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Abstract: Image segmentation is a cost-effective way to obtain information about the sizes and
structural composition of agricultural parcels in an area. To accurately obtain such information,
the parameters of the segmentation algorithm ought to be optimized using supervised or unsupervised
methods. The difficulty in obtaining reference data makes unsupervised methods indispensable.
In this study, we evaluated an existing unsupervised evaluation metric that minimizes a global score
(GS), which is computed by summing up the intra-segment uniformity and inter-segment dissimilarity
within a segmentation output. We modified this metric and proposed a new metric that uses absolute
difference to compute the GS. We compared this proposed metric with the existing metric in two
optimization approaches based on the Multiresolution Segmentation (MRS) algorithm to optimally
delineate agricultural parcels from Sentinel-2 images in Lower Saxony, Germany. The first approach
searches for optimal scale while keeping shape and compactness constant, while the second approach
uses Bayesian optimization to optimize the three main parameters of the MRS algorithm. Based on
a reference data of agricultural parcels, the optimal segmentation result of each optimization approach
was evaluated by calculating the quality rate, over-segmentation, and under-segmentation. For both
approaches, our proposed metric outperformed the existing metric in different agricultural landscapes.
The proposed metric identified optimal segmentations that were less under-segmented compared to
the existing metric. A comparison of the optimal segmentation results obtained in this study to existing
benchmark results generated via supervised optimization showed that the unsupervised Bayesian
optimization approach based on our proposed metric can potentially be used as an alternative to
supervised optimization, particularly in geographic regions where reference data is unavailable or
an automated evaluation system is sought.

Keywords: agricultural parcels; OBIA; multiresolution segmentation; unsupervised segmentation
evaluation; spatial autocorrelation; weighted variance; bayesian optimization; optimal segmentation

1. Introduction

Agriculture is the single largest land use (LU) covering the Earth’s land surface [1]. The increasing
global population and the accompanying increase in food consumption are placing unparalleled
demands on agricultural lands [2]. Some of the negative impacts of these demands include the loss
of biodiversity [1], the degradation and destruction of natural ecosystems [3], and an increase
in greenhouse gas (GHG) emission [4]. Ensuring food security while minimizing the negative impact of
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agriculture on the environment requires the use of sustainable agricultural practices [2,5]. Formulating
agricultural and environmental policies that ensure sustainable agriculture requires the development
of an agricultural monitoring system. The foundation of such a system is accurate and up-to-date
agricultural LU maps [6,7]. Agricultural LU maps are essential input data for various processes such
as the estimation of biomass and yield [7], monitoring of the phenology of different agricultural LU
types [7], modeling of GHG variability [8], estimation of the area of agricultural lands [9], and control
of area-based subsidies paid to farmers [9].

The generation and continuous update of agricultural LU maps using traditional methods such as
field surveys are inefficient and expensive [8]. Remote Sensing (RS) provides a better alternative due
to the frequency at which data can be acquired over large geographical areas [10,11]. The availability
of high-resolution satellite images has increased the popularity of Object-Based Image Analysis (OBIA)
over traditional pixel-based image analysis [12]. Unlike pixels, which carry only spectral information,
image objects additionally carry contextual and spatial information [12], thereby making them more
useful for subsequent processes such as classification. The advantages of OBIA over pixel analysis for
generating agricultural LU maps have been reported by these authors [10,13,14].

Image segmentation, which is the process of clustering image pixels into homogeneous objects,
is a critical step in OBIA [15]. Various authors [16–20] have proved that the quality of segmentation
has a direct impact on classification accuracy. One of the most popular segmentation algorithms is
the Multiresolution Segmentation (MRS) algorithm proposed by Baatz et al. [21]. MRS is a bottom–up
region merging algorithm that starts with one-pixel objects and then in a pairwise manner merges
smaller objects into bigger ones until a user-given scale threshold is met [22]. In a recent review article
by Ma et al. [23], the MRS algorithm as implemented in the eCognition software [24] accounted for 80.9%
of 254 case studies the authors reviewed. This overwhelming popularity hinges on the fact that some
exhaustive evaluation studies [25–27] have had eCognition coming up tops. In eCognition, the three
main parameters that influence the quality of the MRS segmentation are scale, shape, and compactness.
To obtain optimal segmentation results, it is imperative to optimize these parameters.

To optimize any segmentation algorithm, the quality of the segmentation output of that algorithm
for different parameter combinations ought to be evaluated. This can be done through visual
inspection, supervised segmentation evaluation, or unsupervised segmentation evaluation [28,29].
Visual inspection is subjective and inherently limits the number of segmentation evaluations that can
be done due to its laborious nature [29]. The supervised evaluation methods assess a segmentation
result by comparing it to a reference data and computing a global score (GS) that represents the degree
of similarity between the segmentation result and the reference data [29]. The main limitation
of supervised segmentation evaluation is that the acquisition of reference data is expensive and
time-consuming [29]. This makes unsupervised segmentation evaluation indispensable, as it does not
rely on reference data but purely on the content of an image to evaluate the segmentation result [29].
For the unsupervised evaluation methods, the GS is a statistical measure that indicates the level of
intra-region uniformity and/or inter-region dissimilarity within the segmentation result [30]. In RS,
two of the most used methods are the estimation of scale parameter (ESP) [31,32] tool and the objective
function [33]. The ESP tool only addresses the intra-region uniformity of segments by making use
of local variance graphs [34]. The objective function of Espindola et al. [33] is a combined measure
that addresses intra-region uniformity through average area-weighted variance (WV) and inter-region
dissimilarity through spatial autocorrelation using the global Moran’s I (MI) [35]. A comparative
analysis by Grybas et al. [36] showed that the objective function outperformed the ESP tool. Various
variations [19,37–42] of the objective function have been used in the literature.

To compute the GS for each input image band, Espindola et al. [33] separately normalized the WV
and MI between zero and one before summing them up. Böck et al. [43] identified a weakness with this
normalization step, pointing out that the selection of which segmentation is optimal was dependent
on the user-defined scale parameter range. They subsequently proposed the use of fixed ranges to
normalize the WV and MI. This produced stable results regardless of the input range of the scale
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parameter. In the remainder of the paper, we call this modification of Böck et al. [43] the Böck metric.
Georganos et al. [16] identified some limitations with the normalization approach of the Böck metric,
which triggered them to propose a different approach. The problem with their approach is that
it adds some level of subjectivity to the evaluation process, because it requires some initial empirical
tests. This makes their proposal unusable within our context of having a metric that can be used for
automated segmentation evaluation without any human intervention.

In this study, we aimed at proposing a new unsupervised evaluation metric for assessing
the segmentation output of any segmentation algorithm. To do so, we modified the Böck metric and
proposed absolute difference (AD) as a means of computing the GS. We compared the Böck and AD
metrics by separately using each of them in two unsupervised optimization approaches to optimize
the parameters of the MRS algorithm to delineate agricultural parcels from 21 Sentinel-2 images of
10 × 10 km sizes in Lower Saxony, Germany. In the first optimization approach, as is mostly done
in the literature [20,31,37–39,43–45], we optimized scale while keeping the shape and compactness
parameters constant at their default values. In the second optimization approach, we employed
Bayesian optimization to optimize all three MRS parameters. The optimal segmentation results
identified by each metric were evaluated with parcels from the Land Parcel Identification System (LPIS),
which is a spatial database of agricultural parcels and their land-use types as declared by farmers
within the European Union (EU) [46,47]. The optimal segmentation results of the Böck and AD metrics
were compared to each other per each optimization approach. Further, we compared the optimal
segmentation results of the unsupervised Bayesian optimization approaches based on the Böck and
AD metrics to the benchmark segmentation results of Tetteh et al. [47], where they used supervised
Bayesian optimization.

