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Abstract: In the past decade, Light Detection and Ranging (lidar) has fundamentally changed
our ability to remotely detect archaeological features and deepen our understanding of past
human-environment interactions, settlement systems, agricultural practices, and monumental
constructions. Across archaeological contexts, lidar relief visualization techniques test how local
environments impact archaeological prospection. This study used a 132 km2 lidar dataset to
assess three relief visualization techniques—sky-view factor (SVF), topographic position index (TPI),
and simple local relief model (SLRM)—and object-based image analysis (OBIA) on a slope model
for the non-automated visual detection of small hinterland Classic (250–800 CE) Maya settlements
near the polities of Uxbenká and Ix Kuku’il in Southern Belize. Pedestrian survey in the study area
identified 315 plazuelas across a 35 km2 area; the remaining 90 km2 in the lidar dataset is yet to be
surveyed. The previously surveyed plazuelas were compared to the plazuelas visually identified
on the TPI and SLRM. In total, an additional 563 new possible plazuelas were visually identified
across the lidar dataset, using TPI and SLRM. Larger plazuelas, and especially plazuelas located in
disturbed environments, are often more likely to be detected in a visual assessment of the TPI and
SLRM. These findings emphasize the extent and density of Classic Maya settlements and highlight
the continued need for pedestrian survey to ground-truth remotely identified archaeological features
and the impact of modern anthropogenic behaviors for archaeological prospection. Remote sensing
and lidar have deepened our understanding of past human settlement systems and low-density
urbanism, processes that we experience today as humans residing in modern cities.

Keywords: lidar; relief visualization techniques; topographic position index (TPI); simple local
relief model (SLRM); vegetation classification; archaeology; settlement patterns; archaeological
prospection; Maya

1. Introduction

For nearly a century, remote sensing has been used for archaeological prospection to locate
otherwise hidden features and better understand past human-landscape interactions. While advances
in higher quality and more easily accessible remote-sensing data have drastically increased our
ability to conduct archaeological prospection [1–5], they also highlight how landscapes, vegetation,
and visualization tools directly impact our ability to detect small archaeological features [6–10].
Particularly in the past two decades, novel technologies such as Light Detection and Ranging
(lidar) revolutionized the use of remote sensing for archaeological prospection. In the tropics,
these technologies can improve archaeological prospection through the remote and digital identification
of archaeological features [11–16], thus increasing the efficiency of pedestrian archaeological
survey [17,18]. Here, I assess the applicability of four methods (three relief visualization techniques
and an object-based image analysis (OBIA)) based on aerial lidar-derived data, to remotely detect
small archaeological features associated with hinterland settlements in the Maya Lowlands.
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Archaeological features must be “reasonable representations of on-the-ground features”
for archaeologists to use remotely sensed features in analyses [19] (p. 7). While lithic scatters
and other ephemeral archaeological sites may be nearly impossible to identify by using remote
sensing, the remains of small and large archaeological and historic masonry or earthen features can
be recognized by using remote sensing [20–23]. Specifically, lidar inherently changed the nature of
archaeological survey in tropical regions [11,12] and is used to identify archaeological features on a
variety of geographic and environmental landscapes. Remote-sensing methods have been used to
test lidar-derived models for archaeological prospection in a variety of spatial and temporal regions,
including the Archaic period (pre-1000 BCE), Woodland Period (1000 BCE–1000 CE), and Mississippian
Era (900–1200 CE) of the Eastern and Southeastern United States [21,24–28]; Bronze Age (2000–800 BCE),
Iron Age (800–1 BCE), and Medieval (800–1300 CE) Europe [29,30]; Preclassic (1000 BCE–250 CE)
and Classic period (250–800 CE) Maya in Central America [1,2]; Khmer Empire (800–1400 CE) in
Cambodia [12,31]; and the Four Corners region of the American Southwest (600–1300 CE) [32].

The application of aerial lidar in archaeological contexts has gained immense popularity in
the last decade and has fundamentally shifted the effectiveness of archaeological survey [11]
(see Reference [33] for an in-depth review of the use of lidar within archaeological contexts).
Archaeologists use a variety of spatial analyses and relief visualization techniques to aid in archaeological
prospection. These techniques include hillshades of varying illumination angles [6,9,34,35],
slope models [6,9,19,35,36], local relief models and simple local relief models (LRM/SLRM) [1,35–38],
sky-view factor (SVF) [1,6,17,29,30,35,36,39], topographic position index (TPI) [40–42], geomorphon [33],
topographic openness [29], prismatic openness [1], Principal Components Analysis (PCA) [6,17],
Red Relief Image Maps (RRIM) [1,8,25,43], and OBIA [8,21,25,44].

Lidar analyses are increasingly popular [45], especially in areas with dense vegetation such
as the Maya Lowlands, where traditional satellite imagery produced challenges for archaeological
prospection [2,46]. Lidar produces a high-resolution Digital Terrain Model (DTM) of the bare earth,
allowing users to detect minor features on the landscape, without the hindrance of vegetation.
The quality of lidar data and ability to detect small archaeological features vary depending on the
density and height of vegetation, as a consequence of modern human activities [7–10,41], and will
affect the resulting topographic visualizations and computer-based learning analyses [21]. In the
tropical environments of the Maya Lowlands, smaller archaeological remains, such as house mounds,
have proven more difficult to detect through satellite imagery [47] and lidar [9,17,41,42]. Here, I compare
relief visualization techniques for the identification of archaeological features and how the size of the
feature, vegetation height, and modern land use impact remote archaeological prospection.

