediction accuracy for natural land samples (R2

P increased
from 0.74 to 0.78 and RPDP increased from 1.93 to 2.07) but had no or little effect on cultivated land
datasets (R2

P changed from 0.24 to 0.15 and RPDP changed from 0.99 to 1.02).
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Figure 7. Scatter plots of referenced versus predicted K factors (Mg h Mj−1 mm−1) for the initial (a–c)
and improved (d–f) PLSR models calibrated from spectra and related topographic variables: (a,d)
total samples; (b,e) natural land datasets; and (c,f) cultivated land datasets (the red line represents the
regression line between the predicted and reference values, and the black line corresponds to the 1:1
line).

4. Discussion

The results indicate that the PLSR model calibrated using the total sample dataset (n = 138)
could estimate soil K effectively. The model achieved a fairly satisfactory result (R2

P = 0.59 and
RPDP = 1.52) when the model was applied to new samples, thereby showing reliable predictability.
These results are consistent with a previous study [9], in which the PLSR model also performed
fairly well (R2 = 0.56 and RPD = 1.5) in estimating the K factor based on reflectance spectroscopy.
Land use type showed a strong effect on the performance of PLSR models. PLSR models developed
for natural land datasets (e.g., natural land, woodland, and shrubland datasets) generally performed
better than models from cultivated land datasets (e.g., cultivated land, terrace, and slope farmland),
indicating that human disturbance and cultivation disrupted the relationship between soil properties
and its spectroscopy. In comparison, the best cross- and external-validation results were found in
woodland samples followed by the shrubland dataset. Both datasets achieved relatively good or
acceptable predictability in predicting new samples. The prediction accuracies for the terrace and slop
farmland datasets cannot reach the application level. These contrasting results might be attributed to
the specific data characteristics. Previous researchers showed that the source of data together with
its statistical characteristics could influence model performance significantly [18]. Moreover, a larger
size of calibration dataset with bigger CV values should be more beneficial for the robust Vis–NIR
estimation of soil properties [18,25,39]. In this study, the CV values of total samples and natural land
datasets were relatively bigger (11.68–16.16%) than cultivated land datasets (4.07–8.30%), thereby
achieving better prediction accuracies.

When the calibrated PLSR models were used to predict the K factor in other different land-use
samples, the prediction accuracy changed remarkably, as shown by heterogeneous color matrices in
Figure 5. The results clearly show that the calibrated models for K factor estimation were not transferable
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between the natural and cultivated land datasets. This result may reinforce the previous implication
that the source and quality of the data determine the transferability of model in the prediction of new
soil properties. In this study, the heterogeneous soil characteristics of different land-use types presented
inadequate spectral diversity of the target site soils and therefore could not be used for the successful
prediction [28]. Generally, the constructed soil spectral calibration models should contain the variability
of the target site soils on which the models are to be used reasonably [19,44]. However, this premise
is not always easy to implement. To solve this problem, researchers proposed the development of a
model with spiking, including a few samples from the target sites and subsequent recalibration, which
could improve model performance in transferability greatly [28]. Thus, in future studies, the spiking
approach should be explored to improve the applicability of spectral models in predicting K factors
from different land-use types. Moreover, R2

P matrices (Figure 5a) showed remarkable differences at
colors scaled in comparison with RPDP matrices (Figure 5b), especially for the slope farmland samples
(n =11) as the validation dataset. This finding reinforces that the models developed from relatively
smaller size of datasets were more vulnerable to the variation in the data distribution and thus suffered
from inconsistent results [18,28]. Therefore, a robust calibration dataset with appropriate sample size
would be better for the estimation of K factor using the Vis–NIR spectra.

In this study, the wavelengths centered near 468, 1408, 1899, 1932, 2207, and 2300 nm were
identified as the optimal wavelengths for K factor estimation. Generally, soil spectral reflectance is
mainly influenced by particle size distribution, SOC content, CaCO3 content, and pH [17,45]. Previous
studies indicated a decrease in reflectance with the increase in particle size, SOC content, and CaCO3