2. Study Area and Data

In this study, we used cloud-free Sentinel-2 images downloaded from the Copernicus Open Access
Hub (https://scihub.copernicus.eu) covering the German federal state of Lower Saxony. The images
were pre-processed in the previous study of Tetteh et al. [47] using the standard procedure of
converting the top-of-atmosphere Level-1C images to the bottom-of-atmosphere Level-2A images
with Sen2Cor [48] in the Sentinel Application Platform (SNAP) software. For each Level-2A image,
the visible (red, green, blue) and near-infrared bands were extracted and composed into an image made
up of four bands. This image is henceforth named VNIR. Each VNIR image has a spatial resolution
of 10 m. To identify the optimal MRS parameters needed for segmenting agricultural parcels for
every part of Lower Saxony, Tetteh et al. [47] clipped the VNIR images with 10 × 10 km tile grids
numbering 562 and additionally masked out all non-agricultural areas such as forests, built-up areas,
water bodies, and roads. Out of these 562 images, we selected 21 tiles that spread across Lower
Saxony as our study sites (Figure 1). These 21 tiles have diverse agricultural landscapes. The approach
we used to select the 21 tiles can be found in the methodology section. Additional pieces of information
such as the image acquisition date, percentage coverage of agricultural lands, and other descriptive
statistics of the reference agricultural parcels in the LPIS per tile can be found in Appendix A (Table A1).
The variation in the sizes of agricultural parcels per tile can also be found in Appendix A (Figure A1).

https://scihub.copernicus.eu
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Figure 1. The study sites (tiles) overlaid on a mosaic of cloud-free and non-masked Sentinel-2 images 
captured in May 2018. The coordinates are in UTM Zone 32N (EPSG:32632). 

3. Methodology 

The simplified workflow we used to obtain the results is outlined in Figure 2. The core 
components of our workflow consist of image segmentation, modification of the existing 
unsupervised segmentation evaluation metric, unsupervised optimization of segmentation, and 
empirical evaluation of the segmentation results with reference parcels in the LPIS. These 
components will be fully covered in the proceeding subsections. 

Figure 1. The study sites (tiles) overlaid on a mosaic of cloud-free and non-masked Sentinel-2 images
captured in May 2018. The coordinates are in UTM Zone 32N (EPSG:32632).

3. Methodology

The simplified workflow we used to obtain the results is outlined in Figure 2. The core
components of our workflow consist of image segmentation, modification of the existing unsupervised
segmentation evaluation metric, unsupervised optimization of segmentation, and empirical evaluation
of the segmentation results with reference parcels in the LPIS. These components will be fully covered
in the proceeding subsections.
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Figure 2. The simplified workflow we used in this study. Böck refers to the unsupervised 
segmentation evaluation metric proposed by Böck et al. [43], and absolute difference (AD) is the 
modified version we proposed in this study. 

3.1. Selection of the 21 Tiles 

The goal here is to reduce the number of tiles from 562 to a number that will lead to a reduction 
in the computational time needed for segmentation optimization. The 21 tiles were selected in a way 
that they were representative of the structural composition of the other tiles that were not used for 
further processing. The methodology we used to identify these 21 tiles is explained in this section. 

For each reference parcel in the LPIS of the 562 tiles, we extracted the minimum bounding 
rectangle (MBR). The width and length of each MBR were calculated. Aspect was computed by 
dividing the width by the length. Then, we clustered the 562 tiles based on the average aspect per tile 
using the k-means method. The determination of the appropriate number of clusters was done using 

Figure 2. The simplified workflow we used in this study. Böck refers to the unsupervised segmentation
evaluation metric proposed by Böck et al. [43], and absolute difference (AD) is the modified version
we proposed in this study.

3.1. Selection of the 21 Tiles

The goal here is to reduce the number of tiles from 562 to a number that will lead to a reduction
in the computational time needed for segmentation optimization. The 21 tiles were selected in a way
that they were representative of the structural composition of the other tiles that were not used for
further processing. The methodology we used to identify these 21 tiles is explained in this section.

For each reference parcel in the LPIS of the 562 tiles, we extracted the minimum bounding
rectangle (MBR). The width and length of each MBR were calculated. Aspect was computed by
dividing the width by the length. Then, we clustered the 562 tiles based on the average aspect per
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tile using the k-means method. The determination of the appropriate number of clusters was done
using the silhouette analysis [49]. This analysis is used to measure the internal consistency of clusters
and the separability of those clusters. To perform the analysis, we clustered the average aspect of
the 562 tiles using an incremental approach in which the number of clusters was initiated with two
and increased by one in subsequent steps up to 21. For each cluster number, a silhouette coefficient
was computed. The silhouette coefficients range from −1 to 1, with high values being more desirable,
as it indicates the consistency within clusters and good separability among them. In our case, at cluster
number 16, the silhouette coefficient was the highest (0.543), so we kept that. Then, we manually
selected a tile from each of the 16 clusters and additionally included five more tiles to ensure a better
spatial distribution over Lower Saxony, Germany.

3.2. Image Segmentation

In this study, image segmentation was done based on the implementation of the Multiresolution
Segmentation (MRS) algorithm in eCognition Developer 9.5.0 [24]. Starting with one-pixel objects as
seed points, in numerous subsequent steps, where the difference in heterogeneity between an object and
any of its neighbors is minimal, the two objects are merged into a bigger one [22]. The heterogeneity
of an object is calculated using the color and shape of that object [22,47]. The pairwise merging
process is terminated when a user-given threshold is met [22]. In eCognition, three parameters (scale,
shape, and compactness) influence the segmentation results of the MRS algorithm. Scale defines
the minimum size of an object and is used as the threshold criterion to terminate the merging process.
Shape refers to the weight placed on an object’s form against its color information during the clustering
process [47]. Shape and color add up to 1. In eCognition, one can only pass the shape weight, which
then inversely modifies the color weight. Color is a requirement; hence, shape ranges from 0 to 0.9 [47].
Compactness defines the weight of an objects’ squareness against its smoothness during the clustering
process [47]. The compactness and smoothness weights also add up to 1. In eCognition, one passes
the compactness weight, which inversely changes the smoothness weight. Extensive details about
the MRS algorithm can be found in these pieces of literature [21,22,24]. Generating optimal segments
requires the optimization of the MRS parameters [47].

3.3. Segmentation Optimization

To optimize any segmentation algorithm, one needs to be able to assess the quality of
the segmentation results churned out by the algorithm for different parameter combinations.
In this study, we used unsupervised segmentation evaluation metrics that measure the quality
of the segmentation results purely based on the spectral values of the underlying image.

3.3.1. Existing Unsupervised Segmentation Evaluation Metrics

To evaluate a segmentation result, Espindola et al. [33] used average area-weighted variance
(WV) and Moran’s I (MI) [35]. The WV measures intra-segment homogeneity [33]. Therefore,
it shows the level of under-segmentation in a segmentation result. Lower WV values indicate lower
under-segmentation [38]. It is derived by first calculating the variance of pixels within each segment
per image band, weighting the variance by each segment’s area, and then averaging over all segments
to obtain one global value per band. Equation (1) shows the formulation of WV, where ai represents
the area of a segment, vi is the variance of pixels within a segment, and n is the number of segments.