The present study focused on the visual identification of small, Classic (250–800 CE) Maya
settlements, dispersed across an upland landscape in Southern Belize (Figure 1). Between 2005 and
2018, pedestrian settlement survey was conducted at two Classic Maya centers, Uxbenká and Ix Kuku’il,
covering approximately 35 km2 [48]. This survey identified more than 230 household groups [49–51]
that are further divided into 339 discrete plazuelas. Plazuelas contain archaeological features such as
house mound structures and public architecture situated around a central plaza. In 2011, the Uxbenká
Archaeological Project (UAP) obtained a 132 km2 swath of lidar coverage [9]. Pedestrian archaeological
survey is expensive and time-consuming [42] (pp. 351–353), and only a fraction (26.5%) of the UAP lidar
area has been surveyed. An extensive pedestrian survey is yet to be conducted between the major Maya
centers of Southern Belize, and this study informs the extent and density of previously undocumented
hinterland settlements, specifically between Uxbenká and Lubaantun (Figure 1). Here, I expand on
previous studies [9,18,52], to compare three topographic relief visualization techniques—SVF, TPI,
and SLRM—and OBIA on a slope model, derived from a high-resolution (1 m DEM) lidar dataset
for the detection of Classic Maya plazuelas and archaeological features associated with hinterland
household groups. SVF, TPI, and SLRM relief visualization techniques were selected for this analysis
because they proved successful in the identification of Maya house mounds and plazuelas among other
Classic Maya centers, using lidar datasets [1,8,41]. OBIA was selected because, recently, Davis and
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colleagues [25] successfully used OBIA and segmentation on lidar-derived relief models to identify
mounded archaeological features. While OBIA is traditionally applied to satellite imagery, using OBIA
on a slope model is a novel application that allowed me to circumvent the dense vegetation and
apply the concept of segmentation to identify archaeological features (i.e., plazuelas) on the lidar data.
The two techniques where archaeological features were easiest to visually detect on the UAP lidar
(i.e., not using automated feature extraction) were TPI and SLRM. These two techniques were used to
identify archaeological features (Classic Maya plazuelas) and then compared to archaeological features
previously documented during pedestrian survey. The impact of vegetation height and modern land
use on the ability to remotely detect archaeological features is also evaluated.
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Figure 1. Map of the Classic Maya polities (black triangles) of Southern Belize region mentioned in
the text (main) and location within the Maya region (inset). The 132 km2 lidar area (darkened) and
pedestrian survey area (red outline) are highlighted, along with the location Ix Kuku’il and Uxbenká.
(Base map images are the intellectual property of Esri and is used herein under license. Copyright 2014
Esri and its licensors. All rights reserved.).

These findings suggest hundreds of new possible plazuelas exist within the 132 km2 lidar zone.
The results show variations in the SLRM and TPI for the non-automated visual identification of
small archaeological features. When compared to the pedestrian survey data, the remotely identified
plazuelas had a false-positive rate of approximately 14.7%. The results of this study add to the
discussion of the utility and drawbacks of using remote sensing for archaeological prospection.
Unsurprisingly, the findings of this study suggest that larger plazuelas and archaeological features
are generally more discernable in the lidar-derived relief visualizations, although this relationship
is inconsistent among smaller features, due to the size of structures and plazuelas and vegetation
cover. This study emphasizes both the utility of relief visualization for the detection of archaeological
features and the importance of ground-truthing and pedestrian survey [17]. These findings further our
understanding of the extent and density of Classic Maya settlements in previously undocumented
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survey zones, highlighting the variations in the relief visualization techniques, continued need for
pedestrian survey in conjunction with remote sensing, and the utility and shortcomings of remote
archaeological prospection.

2. Materials and Methods

2.1. Study Area

Uxbenká and Ix Kuku’il are in the southern foothills of the Maya Mountains of Belize.
The Southern Belize foothills were home to several large polities including Uxbenká, Ix Kuku’il,
Lubaantun, Xnaheb, Nim Li Punit, and Tzimin Che, some of which erected carved and dated stone
monuments [53–55] (Figure 1). The topography of Southern Belize varies from mountain and foothill
uplands, with elevations between 250 and 500 m above sea level, to flat coastal plains. The topography
largely influenced the location of Classic Maya settlements, as most sites are situated on areas of
hilly relief in the foothills of the Toledo Uplands [56], which comprise only 6% of the Southern Belize
landscape [57] (p.169).

2.2. Dataset

The National Center for Airborne Laser Mapping (NCALM) at the University of Houston collected
aerial lidar data in May 2011 (see Reference [9] for details on the UAP lidar acquisition). The UAP
dataset averages 20.1 returns per m2 (for all returns) for the core of the dataset, and 13.8 returns per
m2 on the periphery of the dataset. The UAP data have an average of 2.72 ground returns per m2 [9].
Ground returns for other lidar datasets in the Maya region are similar, ranging from 1.1 to 5.3 ground
returns per m2 (gr/m2) in Central Petén [1], to 1.35 gr/m2 at Caracol [58], to 1.5 gr/m2 at Yaxnohcah [59],
to 2.8 gr/m2 in the Belize Valley [60] (p. 8674), to 2.84 to 42.84 gr/m2 at Ceibal, based on varying
vegetation height [43]. The differences in ground returns are due to variations in sensors [46,61] and
vegetation cover and density. Variations in vegetation include semi-urban and developed areas [41],
shifting agricultural cycles [6,8,9], vegetation types in different microenvironments [10], and heavily
forested regions such as preserves, reserves, and parks that have not undergone major anthropogenic
modifications for decades [2,8,17]. Old forest growth on protected lands results in cleaner point clouds
that facilitate the ability to detect archaeological remains on the resulting relief visualizations [62].
The number of ground returns directly impacts the ability to detect archaeological features. In general,
higher ground returns (5–10 gr/m2) result in the detection of more archaeological features, while lower
ground returns (1 gr/m2) yield lower detection rates [63]. Combined, the relatively low ground returns
(2.72 gr/m2) and variations in vegetation height and density in the UAP lidar dataset will likely
decrease the ability to detect some archaeological features. However, these variations also enable the
assessment of how vegetation height and land use impact archaeological prospection on different
relief visualizations.