content [9]. Such properties interact with one another and display the distinct spectral reflectance
features over the spectral wavelengths of 400–2350 nm. Babaeian et al. (2015) stated that SOC exhibited
absorption bands in the visible region [46]. Islam et al. (2003) also reported that 350–700-nm bands
could be used better for SOC prediction [45]. The reflectances near 1408 and 2207 nm were related to
the clay mineral kaolinite [47], whereas the wavelengths near 2206 and 2300 nm were mainly caused
by the reflection of illite [48,49]. In addition, the reflectances near 1899 and 1932 nm could be identified
as the spectral feature of clay content in air-dried soil because of the strong moisture absorption of soil
clay particles [26]. Except for the 468-nm wavelength, most of the identified important wavelengths
were within the near-infrared spectra region (>1400 nm), which are mentioned above as the response
bands of soil particle size distribution. Therefore, soil texture (i.e., the clay, silt, and sand contents)
seems to have played a more important role than the SOC content in the prediction of K factor using
Vis–NIR spectral data.

Our study also found that the incorporation of topographic variables into the PLSR model
could conditionally increase the prediction accuracy of K factor in the total dataset. However, the
improvement was limited. This phenomenon is mainly because of the low correlations (r values
varied from −0.32 to −0.22) between the K factor and the topographic characteristics (Figure 6).
When considering land-use types, K factor estimation performance improved in the natural land
dataset, but no substantial improvement was observed in the cultivated land samples. These different
results may be ascribed to the inherent relationships between soil and topography. On the one hand, the
rough spatial resolution (30 m × 30 m) may blur the possible correlations between the K factor and the
topographic characteristics. On the other hand, as a typical restored watershed, the intensive human
activities have greatly altered the local soil, plants, and even geomorphology, especially for the terrace,
in which the original correlation between soil and topography was inevitably weakened. Consequently,
the topographic factors had no significant role in the improved model that used cultivated land dataset.
Based on this finding, we suggest that the Vis–NIR spectra of soil combined with topographic variables
can be used to predict K factor in natural landscape region with no significant artificial disturbance,
while, for the cultivated land, the different crop types, agronomic practices, and management styles
should be considered when optimize modeling.

In this study, there were two major limitations for using Vis–NIR spectral model to estimate
soil K factor. Firstly, the predictability of the constructed spectral models in cultivated area was not
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satisfying. Secondly, the inclusion of topographic variables could not significantly improve model
performance. These limitations were mainly ascribed to the relative homogeneous data with narrow
ranges and small CV values, and the low correlations with topographic characteristics in cultivated
area. Nevertheless, Vis–NIR spectroscopy still showed a great potential in estimating the K factor in
natural lands and many other various ecosystems [9,22]. When using Vis–NIR models to monitor
large-scale cultivated soils (such as at county, region, or national scale), which often have more diverse
data characteristics, the performance could be highly desirable. Since VNIRS estimation of K factor
is rapid, economic, and time-saving, it is more suitable for large-scale soil resource assessment and
regional erosion monitoring.

In the future, examining the applicability of the Vis–NIR spectroscopy combined with topographic
variables will be meaningful in predicting K factor in complicated mountains and hilly areas, where
serious erosion occurs. Moreover, further efforts should be focused on investigating other environmental
variables (e.g., plant and spatially related errors) and combining some robust modeling techniques
(e.g., ANN and SVM) for the improved estimation of K factor and various soil properties.

5. Conclusions

This study highlighted the potential of Vis–NIR spectroscopy in quantifying soil K factor in an
ecologically restored watershed, especially for natural land soils. The wavelengths centered near 468,
1408, 1899, 1932, 2207, and 2300 nm were identified as the optimal wavelengths for K estimation. Land
use type strongly affected the performances of spectral models in estimating soil K for new samples.
In particular, the Vis–NIR models played well in estimating K factor in natural land soils (R2

P = 0.74
and RPDP = 1.93) but failed in cultivated land soils (R2

P = 0.24 and RPDP = 0.99). The transferability
of the calibrated models depended on land-use type, and models between the natural and cultivated
land datasets were nontransferable. Furthermore, we also illustrated that adding multiple related
topographic variables to PLSR model could slightly increase the accuracies of K factor estimation in
natural land, but not for cultivated land. Although the use of Vis–NIR spectroscopy for estimating
the K factor was not as accurate as the reference in-situ measurement, it could provide a fast and
cost-efficient regional K factor assessment. The combination of spectrum and environmental variable is
an effective approach to improve the prediction accuracy of spectroscopic model, which can facilitate
the creation of new, reliable, large-scale soil datasets to improve the understanding of soil erosion and
linked processes.
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