WV =

∑n
i=1 ai ∗ vi∑n

i=1 ai
(1)

MI measures the inter-segment heterogeneity [33] within the segmentation result, thereby being
indicative of the level of over-segmentation. Lower MI values indicate lower over-segmentation [38].
Similar to the WV, it is also computed per image band. Its formulation is shown by Equation (2), where
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n is the number of segments, yi and y j are the respective mean values of an image band for segments i
and j, y is the mean band value of the entire image, and wi j is a weight matrix that measures the spatial
contiguity [43] between a segment and its neighbors. The elements of the matrix are either zero or one.
One indicates that segments i and j have a common boundary, and zero indicates they do not.

MI =
n
∑n

i=1
∑n

j=1 wi j(yi − y)
(
y j − y

)
(∑n

i=1(yi − y)2
)(∑n

i=1
∑n

j=1 wi j
) (2)

MI ranges from −1 (perfect dispersion of segments) to 1 (perfect clustering of segments). Lower
MI values indicate that the mean spectral values of neighboring segments within a segmentation layer
are more different from each other, thereby indicating lower over-segmentation. Higher MI values
show that the mean spectral values of the neighboring segments are more similar, which means that
there is more over-segmentation present in the segmentation layer.

To compute a single global score (GS) per image band for a segmentation result, the WV and MI
values are individually normalized using Equation (3) [37], where X is either the WV or MI. Then,
the normalized WV (nWV) and normalized MI (nMI) are summed up to obtain the GS per image
band [33]. Then, the final GS for the segmentation result is computed with Equation (4), where b
represents the number of bands in the image, which is four in our case.

X −Xmin
Xmax −Xmin

(3)

GS =
1
b

b∑
i=1

(nWVi + nMIi) (4)

The GS ranges from zero (best quality) to one (worst quality). Given a set of segmentation results
generated with different segmentation parameters, the parameter combination that results in the lowest
GS is deemed as optimal. Böck et al. [43] observed that the identification of the optimal GS based
on the definition of Espindola et al. [33] is highly influenced by the range of the user-defined scale
parameter. Different scale parameter ranges yield different optimal segmentation results for the same
image. According to Böck et al. [43], this instability is due to the normalization process in Equation
(3). To deal with this problem, Böck et al. [43] proposed fixed range normalization for WV and MI as
respectively captured by Equation (5) and Equation (6) before computing the final GS, where V is
the variance of the entire image per band. To obtain Equation (6), Böck et al. [43] respectively replaced
Xmin and Xmax in Equation (3) with −1 and 1, which are the theoretical extrema of MI.

nWV =
WV

V
(5)

nMI =
MI + 1

2
(6)

The Böck metric also ranges from zero (best quality) to one (worst quality).

3.3.2. Metric Proposal Based on Absolute Difference (AD)

According to Georganos et al. [16], the fixed ranged normalization proposal put forward by
Böck et al. [43] makes two problematic assumptions. The first one is that where there is complete
under-segmentation, i.e., where one segment is created for the entire image, the WV becomes equal to
the image variance; hence, nWV becomes 1. When this happens, the equivalent value of MI and by
extension nMI becomes undefined, because a spatial network of more than one segment is required to
compute MI. Secondly, in the case of complete over-segmentation, i.e., where each pixel in the image is
a segment, MI is −1 and nMI becomes 0, but the corresponding value of WV may be very low and
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not necessarily zero. In RS, it is highly implausible to obtain complete over-segmentation; hence,
an MI value of −1 is hardly realized [16]. Furthermore, Georganos et al. [16] did some tests and
observed that the Böck metric has the potential of selecting under-segmented objects as optimal.
We tested this hypothesis using some simulated segmentation data captured by Figure 3. Figure 3a
shows the reference data, while Figure 3b–d captures three different corresponding segmentation
results. For each dataset in Figure 3, each row represents a segment; hence, there are four segments
for each dataset. Figure 3b captures a situation where there is a lot of clustering with minimal
under-segmentation, Figure 3c is a situation where there is a balance between clustering and dispersion
with moderate under-segmentation, and Figure 3d represents a situation where there is a lot of
dispersion with a high level of under-segmentation. The MI, nMI, nWV, and GS of the Böck metric
computed for the simulated segmentation results (Figure 3b–d) are captured by Table 1. As postulated
by Georganos et al. [16], the Böck metric selected the segmentation result with the highest level of
under-segmentation as optimal, given that it had the lowest GS value.
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Figure 3. Simulated reference and segmentation data. The reference dataset is represented by (a). Three
different corresponding segmentation results are represented by (b–d), respectively. Each row in each
dataset represents a segment; hence, there are four segments in all.

Table 1. The Moran’s I (MI), normalized MI (nMI), normalized weighted variance (nWV), and global
score (GS) of the Böck metric computed for the simulated data at Figure 3. The bold-faced text
within the body of the table is the optimal result.

Identifier MI nMI nWV GS (Böck)

Figure 3b 0.400 0.700 0.375 1.075
Figure 3c −0.018 0.491 0.698 1.189
Figure 3d −0.667 0.167 0.875 1.042

The issues raised by Georganos et al. [16] point to the problem posed by Equation (6), where
the theoretical extrema of MI are used to normalize the MI. As visible in Table 1, after normalizing
the MI, the numerical difference between the nWV and MI increased in Figure 3b, where the MI was
positive. However, for Figure 3c,d, the numerical differences diminished substantially. Therefore,
in areas with more dispersion, the Böck metric has the potential of selecting under-segmented results
as optimal, as it would be more biased toward nMI [16]. To overcome these issues, we used two steps.
First, we did not normalize the MI given that by definition, it lies between −1 and 1. We maintained
the nWV. Therefore, the minimum and maximum values of nWV will correspond to the minimum and
maximum of MI. Second, to obtain the final GS, we computed the absolute difference between the MI
and nWV per band and then averaged over all bands as shown by Equation (7), where the notations
have the same meaning as Equation (4). This ensures that the MI and nWV have a fair chance of
influencing the GS depending on their respective magnitudes. Similar to the Böck metric, low values
mean good quality, and high values mean bad quality. The outcome of this modification, named
the AD metric, for the simulated segmentation results (Figure 3b–d) is shown in Table 2. The AD
metric correctly selected the least under-segmented result as optimal, followed by the moderately
under-segmented. We tested another distance metric, specifically Euclidean Distance (ED), to combine
the MI and nWV values at the 21 tiles, but the AD metric proved superior, so we maintained that
as our proposal. The difficulty with using ED to compute the GS lies in the fact that given any two
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numbers, here MI and nWV, it places more emphasis on the larger number than the smaller one,
thereby accentuating the influence of the larger number on the overall outcome.

GS =
1
b

b∑
i=1

|MIi − nWVi| (7)

Table 2. The MI, nWV, and GS of the AD metric computed for the simulated data in Figure 3.
The bold-faced text within the body of the table is the optimal result.

Identifier MI nWV GS (AD)

Figure 3b 0.400 0.375 0.025
Figure 3c −0.018 0.698 0.716
Figure 3d −0.667 0.875 1.542

3.3.3. Unsupervised Segmentation Optimization

The point of optimization within the context of this study is to identify the MRS parameter
combination that yields the lowest GS per metric. The segmentation output corresponding to this
combination is the optimal result. We tested two optimization approaches in this study.

For the first approach, which we termed default optimization, we optimized the scale parameter
while keeping the shape and compactness parameters constant at their default, as is mostly done
in the literature [20,31,37–39,43–45]. Shape was kept at 0.1, and compactness was kept at 0.5. The scale
ranged from 10 to 300 with intervals of 10. The segmentation output corresponding to the scale
parameter with the lowest GS is the optimal output.