2.3. Previously Detected Archaeological Features

The UAP conducted pedestrian archaeological settlement survey at Uxbenká and Ix Kuku’il from
2005 to 2018 [50,51]. The efficiency of the survey drastically increased with the acquisition of lidar
data in 2011 and the ability to target minor hilltops for survey [9,18]. The survey identified a total
of 339 plazuelas, which are spatially discrete groupings of archaeological features, including house
mounds or monumental architecture, situated around a central plaza and often on an isolated hilltop
or knoll of a hill (Figure 2). Of these, 315 were located within the lidar dataset. The survey identified
an additional 68 hilltops in the lidar area that lacked archaeological features, which provided a basis
for assessing the visual appearance of hilltops without archaeological features. The UAP survey data
were used to test the effectiveness of remotely sensed archaeological prospection for both confirmed
positives where known plazuelas are located and false positives where pedestrian survey identified no
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archaeological features. Most of the previously documented archaeological features are composed of
ancient house mounds rather than monumental architecture.
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Figure 2. Settlement map of all documented Classic Maya structures at Uxbenká and Ix Kuku’il. Area of
pedestrian survey is highlighted in red. (Note: Ix Kuku’il settlement system extends north beyond the
lidar acquisition area. These plazuelas were not included in the comparative analysis).

Previous studies using the UAP lidar data [9,18,52] focused on hillshades, slope models, and LAS
point clouds to identify Classic Maya house mound structures, concluding that individual structures
are difficult to detect using a hillshade. In the 4 km2 area surrounding the Uxbenká site core, only three
of the 135 documented structures were visible on the hillshade [9] (p. 8). However, modified hilltops
are more easily detected with a slope model: 56.5% (n=13) of 23 documented settlement groups near
the Uxbenká site core were visible on the slope model [9]. The previous analyses focused on a 4 km2

subsample constituting approximately 3% of the lidar data; this study is unique in that it expands
on the previous research to areas of hinterland settlements across the 132 km2 area, including lands
that have yet to be surveyed, and appear diverse in regard to plazuela and architectural size and
complexity, similar to the settlement systems of Uxbenká and Ix Kuku’il.

2.4. Relief Visualization Techniques

Different relief visualization techniques work better in certain contexts, based on local topography
and vegetation, which impact the lidar point cloud and resulting raster files [6,8,41,64]. I used three
relief visualization techniques (SVF, TPI, and SLRM) plus OBIA (on a slope model) on the UAP lidar
dataset, with the goal of identifying new archaeological features. The average Classic Maya house
mound in Southern Belize is small, varying from 20 to 275 m2, and is less than 1.2 m in height [65],
although the majority of house mounds are only a few courses of stone tall and generally less than
0.5 m in height. Non-domestic structural platforms are larger, with greater basal areas and heights.
The tallest documented building at Uxbenká is 12 m high [9] (p. 3). The average household plazuela
group is between 20 and 40 m in diameter, while the civic ceremonial plazuelas are upwards of 100 m
in diameter.
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To test for the ideal parameters in the identification of archaeological features, I ran several
iterations of each tool with different inputs (see Figure 3 for final inputs). After the raster images
were created from the iterations of analyses, I selected the best raster image from each method for
identifying archaeological sites. Like others (see Reference [64]), to improve the visual detection of
archaeological features, I modified the color ramp display for each raster output. Then, I visually
assessed each raster image for its utility to identify Maya plazuelas and house mounds. I visually
examined un-surveyed areas and previously surveyed plazuelas, to determine which outputs were
best for identifying new plazuelas.
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Figure 3. Flowchart of methods (blue boxes), inputs (green boxes), and outputs (purple boxes) used in
the analysis of relief visualization techniques (yellow boxes) for archaeological prospection.

Of the four methods, SLRM and TPI produced results conducive to non-automated visual
identification of modified hilltops and structures of the Classic Maya. Using a red (high) to blue (low)
stretched color ramp classification for both the SLRM and TPI, I identified plazuelas based on the
presence of flattened and modified hilltops which generally appear as a yellow plaza surrounded by
a ring of red (Figure 4e). Plazuelas were also identified by the appearance of several red structures
situated around a central plaza, even if the hilltop modification was less visible. Possible looting
activity, indicated by small “donuts” of a dark red outline with a lighter red or yellow hole in center
(Figure 4f), also suggested the presence of archaeological features.
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Figure 4. Relief visualization techniques used this this study, and the ability to visually detect
archaeological features. This new identified plazuela is larger than most in the lidar dataset
but nicely reflects the variations in visualizations for archaeological prospection (see Figure 5).
(a) Hillshade: Modified (flattened) hilltops are difficult to detect, but some structures are visible.
(b) Slope: The flattened hilltop is visible, as are some of the structures. (c) Sky-view factor (SVF):
Flattened plazuelas and structures are difficult to detect, although potential looting activity stands
out as dark spots on the image. (d) Object-based image analysis (OBIA): Flattened plazuelas are
visually detectable, but structures are difficult to detect. (e) Topographic position index (TPI):
Flattened plazuelas are visually detectable by the red circular/rectangular perimeter; structures are
also visible. (f) Simple local relief model (SLRM): Plazuelas are easy to detect by the lighter plaza
surrounded by a darker red perimeter suggestive of a flattened hilltop. Structures and possible looting
activity are also easily visible. Plazuelas are most easily visually detectable on the SLRM and TPI
images, compared to the OBIA and SVF images.
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Figure 5. TPI results of a newly identified plazuela on (a) the bare earth model (Digital Terrain Model
(DTM)) hillshade, (b) the DSM with annual milpas emphasized, and (c–f) TPI results. Input parameters
for TPI: TPI raster calculator method, using (c) 10x10 cells; (d) topography tool (TT) height of 2 and
width of 10; (e) topography tool (TT) height of 10 and width of 10; and (f) topography tool (TT) height
of 33 and width of 33.

After I visually identified modified hilltops on the SLRM and TPI raster outputs, I compared
the newly identified plazuelas in each method (e.g., SLRM) to the following: (1) the other method
(e.g., TPI); (2) previously surveyed and documented plazuelas (residential and public groups);
(3) areas that contained no archaeological features; and (4) the impacts of modern anthropogenic
activities (i.e., varying height of vegetation because of swidden or milpa agriculture) on the ability to
remotely detect archaeological features (Figure 3). No additional analyses were conducted on the OBIA
and SVF raster outputs.

2.4.1. Object-Based Image Analysis (OBIA)

The application of OBIA to satellite imagery, and more recently lidar data, allows for the detection
of object-based features based on user inputs [66]. OBIA uses segmentation to distinguish individual
objects based on grouped pixels or features. The strength of OBIA is its ability to detect and delineate
geographic features, including buildings, streets, and vegetation. In recent years, the detection of
objects and features, using OBIA on lidar-derived data, has proved successful in archaeological contexts
(see References [3,67]). While OBIA was not developed as a relief visualization technique, it can be
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used on relief models. Specifically, OBIA was conducted on lidar data, to identify archaeological
features in the Southeastern United States [21,25].

Here, I applied the concepts of OBIA and segmentation to detect and delineate flattened and
modified hilltops and structures on a lidar-derived slope (degrees) model. On the slope model,
the flattened, modified hilltops are visibly different than the surrounding hilly landscape [9], allowing for
the delineation of these anthropogenically modified features. OBIA can be conducted in several
software programs, including eCognition, GRASS GIS, and Esri ArcMap [66]. Using the Mean
Segmentation tool in ArcMap, I set the spectral and spatial details to 15 and the minimum segmentation
size to 20 pixels (m). The output raster delineated flat spaces, including modified hilltops and some
structures (Figure 4d), but also delineated other flat spaces, such as valley bottoms. Other applications
of OBIA to the UAP lidar dataset may yield more productive results.

2.4.2. Sky-View Factor (SVF)

SVF is a visualization technique that overcomes sunlight illumination issues present in typical
hillshades [33,39,68,69] and provides the relative elevation of neighboring points, allowing the user
to identify small relief features [30]. This technique is useful in archaeological contexts because it
identifies steeper anomalies and corners associated with structures [35] (p. 238). SVF was calculated,
using the open source Relief Visualization Toolbox (RVT [70]), version 1.3 [30,68,71]. Inputs for the SVF
model included a GEOTIFF of the Digital Elevation Model (DEM), the number of directions, the search
radius, and options for noise removal. Other archaeological studies used 16 directions and a 10 m
search radius to identify small-to-medium anthropogenic landscape modifications in Slovakia [29],
and the same inputs were suggested for larger hillforts in Slovenia [30]. Kokalj and colleagues [71]
suggest using a search radius between 5 and 10 pixels (cells/meters) for smaller archaeological features.
Because the Classic Maya plazuelas and house mounds in Southern Belize are much smaller than
Roman Hillforts, I ran several iterations of the tool with various inputs, but ultimately used the raster
output with 16 directions (the optimal number of directions according to [71]) and a search radius of
5 m.

2.4.3. Topographic Position Index (TPI)

TPI reflects the difference in values of a central pixel and the mean of the pixels around it [72]
and relief variations in both large- and small-scale landscapes, based on the neighborhood input
parameters [41]. TPI is calculated manually, using the Raster Calculator in ArcMap [73], or using an
open-source toolkit (Topography Toolkit [72,74]). GIS4Geomorphology [73] describes the raster
calculator method where the user creates three new DEMs (minimum DEM, maximum DEM,
and smoothed DEM) based on a desired neighborhood size, using the Zonal Statistics tool within
Spatial Analyst [73]. After the three new DEMs are created, a simple raster calculation is conducted,
using the following formula [73]:

(“10 × 10” − “minDEM”)/(“maxDEM” − “minDEM”)

where 10 × 10 is the size of the cells used in focal statistics.
The final TPI raster is then manipulated to create the ideal imagery based on color ramp shading

and classifications for the given dataset. In my analysis, this method, the raster calculator method,
did not work well on the hilly topography of Southern Belize, but perhaps produces better results on
datasets with less topographic variations, such as plains and floodplains.