The second optimization approach is Bayesian optimization, which was used to optimize all
three MRS parameters. We adopted the Bayesian optimization approach of Tetteh et al. [47] but used
it within an unsupervised optimization framework. Applying Bayesian optimization requires four
main definitions:

1. The domain space (minimum and maximum values) of each input parameter. The domain
space of scale was defined as 20 and 200, for shape 0.0 and 0.9, and for compactness 0.0 and 1.0.
These parameter ranges were also used by Tetteh et al. [47] in their approach.

2. An objective function to optimize. For our study, the objective function to optimize is f(x),
where x is a parameter combination of scale, shape, and compactness. The function takes
the parameter combination, performs image segmentation, computes the GS of the segmentation
output, and finally returns the GS.

3. A surrogate model for the objective function. To build the surrogate model, one has to first
define a prior probability distribution that captures the prior behavior of the objective function.
We chose Gaussian Processes (GP) [50] as the prior probability distribution. Then, some initial
parameter combinations together with their corresponding GS are used to initialize the whole
optimization process. We used 125 parameter combinations as initialization samples. These 125
parameter combinations were selected in a way to ensure uniform and representative distribution
over each parameter space. For scale, the values were (40, 80, 120, 160, 200), and for both shape
and compactness, the values were (0.1, 0.3, 0.5, 0.7, 0.9). The grid search method was used to
calculate the corresponding GS for the 125 samples. These samples were used to update the GP
to obtain posterior probability distribution over the objective function.

4. An acquisition function to be used in sampling new parameter combinations to be evaluated
with the objective function. For the acquisition function, we used expected improvement (EI) [51].
EI is used to iteratively select new parameter combinations with the highest probability of
optimizing the objection function. We sampled 50 new parameter combinations with the EI
function in 50 iterations. At each iteration, out of 10,000 parameter combinations randomly
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sampled from the domain space, the combination with the highest likelihood of improving
upon the current optimal parameter combination is identified by the EI function using the current
posterior probability distribution. Then, this identified parameter combination is evaluated
with the objective function, and the corresponding GS is used to update the current posterior
probability distribution. In all, 175 combinations were used within the Bayesian optimization
approach to identify the optimal one.

A more detailed explanation of Bayesian optimization can be found here [52–55]. The Böck and
AD metrics were separately used in the two optimization approaches to optimize the segmentation
of agricultural parcels. The optimal segmentation identified by each metric was further evaluated
through empirical discrepancy measures. Given the sheer number of segmentations that had to be
done, we used eCognition Server 9.5.0 and the eCognition command-line interface (CLI) to automate
the segmentation process [47]. For the initial 125 parameter combinations that were used to initialize
the Bayesian optimization method, two parallel processes were executed, as our eCognition Server
license was limited to two [47]. The Python programming language was used to glue everything
together. The implementation of Bayesian optimization via Scikit-optimize in Python was used [47].

3.4. Empirical Discrepancy Measures

To identify which optimization approach and metric performed better per tile, we computed
four empirical discrepancy measures (Table 3) by comparing the optimal segmentation results to
the reference agricultural parcels in the LPIS. The quality rate (QR) [56] measures the level of geometric
match between the segmentation result and the reference parcels. It is the only measure that takes
into account both the amount of agreement and disagreement between the reference parcels and
their corresponding segments [57]. Therefore, it can single-handedly be used to judge the quality of
segmentation. When a reference parcel is larger than its corresponding segment, over-segmentation
(OR) [57] occurs, and when the segment is larger, under-segmentation (UR) [57] occurs. The root
mean square (RMS) [56] combines the OR and UR into a single measure. In the formulas in Table 3,
Xi is a reference parcel and Yi is its corresponding segment, and n is the total number of segments.
The discrepancy measures are first computed per segment in a segmentation result. To obtain a single
discrepancy measure for an entire segmentation result, an area-weighted average was used (Table 3).

Table 3. Empirical discrepancy measures used to evaluate the optimal segmentations.

Measure Formula Range Source

Quality rate (QR)
∑n

i=1 Area(Yi)∗
Area(Xi ∩ Yi)
Area(Xi ∪ Yi)∑n

i=1 Area(Yi)
0 (worst) to 1 (perfect) segmentation [56]

Over-segmentation (OR) 1−

∑n
i=1 Area(Yi)∗

Area(Xi ∩ Yi)
Area(Xi)∑n

i=1 Area(Yi)
0 (perfect) to 1 (worst) segmentation [57]

Under-segmentation (UR) 1−

∑n
i=1 Area(Yi)∗

Area(Xi ∩ Yi)
Area(Yi)∑n

i=1 Area(Yi)
0 (perfect) to 1 (worst) segmentation [57]

Root mean square (RMS)
√

OR2+UR2

2
0 (perfect) to 1 (worst) segmentation [56]

4. Results

4.1. Optimal Segmentation Based on Default Optimization

For each tile, Figure 4 shows the QR for the optimal segmentations identified by the AD and Böck
metrics using the default shape value of 0.1 and 0.5 for compactness. The other empirical evaluation
measures (OR, UR, and RMS) are captured by Appendix A (Table A2). At T11, the two metrics obtained
the same result. Except for T3 and T18, where the Böck metric was marginally better, the AD metric
was remarkably better at the other tiles. The highest difference between the two metrics was recorded
at T1, where the AD metric exceeded the Böck metric by 17%. The lowest differences were recorded at
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T2 and T19, where the AD metric was about 1% better. The optimal segmentation results identified
by our metric were the least under-segmented except for T2 and T19, where our metric was rather
the least over-segmented. The RMS values of our metric were lower at all tiles except T19.
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Figure 4. The quality rate (QR) measure computed for each optimal segmentation result identified by
the AD and Böck metrics based on the default optimization (shape = 0.1, compactness = 0.5).

The Böck metric often selected higher scale values than the AD metric, even to the extent that at
T1, it chose the highest scale value as the optimal. This led to massive under-segmentation, an example
of which is shown in Figure 5a at T1. Four different LU types—namely, winter wheat, winter rapeseed,
spring barley, and pastures—are present in this area. Due to the high scale value selected by the Böck
metric, only one segment was created containing all the aforementioned LU types, leading to massive
under-segmentation. The AD metric did a better job of separating the different LU types, hence
reducing under-segmentation (Figure 5b). The segments generated based on the AD metric had a better
geometric match to the LPIS reference parcels.

To understand the different behaviors of the Böck and AD metrics, we explored the nWV, MI, nMI,
and the corresponding GS computed for each scale value at T1, where the AD metric was substantially
better, and then T3, where the Böck metric was marginally better. For both metrics, the nWV increased
with increasing scale as the pixels in each segment became more varied, while the MI and nMI exhibited
an opposite behavior (Figures 6 and 7). Figure 6a shows that as the scale increased, the Böck metric
decreased in response until it reached its minimum at scale 300. As a reminder, lower GS values of
a metric correspond to more accurate segmentation results. Our metric, on the other hand, as captured
by Figure 6b, exhibited a decreasing trend up to scale 190 and then started to increase in response to
increasing nWV and decreasing MI. The GS was at its lowest at scale 190. At T3 (Figure 7), where
the Böck metric was marginally better, the GS of both metrics had one commonality. After some initial
decreasing behavior, they both started to continuously increase around the median of the scale range,
which is 155. The optimal scale selected by the Böck metric was 150, and that of the AD metric was 140.
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Figure 5. Examples of segments identified as optimal at T1 using the default shape and compactness
parameters. (a) An example based on the optimal segmentation identified by the Böck metric showing
massive under-segmentation and (b) based on the AD metric, which shows a better delineation of
the agricultural parcels with lower under-segmentation compared to Böck. The coordinates are in UTM
Zone 32N (EPSG:32632).
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Figure 6. The normalized average area-weighted variance (nWV), Moran’s I (MI), normalized Moran’s
I (nMI), and global score (GS) computed for each scale at T1 based on (a) the Böck metric and
(b) the AD metric.
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I (nMI), and global score (GS) computed for each scale at T3 based on (a) the Böck metric and
(b) the AD metric.