The second TPI method uses the Topography Toolkit [72,74], which is freely available to download.
I used several inputs for the search radii of the height and weight (e.g., 33 and 33; 10 and 10; and 2 and 10)
to test which variables resulted in the best TPI image for archaeological features including plazuelas and
structures. The Topography Toolkit TPI method produced excellent results for the UAP lidar dataset.



Remote Sens. 2020, 12, 2838 10 of 29

2.4.4. Local Relief Model (LRM) and Simple Local Relief Model (SLRM)

LRM/SLRM identifies local variations in topography, essentially flattening extreme variations
on the landscape such as peaks and valleys and highlighting minor landscape variations [33]
(p. 93) and is ideal for small variations in elevations, such as building foundations, structures,
and depressions [1]. There are several methods to produce an LRM/SLRM dataset, including a free
LRM toolbox download [75], a model builder work-flow [38], and the RVT version 1.3 [30,68,71].
Like other archaeologists in the Maya region [1], I used the RVT to calculate the SLRM. Kokalj and
colleagues [71] suggest using an input radius that is slightly larger than half of the size of the feature
that one is trying to identify. I used “10” for the radius for trend assessment in 1-x-1-m pixels because
the goal was to identify Classic Maya house mounds and small hinterland plazuelas (Figure 3).

3. Results

The visibility of Classic Maya plazuelas and archaeological features varied in the four methods.
While other studies successfully used OBIA [21,25] and SVF [1,35] to identify archaeological features,
the OBIA and SVF produced results where plazuelas and structures were difficult to identify on the
UAP data (Figure 4c,d). Therefore, no further analyses were conducted on the OBIA or SVF datasets.

3.1. Topographic Position Index (TPI)

The TPI raster was calculated using two different methods. I used the previously described Raster
Calculator method [73] with 10 × 10 m cells to calculate the TPI. The outcomes of this method did
not produce a raster image where archaeological features were easily visible (Figure 5c). The second
method used the TPI function within the Topography Toolkit [72,74]. I inputted several heights and
widths (Figure 5d–f), to produce the best visual image. The best TPI output (parameters: neighborhood:
rectangle; height: 33; width: 33) clearly shows flattened, modified hilltops and structures (Figure 5f),
and therefore was used to visually identify Classic Maya plazuelas.

In total, I identified 503 possible plazuelas using TPI across the UAP lidar zone. Of the 503 possible
plazuelas, 381 were also identified by using SLRM (see below), and 122 were only identified on TPI
(Figure 6; Tables 1 and 2; and Supplementary Materials Tables S1 and S2). Of the 503 possible plazuelas
identified using the TPI raster image, 111 aligned with previously documented plazuelas from the UAP
survey, and 385 were newly identified possible plazuelas (Table 1). The TPI had a 35.2% confirmed
positive rate through the identification of 111 of the 315 previously surveyed plazuelas. The plazuelas
identified in the TPI were also compared to the 68 hilltops that have no known archaeological features,
based on the UAP survey (Supplementary Materials Table S3). The TPI identified seven (10.3%)
false positives. Because only 35% of known plazuelas were identified, it is possible that the 385
new possible plazuelas represent only a fraction of the actual plazuelas located within the UAP lidar
zone. Overall, the output of the TPI proved to be useful for remotely identifying possible Classic
Maya plazuelas.
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Figure 6. The location of plazuelas identified with both SLRM and TPI (green dots), only SLRM
(blue dots), and only TPI (pink dots). The background is the TPI raster.

Table 1. Comparison of plazuelas identified with SLRM and TPI.

All TPI All
SLRM

Total all SLRM
and TPI

Total plazuelas identified 503 580 702

Number of confirmed positives (Previously surveyed
plazuelas identified) 111 117 129

Number of the 315 surveyed plazuelas not identified 204 198 186

Percent of 315 surveyed plazuelas identified 35.20% 37.14% 40.95%

Total newly identified plazuelas 385 457 563

Number of false positives (Previously documented
hilltops with no archaeological features) 7 6 10

Percent of 68 previously documented hilltops with
no archaeological features 10.30% 8.80% 14.70%
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Table 2. Detailed comparisons of results from only SLRM, only TPI, and both SLRM and TPI, as well as
all plazuelas identified with SLRM and TPI (see Table 1).

SLRM
Only

SLRM and
TPI TPI Only All SLRM All TPI

Total of all
SLRM and

TPI

Plazuelas identified 199 381 122 580 503 702

Confirmed positives 18 99 12 117 111 129

Newly identified plazuelas 178 279 106 457 385 563

False positives 3 3 4 6 7 10

2011 milpas 14 39 1 53 40 54

2010 milpas 8 12 0 20 12 20

2009 milpas 6 9 2 15 11 17

2008 milpas 8 6 2 14 8 16

3.2. Simple Local Relief Model (SLRM)

I used the open-source RVT [30,68,71] to create the SLRM raster model. Overall, the SLRM
produced the best model of the three relief visualizations and OBIA. Classic Maya plazuelas are most
visible on the SLRM (Figure 4f, Tables 1 and 2). The SLRM allows the user to see the modified hilltops
of possible plazuelas, as well as possible structures, based on small differences in local topography,
due to human modifications to the landscape. These include transitions in topography where the sides
of building platforms meet the plaza and the edge of the plaza at the crest of the hillslope.

In total, I identified 580 possible plazuelas across the UAP lidar dataset (Figure 6 and Table 1).
Of the 580 possible plazuelas, 381 were also identified using TPI, and 199 were only identified on the
SLRM (Table 2). Among the 580 possible plazuelas, 117 (37.1%) align with confirmed positive plazuela
groups from the UAP survey (Figure 7). Thus, 457 new possible plazuelas were identified using the
SLRM. The possible plazuelas were compared to the 68 hilltops known to contain no archaeological
features resulting in a false positive rate of 8.8% (n=6) within the previously surveyed area (Figure 7).
SLRM identified approximately 37% of known plazuelas, suggesting that hundreds more possible
plazuelas exist in addition to the 457 SLRM possible plazuelas. In the upland landscape of the study
region, SLRM was the most useful model for archaeological prospection.
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Figure 7. The location of all the plazuelas identified with SLRM and TPI (green dots), compared to
plazuelas documented during pedestrian survey (blue dots) and hilltops with no archaeological features
documented during pedestrian survey (red dots). Pedestrian survey boundaries are indicated by the
gray outline. The background is the TPI raster.

3.3. SLRM and TPI Comparisons to Known Archaeological Features

The size of plazuelas and number of structures within each plazuela was compared between all
surveyed plazuelas (n = 315) and confirmed plazuelas identified in remote archaeological prospection
(n = 129). SLRM identified 117 previously surveyed plazuelas and TPI identified 111 previously
surveyed plazuelas, 99 of which overlapped. TPI identified 12 surveyed plazuelas that were not
identified by using SLRM, and SLRM identified 18 surveyed plazuelas that were not identified by using
TPI. In total, 129 previously surveyed plazuelas were identified by using the two relief visualization
techniques; of these 129 plazuelas, the plazuela area is known for 127, and the number of structures is
known for 125 plazuelas.

3.3.1. Plazuela Size and Vegetation Cover

In general, archaeological prospection identifies larger plazuelas in terms of the size of plazuela
and the size and number of structures in the plazuela group. However, this relationship is not
consistent and is also impacted by vegetation. Previously surveyed plazuelas vary in size, from 43 to
11,760 m2, although of the 315 plazuelas, 307 are less than 5000 m2, and eight are larger than 5000 m2

(Supplementary Materials Table S2). The largest plazuelas are the civic and ceremonial core areas of
Uxbenká, which underwent massive anthropogenic landscape modifications during the first half of
the Early Classic (250–600 CE) [52,76,77]. The average area of the previously surveyed plazuelas is
976 m2 (Table 3).
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Table 3. Size of plazuelas and number of structures (based on pedestrian survey data) that were identified
with SLRM and TPI. Larger plazuelas are more likely to be remotely identified. * Some plazuelas do
not have areas calculated or number of structures recorded.

Average
Area (m2)

Sample
Size *

Average
Number of
Surveyed
Structures

Sample
Size *

All previously surveyed plazuelas 976.3 315 2.8 305

SLRM only 943.3 17 3.4 17

SLRM and TPI 1613.6 98 3.5 97

TPI only 855.6 12 3.1 12

All SLRM 1514.5 115 3.5 114

All TPI 1530.9 110 3.5 109

Total all SLRM and TPI plazuelas 1452.3 127 3.5 125

All previously surveyed plazuelas
(except plazuelas > 5000 sq. m) 804.1 307 - -

SLRM and TPI (except plazuelas > 5000 sq. m) 1127.4 91 - -

All SLRM (except plazuelas > 5000 sq. m) 1098.4 108 - -

All TPI (except plazuelas > 5000 sq. m) 1095.7 103 - -

Total all SLRM and TPI plazuelas except
7 largest (> 5000 sq. m) 1074.1 120 - -

The remotely identified plazuelas vary in size from 223 to 11,760 m2. Seven of the eight plazuelas
greater than 5000 m2 were remotely identified. However, no plazuelas under 223 m2 were identified by
using SLRM or TPI. These smaller plazuelas account for approximately 11% (n = 36) of the 315 surveyed
plazuelas. The average size of plazuelas identified through remote sensing was higher when the
disproportionately large plazuelas (greater than 5000 m2) were included (Table 3). These results varied
from 1452 m2 (total of all SLRM and TPI) to 1613 m2 (plazuelas identified with both SLRM and TPI)
(Table 3). Even when the plazuelas greater than 5000 m2 are removed, the average size of remotely
identified plazuelas remains larger than the average of the 307 plazuelas (804 m2). These results varied
from 1074 m2 (total of all SLRM and TPI) to 1127 m2 (plazuelas identified with both SLRM and TPI)
(Table 3). In general, larger plazuelas were identified by both SLRM and TPI, while smaller plazuelas
varied, being identified by only SLRM, only TPI, or both techniques (Figure 8).

In addition to the size of the plazuela, vegetation cover impacts the ability to remotely detect
plazuelas. Even small modified hilltops are visible if the hilltop was a milpa in 2011 when the lidar was
acquired (Figure 8f). Medium plazuelas varied in their visibility, with densely vegetated plazuelas
being more difficult to detect than plazuelas in 2011 milpas (Figure 8e,f). The largest plazuelas were
visible even with dense forest cover (Figure 8d).
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Figure 8. A comparison of (a) large, (b) medium, and (c) medium and small plazuelas. Larger plazuelas
and structures on them (indicated on the maps) tend to be more visible than smaller plazuelas and
associated structures. However, these relationships are not always consistent, as vegetation cover and
structure size also impact the ability to detect archaeological features. Plazuela outlines are in gray on
the SLRM raster background. (d–f) Point-cloud profiles of images (a–c) showing all (point) returns
(upper profiles; filter: classification; gray and green = vegetation; orange = ground return) and ground
returns (lower profiles; filter: elevation). Elevations are marked on the left of the all returns point cloud
profiles, indicating the lowest elevation (bottom elevation), highest ground elevation (middle elevation),
and highest vegetation elevation (upper elevation).
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3.3.2. Number of Structures and Structure Size