4.2. Optimal Segmentation Based on Bayesian Optimization

We employed Bayesian optimization to respectively minimize the two unsupervised metrics (Böck
and AD) at the 21 tiles to optimize the MRS parameters. To identify the optimal MRS parameters,
Tetteh et al. [47] used their supervised Bayesian optimization approach to directly maximize the QR.
We consider the results achieved by their approach as the benchmark results. For the analysis here,
we compared the results achieved by the two unsupervised Bayesian optimization approaches to
each other and in parallel compared both to the benchmark results. The QR measures of the optimal
segmentations obtained by the supervised and the two unsupervised approaches for the 21 tiles used
in this research are captured by Figure 8. The other empirical evaluation measures can be found
in Appendix A (Table A3). The unsupervised Bayesian optimization approach based on the AD metric
outperformed the Böck metric at all tiles. The approach based on the AD metric was over 22% better at
T1 and T15, and it was about 1% better at T6 in comparison with the unsupervised Bayesian approach
based on the Böck metric. The supervised approach was expectedly better than both unsupervised
approaches at all tiles. At T7 and T17, the segmentation quality of the supervised approach was over
20% higher than the unsupervised AD approach. However, at T2 and T19, the supervised approach was
just about 2% better. Regarding the Böck metric, the supervised approach was over 30% better at T1, T14,
and T15, and it was about 5% better at T2. The segmentation results of the unsupervised approaches
were generally more under-segmented but less over-segmented compared to the supervised approach.
The RMS measure was in favor of the supervised approach at all tiles. The optimal segmentation
results of the three Bayesian optimization approaches symbolized by the QR calculated per segment at
T1, T2, and T17 are captured by Figures 9–11, respectively. For all three figures, panel (a) captures
the Sentinel-2 image, panel (b) shows the Böck results, panel (c) shows the supervised Bayesian
optimization results, and panel (d) captures the AD results. Figure 12 shows a specific case of segments
within the optimal results of the three Bayesian optimization approaches at T1 for the same area shown
in Figure 5.
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Figure 8. The quality rate (QR) measure computed for the unsupervised Bayesian optimization
approaches based on the Böck and AD metrics, and the supervised Bayesian optimization (SUP)
approach that was used to maximize the QR measure by Tetteh et al. [47].
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Figure 9. The outcome of the three Bayesian optimization approaches at T1. The Sentinel-2 image is
shown by (a). The optimal segments as identified by (b) the Böck metric, (c) the supervised Bayesian
optimization approach, and (d) the AD metric are symbolized by their respective QR measures.
The coordinates are in UTM Zone 32N (EPSG:32632).



Remote Sens. 2020, 12, 3096 15 of 27
Remote Sens. 2020, 12, 3096 15 of 27 

 

 
Figure 10. The outcome of the three Bayesian optimization approaches at T2. The Sentinel-2 image is 
shown by (a). The optimal segments as identified by (b) the Böck metric, (c) the supervised Bayesian 
optimization approach, and (d) the AD metric are symbolized by their respective QR measures. The 
coordinates are in UTM Zone 32N (EPSG:32632). 

Figure 10. The outcome of the three Bayesian optimization approaches at T2. The Sentinel-2 image is
shown by (a). The optimal segments as identified by (b) the Böck metric, (c) the supervised Bayesian
optimization approach, and (d) the AD metric are symbolized by their respective QR measures.
The coordinates are in UTM Zone 32N (EPSG:32632).
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optimization approach, and (d) the AD metric are symbolized by their respective QR measures. The 
coordinates are in UTM Zone 32N (EPSG:32632). 

Figure 11. The outcome of the three Bayesian optimization approaches at T17. The Sentinel-2 image is
shown by (a). The optimal segments as identified by (b) the Böck metric, (c) the supervised Bayesian
optimization approach, and (d) the AD metric are symbolized by their respective QR measures.
The coordinates are in UTM Zone 32N (EPSG:32632).
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Figure 12. An example of segments created at T1 using the unsupervised Bayesian optimization
approach based on (a) the Böck metric and (b) the AD metric. (c) Segments generated by the supervised
Bayesian optimization approach (SUP) based on the QR metric. The coordinates are in UTM Zone 32N
(EPSG:32632).

To understand the reason behind the differences in QR between the supervised optimization
approach and the unsupervised Bayesian optimization approaches, we analyzed the linear relationship
(Figure 13) between the differences in QR and the number of land-use types present at each tile.
For each metric, the Pearson correlation coefficient (r) was high, and the p-value was less than 0.05.
Therefore, the relationship between the number of crop types and the differences in QR between
the supervised approach and each unsupervised approach is significant.
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the supervised benchmark results and the unsupervised Bayesian optimization approaches based on
(a) the Böck metric and (b) the AD metric.
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5. Discussion

The analysis of which metric was optimal for unsupervised segmentation evaluation within our
experimental setup of using 21 tiles revealed that our metric (AD) was better than the Böck metric,
whether one uses it within a default or Bayesian optimization approach. Visually and quantitatively,
the segmentation results yielded by the AD metric were better than the Böck metric in different
landscapes composed of diverse agricultural LU types.

For the default optimization approach, at tiles such as T3, where the Böck and AD metrics yielded
very similar segmentation results, this is attributable to the fact that there was more clustering of
objects as the scale was increased. This is captured by Figure 7b, where all the MI values were positive.
Clustering normally occurs in areas where there are different LU types but with similar spectral
behaviors sharing the same neighborhood or in areas highly dominated by a single LU type such as
grasslands, as was the case of T3. Under those conditions, the GS values of the Böck and AD metrics
exhibited a common behavior (Figure 7) and consequently selected similar scale values, leading to
very similar segmentation results.

At other tiles such as T1, where there was an enormous disparity between the two metrics,
the agricultural landscape is more diverse and interspersed with different LU types such as winter
wheat, sugar beet, and maize. Consequently, they had more negative MI values with increasing
scale (Figure 6b), which is indicative of the dispersion of objects. The Böck and AD metrics on such
occasions differed in curve behavior and global minimum position (Figure 6). Based on the trajectory
of the Böck metric in Figure 6a, one can safely conclude that the Böck metric would have further
decreased if the scale value had further been increased. Our metric, on the other hand, as captured
by Figure 6b, exhibited a decreasing trend up to scale 190 and then started to increase in response
to increasing nWV and decreasing MI. The benefit of not normalizing the MI and using absolute
difference to compute the GS became manifest on such occasions, where there was a greater dispersion
of agricultural parcels. The AD metric was initially more influenced by the MI, but it was later more
influenced by the nWV as the scale increased and more MI values became negative (Figure 6b). With
the AD metric, the MI and nWV values have a fair chance of impacting the GS value depending on their
respective magnitudes. The Böck metric, on the other hand, was continuously impacted by the nMI
(Figure 6a). This can be attributed to the normalization approach applied to the MI by the Böck metric.
As captured by Figure 6b, before normalization, all the originally negative MI values were numerically
smaller than their corresponding nWV values. After normalizing the MI to obtain the nMI (Figure 6a),
those negative MI values became numerically higher than their corresponding nWV values, thereby
continuously influencing the GS of the Böck metric (Figure 6a).

The Böck metric is more impacted by the nMI than the nWV in all agricultural landscapes.
This behavior of the Böck metric has the potential of selecting large-scale values as optimal, thereby
leading to the identification of under-segmented objects as optimal. This observation was also made by
Georganos et al. [16]. This particular behavior of the Böck metric becomes more problematic in areas
with diverse LU types and a greater dispersion of objects, as previously shown in Figure 5a. The more
diverse the LU types and the more spectrally similar they behave, the higher the probability of selecting
under-segmented objects as optimal using any segmentation evaluation metric, especially a metric
that is purely based on the image content. Therefore, a good unsupervised segmentation evaluation
metric must reduce over-segmentation but more importantly under-segmentation as the AD metric
proved to be able to do, at least in comparison with the Böck metric. For subsequent processes such
as object classification, under-segmentation is preferable to over-segmentation [26,58,59]. In general,
under-segmentation can largely be dealt with by using very high-resolution images in which visible
boundaries between adjacent but spectrally similar parcels can be identified [47].

For the unsupervised Bayesian optimization approach, the approach based on the AD metric
outperformed that of the Böck metric at all the tiles, especially at T1, which is composed of diverse
LU types. Interestingly, at T3, the Bayesian optimization approach based on the AD metric became
better than the Böck metric. This is opposite to the default optimization results at T3, where Böck was
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marginally better than AD. Overall, in both optimization approaches, the AD metric consistently proved
to be better suited for optimizing the segmentation of agricultural parcels in different landscapes. A look
at the segmentation results for T1 (Figure 9) clearly shows that the Bayesian optimization approach
based on the AD metric generated more segments (Figure 9d) with a higher segmentation quality than
the results of the Bayesian approach based on the Böck metric (Figure 9b). There was a greater clustering
of objects at T2 (Figure 10) and T17 (Figure 11) based on the computed MI values; hence, the Bayesian
optimization approach based on the Böck (Figures 10b and 11b) and the AD (Figures 10d and 11d)
metrics yielded very similar segmentation results.

As expected, the supervised Bayesian optimization approach performed better than all
the unsupervised Bayesian optimization approaches at all the tiles used in our experiment. This is
especially true for T1 (Figure 9c) and T17 (Figure 11c), where the landscape has diversified LU
types. At T2, which is highly dominated by pome fruits, the segmentation quality was bad for all
the optimization methods. Tetteh et al. [47] in using the supervised Bayesian optimization approach
to delineate agricultural parcels made this observation as well for T2 and attributed it to the small
size and elongation of agricultural parcels present at that tile. This also holds for the unsupervised
Bayesian optimization approaches tested in this research. The high correlation between the number
of LU types and the difference in QR between the supervised Bayesian optimization approach and
the two unsupervised Bayesian optimization approaches as captured by Figure 13 indicated that at
tiles with a smaller number of LU types, the unsupervised Bayesian approaches obtained results
similar to the supervised approach. The supervised Bayesian approach was able to adapt more to
diverse agricultural landscapes than the unsupervised Bayesian approaches. An example of this can be
seen in Figure 12c, where the supervised approach generated segments with well-defined boundaries
and a better geometric match to the LPIS parcels than the two unsupervised Bayesian approaches
in Figure 12a,b, respectively. The adaptability of supervised segmentation optimization was also
asserted by Yang et al. [39] after testing a supervised optimization approach based on the information
gain ratio and an unsupervised optimization approach based on MI and WV as was proposed by
Espindola et al. [33]. The major defect of any supervised optimization method is the reliance on
reference data, which are tedious to obtain [29]. An unsupervised method such as the Bayesian
optimization approach based on our proposed AD metric provides a good alternative to supervised
segmentation optimization.

Unlike the proposition of Georganos et al. [16], our proposed metric is objective and fully automated.
It does not require any human intervention to identify the optimal segmentation. The approach
of Georganos et al. [16] requires the user to compute a certain number of initial segmentations
with unknown step intervals, something the authors mentioned has a great impact on the results.
Additionally, using locally estimated scatterplot smoothing (LOESS) requires a user to specify the order
of the polynomial and a span, which controls the level of smoothing. Since the optimal values of those
user inputs cannot be known beforehand, the user has to experiment to identify the optimal settings
for normalization, which violates the principle behind unsupervised segmentation evaluation.

6. Conclusions

In this study, we modified an existing unsupervised segmentation evaluation metric based on
global variance and spatial autocorrelation [43]. We proposed the use of absolute difference (AD) to
combine the global variance and spatial autocorrelation. We tested the AD metric and the existing metric,
named Böck, in identifying the optimal parameters for delineating agricultural parcels from Sentinel-2
images using the Multiresolution Segmentation (MRS) algorithm. We first tested both metrics at 21 tiles
with different agricultural landscapes to optimize the scale parameter of the MRS algorithm through
default optimization. In this default approach, we kept the shape and compactness parameters constant
and increased the scale at equal intervals to determine the optimal one. The AD metric proved superior
to the Böck metric in identifying the segmentation result with a better geometric match to reference
agricultural parcels in the Land Parcel Identification System (LPIS). On average, the segmentation
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quality of the AD metric was over 6% higher than the Böck metric in this default approach. Our
metric often identified segmentations that were least under-segmented as optimal, unlike the Böck
metric. We separately used each metric in a Bayesian optimization routine to optimize the three main
parameters of the MRS algorithm at the same 21 tiles. The Bayesian optimization approach based
on the AD metric performed better than that of the Böck metric at all tiles. In the Bayesian optimization
approach, the quality of the segmentation result of the AD metric was on average about 9% better than
the Böck metric. A comparison of the segmentation results in this study to existing benchmark results
obtained via supervised Bayesian optimization showed that the unsupervised Bayesian optimization
approach based on the AD metric can be a good alternative. In areas where the number of land-use (LU)
types was small, supervised and unsupervised Bayesian optimization obtained similar segmentation
results. Supervised segmentation optimization methods require reference data, which are generally
difficult and time-consuming to generate, especially for wide geographic areas such as regions and
countries. The Bayesian optimization approach based on the AD metric solely depends on the image
content to fine-tune the optimization process without any human intervention; hence, it can easily be
used in any operational OBIA workflow to generate segmentations in near real time.

In a nutshell, our proposed metric performed better than its predecessor in identifying optimal
segmentation. Identifying optimal segmentation is important for purposes of obtaining correct
agricultural statistics such as the sizes of agricultural parcels. In the absence of reference data, a Bayesian
optimization approach based on the AD metric can provide a means of fulfilling the aforementioned
purpose in an automated and efficient manner with no human interaction. Even though we tested
this optimization approach on the MRS algorithm within the thematic area of agriculture, it is easily
applicable to any segmentation algorithm and different thematic areas.

Going into the future, one possible way of improving the results of the segmentation optimization
process with our proposed metric will be to incorporate local variance and spatial autocorrelation
in a multi-scale approach to refine under-segmented and over-segmented objects in subsequent steps
as was done by Johnson et al. [37]. Different weighting schemes for different agricultural landscapes
can be applied to the normalized weighted variance and spatial autocorrelation before the computation
of the global score for the AD metric. The impact of this weighting scheme on the identification of
the optimal segmentation result would be analyzed accordingly. The impact of the segmentation
results identified by the supervised and unsupervised Bayesian optimization approaches on object
classification would be assessed. The 21 tiles we used in our experimental setup had relatively
flat terrains. However, our proposed metric should work fairly well in other terrains as long as
there is enough spectral dissimilarity (dispersion) between adjacent parcels in any geographical area.
This hypothesis will be tested in the future.
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Appendix A

Table A1. Description of the test sites (tiles) used in this study.