Plazuelas with more structures and larger structures are more likely to be identified by using
SLRM and TPI. Generally, larger plazuelas contain more structures and larger structures than smaller
plazuelas, resulting in greater visibility on the SLRM and TPI of larger plazuelas and associated
architecture. However, this relationship is not consistent (Figure 8b,e). Structure counts among
surveyed plazuelas vary from one structure to 12 structures (Supplementary Materials Table S2),
with an average of 2.8 structures per plazuela (Table 3). Nearly a third of surveyed plazuelas contain
only one structure (Table 4). Across all surveyed plazuelas that were identified with SLRM and
TPI, confirmed structure counts also varied from 1 to 12 with a 3.4 average number of structures.
However, plazuelas with higher structure counts were remotely identified more often, with 24% of all
plazuelas with one structure identified with SLRM and TPI, whereas any plazuela with more than four
structures had a greater than 50% confirmed positive rate (Table 4).

Table 4. Total structure counts of surveyed plazuelas compared to structure counts of plazuelas
identified with SLRM and TPI. Plazuelas with more structures are more likely to be remotely identified.

Number of Structures

Surveyed Plazuelas
Containing the Number

Structures in the First
Column

SLRM and TPI
Plazuelas Containing

the Number Structures
in the First Column

% Identified

unknown 10 1 10%

1 100 24 24%

2 60 20 33%

3 53 23 43%

4 39 24 62%

5 26 14 54%

6 13 11 85%

7 7 5 71%

8 4 2 50%

9 1 1 100%

10 1 0 0%

12 1 1 100%

Total plazuelas (not
including unknowns) 305 125 41%

These results parallel the findings from the previous study that examined a 4 km2 subsample of
the UAP lidar [9] but also indicate the advantages to using multiple relief visualization techniques.
The previous 2015 study concluded that structures were difficult to detect on the bare earth hillshade
and in the point cloud, and that hilltop modifications were most visible in the varied topography
and vegetation [9]. Here, the SLRM and TPI outputs are useful for remotely identifying plazuelas;
however, there is a bias for larger plazuelas and plazuelas with more structures.

3.4. Archaeological Prospection Compared to Land Use

Vegetation height and density varies based on land use practices. Previous studies observed
that vegetation type and height across the landscape has a direct impact on the visibility of
archaeological remains [6,9,35,41,62,78]. Modern Maya populations in Southern Belize practice
slash-and-burn (swidden) agriculture resulting in a mosaicked patchwork of forest re-growth [9,79,80].
Previously, using a combination of a false color infrared (FCIR) GeoEye-1 multispectral satellite imagery
to pinpoint color variations among patches of vegetation regrowth, lidar Digital Surface Model (DSM)
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which reflects vegetation foliage, and LAS point clouds, milpas from 2008 to 2011 in a 40 km2 area within
the UAP lidar dataset were mapped. These mapped milpas were used to test if vegetation growth (as a
direct reflection of which year the land patch underwent milpa cultivation) influenced the visibility of
archaeological remains using the SLRM and TPI model and comparing them to surveyed plazuelas.

milpas cleared in spring 2011 had an average of 6.3 ground returns per m2. milpas cleared in
2010 to 2008 had decreasing ground returns due to the re-growth of tropical vegetation during fallow
periods. In 2010 and 2009 milpas, ground returns were 3.9 and 3.3 returns per m2. In 2008 milpas,
the average ground returns of 1.6 per m2 represented a nearly 75% reduction, as compared to 2011
milpas [9] (pp. 5–7). Recent milpas from 2009 to 2011 have higher average ground returns than milpas
older than 2008 and the associated vegetation growth.

An example of the impact of milpas is visible at Settlement Group 83 from Uxbenká. Settlement
Group 83 is divided into two plazuelas, A and B, which are similar in size: Plazuela A is 508 m2,
and Plazuela B is 442 m2. While these plazuelas are of similar size, Plazuela A, which is in a 2011
milpa, is visible on both the SLRM and TPI, but Plazuela B, which is in a more vegetated patch of forest,
is not visible on the SLRM or TPI. The small structures are not easily discernable in either Plazuela A
or B (Figure 9).
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and B on a lidar hillshade DTM in comparison to (b) 2011 milpas and forest areas on the lidar DSM.
(c) A 2010 milpa is visible on the GeoEye-1 false color infrared (FCIR) satellite image acquired in 2010.
The plazuela in the 2011 milpa is easier to identify on (d) OBIA, (e) TPI, and (f) SLRM, compared to
the plazuela within the forested area. Point cloud profiles with (g) all returns (filter: classification;
gray = unclassified (vegetation); orange = ground) and (h) ground returns (filter: elevation) showing
that areas with forest regrowth often have fewer ground return points.