Tile Image Date Agric. Land
Cover

No. of Land-Use
Types

No. of LPIS
Parcels

Min. Area
(Ha)

Max. Area
(Ha)

Mean
Area (Ha)

T1 20 May 2018 62.29% 12 1308 0.232 25.777 4.097
T2 5 May 2018 62.76% 8 1344 0.173 21.726 2.398
T3 8 May 2018 80.91% 4 2341 0.191 53.279 2.924
T4 7 May 2018 53.30% 14 1671 0.169 35.281 2.522
T5 5 May 2018 76.83% 14 1957 0.180 18.888 3.219
T6 5 May 2018 79.61% 11 2500 0.168 22.639 2.565
T7 5 May 2018 68.08% 16 2140 0.203 25.181 2.579
T8 8 May 2018 50.17% 12 1100 0.199 30.562 3.704
T9 5 May 2018 70.43% 11 1613 0.190 44.890 3.699
T10 5 May 2018 70.13% 12 2441 0.177 26.253 2.243
T11 5 May 2018 71.41% 15 1625 0.172 30.012 3.709
T12 5 May 2018 90.15% 12 1798 0.171 50.494 3.127
T13 5 May 2018 92.31% 12 1221 0.181 64.772 6.203
T14 5 May 2018 63.62% 15 1894 0.176 26.646 2.637
T15 5 May 2018 36.63% 15 809 0.203 23.687 3.580
T16 5 May 2018 58.45% 14 1752 0.181 29.022 2.781
T17 5 May 2018 61.10% 14 1538 0.180 28.160 2.994
T18 5 May 2018 37.26% 13 729 0.193 28.514 4.158
T19 7 May 2018 14.29% 8 420 0.217 25.855 2.471
T20 7 May 2018 33.35% 13 744 0.191 36.408 3.111
T21 7 May 2018 90.84% 11 1340 0.213 62.730 5.883Remote Sens. 2020, 12, 3096 22 of 27 
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Table A2. Empirical discrepancy measures computed for each optimal segmentation result identified
by the AD and Böck metrics based on the default optimization (shape = 0.1, compactness = 0.5).
The bold-faced texts within the body of the table are the optimal results.

Tile Scale Shape Compactness QR OR UR RMS Metric

T1 190 0.100 0.500 55.53% 0.115 0.375 0.278 AD
T1 300 0.100 0.500 38.42% 0.057 0.597 0.424 Böck

T2 80 0.100 0.500 36.94% 0.334 0.467 0.406 AD
T2 70 0.100 0.500 36.07% 0.387 0.427 0.407 Böck

T3 150 0.100 0.500 57.91% 0.183 0.304 0.251 Böck
T3 140 0.100 0.500 57.80% 0.192 0.296 0.250 AD

T4 200 0.100 0.500 28.33% 0.121 0.685 0.492 AD
T4 280 0.100 0.500 20.84% 0.076 0.779 0.553 Böck

T5 160 0.100 0.500 44.69% 0.163 0.477 0.356 AD
T5 200 0.100 0.500 39.00% 0.122 0.563 0.407 Böck

T6 170 0.100 0.500 42.45% 0.169 0.502 0.375 AD
T6 180 0.100 0.500 41.24% 0.161 0.520 0.385 Böck

T7 190 0.100 0.500 32.84% 0.128 0.631 0.455 AD
T7 270 0.100 0.500 25.46% 0.084 0.729 0.519 Böck

T8 120 0.100 0.500 48.77% 0.274 0.339 0.308 AD
T8 170 0.100 0.500 41.78% 0.150 0.513 0.378 Böck

T9 170 0.100 0.500 44.88% 0.215 0.446 0.350 AD
T9 300 0.100 0.500 33.86% 0.101 0.635 0.454 Böck

T10 180 0.100 0.500 36.66% 0.143 0.584 0.425 AD
T10 210 0.100 0.500 33.06% 0.126 0.631 0.455 Böck

T11 230 0.100 0.500 35.67% 0.127 0.595 0.430 AD
T11 230 0.100 0.500 35.67% 0.127 0.595 0.430 Böck

T12 150 0.100 0.500 40.77% 0.209 0.504 0.386 AD
T12 270 0.100 0.500 27.78% 0.126 0.697 0.501 Böck

T13 240 0.100 0.500 42.42% 0.177 0.495 0.372 AD
T13 300 0.100 0.500 35.18% 0.142 0.601 0.436 Böck

T14 160 0.100 0.500 36.03% 0.162 0.574 0.422 AD
T14 280 0.100 0.500 21.74% 0.077 0.768 0.546 Böck

T15 220 0.100 0.500 32.40% 0.090 0.648 0.463 AD
T15 300 0.100 0.500 22.41% 0.062 0.764 0.542 Böck

T16 180 0.100 0.500 38.46% 0.114 0.566 0.408 AD
T16 280 0.100 0.500 26.20% 0.064 0.723 0.513 Böck

T17 200 0.100 0.500 31.89% 0.137 0.634 0.459 AD
T17 240 0.100 0.500 27.14% 0.111 0.700 0.501 Böck

T18 200 0.100 0.500 47.11% 0.167 0.434 0.329 Böck
T18 190 0.100 0.500 47.06% 0.168 0.427 0.325 AD

T19 210 0.100 0.500 37.29% 0.092 0.595 0.426 AD
T19 50 0.100 0.500 36.58% 0.552 0.207 0.417 Böck

T20 220 0.100 0.500 29.21% 0.123 0.676 0.486 AD
T20 260 0.100 0.500 27.79% 0.102 0.698 0.499 Böck

T21 270 0.100 0.500 43.91% 0.133 0.499 0.365 AD
T21 300 0.100 0.500 40.52% 0.117 0.546 0.395 Böck
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Table A3. Empirical discrepancy measures computed for the unsupervised Bayesian optimization
approaches based on the Böck and AD metrics, and the supervised Bayesian optimization approach
(SUP) that was used to maximize the QR measure. The bold-faced texts within the body of the table are
the optimal results.

Tile Scale Shape Compactness QR OR UR RMS Metric

T1 51 0.900 0.966 69.17% 0.117 0.224 0.178 SUP
T1 160 0.300 0.500 57.47% 0.126 0.349 0.263 AD
T1 200 0.841 0.917 34.39% 0.035 0.648 0.459 Böck

T2 40 0.900 0.300 42.04% 0.219 0.479 0.372 SUP
T2 42 0.792 0.176 40.28% 0.309 0.429 0.374 AD
T2 56 0.415 0.192 37.40% 0.402 0.395 0.398 Böck

T3 77 0.842 0.906 68.46% 0.117 0.235 0.186 SUP
T3 117 0.420 1.000 62.79% 0.164 0.263 0.219 AD
T3 138 0.279 0.175 59.14% 0.165 0.304 0.245 Böck

T4 34 0.900 0.410 50.84% 0.290 0.297 0.293 SUP
T4 116 0.655 1.000 38.04% 0.121 0.576 0.416 AD
T4 174 0.666 0.753 24.88% 0.076 0.738 0.524 Böck

T5 42 0.900 0.783 58.78% 0.205 0.273 0.242 SUP
T5 132 0.468 0.701 47.21% 0.149 0.459 0.341 AD
T5 162 0.395 0.452 42.52% 0.124 0.524 0.381 Böck

T6 40 0.900 0.500 57.67% 0.225 0.269 0.248 SUP
T6 127 0.422 0.083 46.98% 0.172 0.442 0.335 AD
T6 144 0.377 0.000 46.05% 0.161 0.466 0.348 Böck

T7 40 0.900 0.500 55.70% 0.209 0.307 0.263 SUP
T7 183 0.088 0.401 35.14% 0.142 0.601 0.436 AD
T7 178 0.686 0.611 29.39% 0.071 0.692 0.492 Böck

T8 46 0.853 0.665 56.91% 0.261 0.240 0.251 SUP
T8 120 0.100 0.300 49.20% 0.261 0.339 0.303 AD
T8 160 0.300 0.100 43.71% 0.145 0.499 0.367 Böck

T9 56 0.900 0.548 56.93% 0.191 0.310 0.258 SUP
T9 129 0.398 1.000 49.61% 0.212 0.384 0.310 AD
T9 200 0.300 0.500 41.28% 0.148 0.532 0.390 Böck

T10 40 0.900 0.700 54.15% 0.196 0.336 0.275 SUP
T10 189 0.000 0.380 37.43% 0.152 0.573 0.419 AD
T10 184 0.587 0.633 33.58% 0.084 0.641 0.457 Böck

T11 50 0.900 0.699 58.31% 0.200 0.277 0.241 SUP
T11 200 0.100 0.900 40.52% 0.143 0.528 0.386 AD
T11 108 0.900 0.777 38.50% 0.073 0.595 0.424 Böck

T12 40 0.900 0.100 49.05% 0.254 0.354 0.308 SUP
T12 163 0.000 0.605 38.73% 0.197 0.536 0.404 AD
T12 200 0.500 0.700 33.57% 0.119 0.635 0.457 Böck

T13 63 0.900 0.371 54.74% 0.231 0.293 0.264 SUP
T13 151 0.643 0.272 47.92% 0.168 0.434 0.329 AD
T13 165 0.819 0.614 41.67% 0.091 0.551 0.395 Böck

T14 42 0.900 0.576 53.68% 0.204 0.328 0.273 SUP
T14 120 0.500 0.100 38.92% 0.156 0.539 0.397 AD
T14 200 0.700 0.100 21.35% 0.059 0.778 0.552 Böck

T15 40 0.900 0.300 61.17% 0.200 0.252 0.228 SUP
T15 63 0.900 0.428 52.67% 0.106 0.421 0.307 AD
T15 109 0.900 0.000 29.95% 0.064 0.687 0.488 Böck
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Table A3. Cont.

Tile Scale Shape Compactness QR OR UR RMS Metric

T16 45 0.842 0.923 59.96% 0.206 0.251 0.229 SUP
T16 101 0.652 0.762 47.17% 0.116 0.470 0.342 AD
T16 154 0.569 0.621 35.65% 0.086 0.615 0.439 Böck

T17 45 0.900 0.632 54.49% 0.205 0.320 0.269 SUP
T17 200 0.104 0.192 31.68% 0.133 0.637 0.460 AD
T17 185 0.603 0.800 28.57% 0.093 0.691 0.493 Böck

T18 57 0.889 0.897 59.15% 0.199 0.265 0.234 SUP
T18 116 0.653 0.370 49.68% 0.172 0.398 0.307 AD
T18 160 0.700 0.300 39.16% 0.094 0.572 0.410 Böck

T19 54 0.730 1.000 53.04% 0.262 0.290 0.276 SUP
T19 40 0.900 0.700 51.35% 0.221 0.343 0.288 AD
T19 40 0.601 0.000 42.72% 0.460 0.223 0.362 Böck

T20 40 0.900 0.900 53.31% 0.221 0.319 0.274 SUP
T20 200 0.154 0.961 34.98% 0.131 0.604 0.437 AD
T20 200 0.700 0.500 24.48% 0.067 0.743 0.528 Böck

T21 63 0.899 0.868 64.99% 0.157 0.231 0.198 SUP
T21 170 0.627 0.582 48.55% 0.129 0.447 0.329 AD
T21 200 0.813 0.173 39.54% 0.074 0.579 0.412 Böck
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46. Taşdemir, K.; Wirnhardt, C. Neural network-based clustering for agriculture management. EURASIP J. Adv.
Signal Process. 2012, 2012. [CrossRef]

47. Tetteh, G.O.; Gocht, A.; Conrad, C. Optimal parameters for delineating agricultural parcels from satellite
images based on supervised Bayesian optimization. Comput. Electron. Agric. 2020, 178, 105696. [CrossRef]

48. Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2.
In Proceedings of the Image and Signal Processing for Remote Sensing XXIII, Warsaw, Poland,
11–13 September 2017; Bruzzone, L., Bovolo, F., Benediktsson, J.A., Eds.; SPIE: Warsaw, Poland, 2017;
p. 3.

49. Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput.
Appl. Math. 1987, 20, 53–65. [CrossRef]

50. Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; Adaptive Computation and
Machine Learning; MIT Press: Cambridge, MA, USA, 2006; ISBN 978-0-262-18253-9.

51. Jones, D.R.; Schonlau, M.; Welch, W.J. Efficient global optimization of expensive black-box functions. J. Glob.
Optim. 1998, 13, 455–492. [CrossRef]

52. Dewancker, I.; McCourt, M.; Clark, S. Bayesian Optimization Primer. Available online: https://app.sigopt.
com/static/pdf/SigOpt_Bayesian_Optimization_Primer.pdf (accessed on 4 March 2020).

53. Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; de Freitas, N. Taking the human out of the loop: A review
of Bayesian optimization. Proc. IEEE 2016, 104, 148–175. [CrossRef]

54. Brochu, E.; Cora, V.M.; de Freitas, N. A tutorial on Bayesian optimization of expensive cost functions, with
application to active user modeling and hierarchical reinforcement learning. arXiv 2010, arXiv:10122599.

55. Frazier, P.I. A tutorial on Bayesian optimization. arXiv 2018, arXiv:180702811.
56. Weidner, U. Contribution to the assessment of segmentation quality for remote sensing applications. Int. Arch.

Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 479–484.
57. Clinton, N.; Holt, A.; Scarborough, J.; Yan, L.; Gong, P. Accuracy assessment measures for object-based image

segmentation goodness. Photogramm. Eng. Remote Sens. 2010, 76, 289–299. [CrossRef]

http://dx.doi.org/10.1093/biomet/37.1-2.17
http://dx.doi.org/10.1080/15481603.2017.1287238
http://dx.doi.org/10.1016/j.isprsjprs.2011.02.006
http://dx.doi.org/10.3390/ijgi4042292
http://dx.doi.org/10.3390/rs11050514
http://dx.doi.org/10.1109/TGRS.2011.2151866
http://dx.doi.org/10.1080/01431161.2014.960617
http://dx.doi.org/10.3390/rs9080769
http://dx.doi.org/10.1080/01431161003745608
http://dx.doi.org/10.1016/j.isprsjprs.2013.05.008
http://dx.doi.org/10.1186/1687-6180-2012-200
http://dx.doi.org/10.1016/j.compag.2020.105696
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1023/A:1008306431147
https://app.sigopt.com/static/pdf/SigOpt_Bayesian_Optimization_Primer.pdf
https://app.sigopt.com/static/pdf/SigOpt_Bayesian_Optimization_Primer.pdf
http://dx.doi.org/10.1109/JPROC.2015.2494218
http://dx.doi.org/10.14358/PERS.76.3.289


Remote Sens. 2020, 12, 3096 27 of 27

58. Liu, Y.; Bian, L.; Meng, Y.; Wang, H.; Zhang, S.; Yang, Y.; Shao, X.; Wang, B. Discrepancy measures for
selecting optimal combination of parameter values in object-based image analysis. ISPRS J. Photogramm.
Remote Sens. 2012, 68, 144–156. [CrossRef]
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