Within the boundary of mapped milpas, 36.8% of confirmed plazuelas were identified using
SLRM and TPI (Table 5). These results parallel the findings of the larger dataset, with a total of
129 confirmed positives among the 315 confirmed plazuelas (41%). Within the annual milpas, 65% of
surveyed plazuelas were confirmed positives within 2011 milpas. The ability to remotely detect
archaeological features, including modified hilltops, drastically decreases within a year of vegetation
regrowth. Among 2008 and 2010 milpas, the confirmed positive rate was reduced to roughly 25%
(Figure 10 and Table 5). Ultimately, the ability to remotely identify archaeological features varies
based on the plazuela size, structure size, and vegetation cover, and while general trends are present
(larger plazuelas with bigger structures are easier to detect), these relationships are inconsistent among
medium- and smaller-size plazuelas, due to variations in vegetation cover.
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Figure 10. The location of milpas from (a) 2008, (b) 2009, (c) 2010, and (d) 2011, on a GeoEye-1 FCIR
satellite image. Surveyed plazuelas within the annual milpa (large dark gray dot), and SLRM and TPI
identified plazuelas (medium light gray dot) are indicated on the maps. More plazuelas are visible in
2011 milpas than in milpas from previous years. The location of surveyed (small white dot) and SLRM
and TPI identified (small black dot) plazuelas are also noted.
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Table 5. Surveyed, SLRM, and TPI plazuelas identified within milpas from 2008 to 2011 (see Reference [9]).
(* Note: One SLRM and TPI plazuela identified within the milpa boundary is a false positive).

milpa Year Total in the
Mapped milpa

Boundary2008 2009 2010 2011

Total plazuelas through SLRM and TPI 16 17 20 54 229 *

Possible plazuelas through SLRM and TPI 13 12 18 41 165

Confirmed plazuelas through SLRM and TPI 3 5 2 13 63

Confirmed plazuelas total 13 18 8 20 171

Percent of confirmed plazuelas identified
with SLRM and TPI 23.1 27.8 25.0 65.0 36.8

4. Discussion

This study tested three lidar relief visualization techniques and OBIA on a slope model for
the identification of archaeological features—plazuelas and house mound structures—in Southern
Belize. Using a lidar-derived DEM, I used OBIA (on slope), SVF, TPI, and SLRM to assess remote
archaeological prospection of hinterland Classic Maya settlements. Ultimately, TPI and SLRM were
used to identify possible plazuelas. These new data were compared with pedestrian survey data for
both the location of plazuela groups, the location of hilltops that do not contain archaeological features,
and the impact of modern land use on archaeological prospection. These findings illuminate how
lidar relief visualization techniques vary for archaeological prospection in the context of the southern
foothills of the Maya Mountains in Southern Belize.

One of the largest challenges in Maya archaeology is the identification of hinterland settlements.
While satellite imagery is a cost-effective way to remotely conduct archaeological prospection, the major
limiting factor of freely available satellite imagery, including the newest versions, such as Landsat-8 and
Sentinel radar imagery, is the relatively low resolution compared to the size of hinterland settlements.
Additionally, because satellite imagery is a passive method of remote sensing (whereas lidar is an
active remote sensing method), the vegetation in satellite imagery prevents and obscures visual access
to the bare ground. Satellite imagery is useful for the detection of large archaeological sites and
associated administrative architecture [5,81], and, while the detection of small hinterland (i.e., non-elite)
settlements and household plazuelas has remained elusive [47], analyses of ecological zones were
used to model potential hinterland populations [82]. The use of satellite imagery for archaeological
prospection is complemented by the lidar revolution in archaeology since 2000.

The seminal lidar survey at Caracol in 2009 proved the potential of lidar-derived products
for modeling ancient landscapes and detecting hinterland settlements in the Maya region [83].
Across the Maya Lowlands, archaeologists have relied on a variety of relief visualization techniques to
test the applicability of lidar for the identification of archaeological features [1,4,8,9,33,35,41,43,59,84].
Combined, these previous studies suggest that no single technique is best for archaeological prospection
due to the varied geography, including topography and modern human land use, and character of
archaeological features such as the height/elevation, depth, size, and geometrical shape. In Southern
Belize, SLRM and TPI were the most useful of the four methods evaluated for the identification of
Classic Maya settlements.

Previous studies successfully applied OBIA and segmentation to lidar data [20]. For example,
OBIA combined with Automated Feature Extraction (AFE) was used for the detection of archaeological
sites in the Southeastern United States [21,25] and to identify more than 10,000 grave mounds in
Tonga [44]. In Southern Belize, however, the homogenously hilly landscape resulted in a less-than-ideal
OBIA raster for the detection of archaeological features. This is likely because the variations in
topography are visually similar to the minor topographic changes from Classic Maya structures and
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plazuelas. OBIA on a lidar slope model would likely work well in a location that is relatively flat,
as the topographic images would “pop out” or be identified with segmentation methods.

Similar to the studies with OBIA, other studies have successfully used SVF in archaeological
prospection. Scholars studying prehistoric hillforts in Slovakia [29] and Slovenia [30] used SVF for
the identification of archaeological features. SVF was successfully applied to the detection of ancient
Maya plazuelas and structures at El Pilar [17]—which is a protected forest reserve—as well as Chichén
Itzá [35]. SVF proved less successful both on the UAP data and in the Northern Maya Lowlands at
Ucanha [6]. The quality of the SVF output for identifying archaeological sites is not likely caused by the
direction input features (see Reference [71]) but is more likely due to the variations in vegetation height.

In this study, the two most successful relief visualization techniques were SLRM and TPI.
Combined, 563 new possible plazuelas were identified in this study. Other archaeological studies in the
Maya region, including the Belize River Valley [41] and Caracol [40], used TPI to identify archaeological
features including terraces and house mounds. In the Belize River Valley, TPI was used to identify
ancient Maya house mounds among a modern semi-urban community and to test the impact of land
use (developed vs. undeveloped) and vegetation class (pasture, orchard, or forest) on the visibility
of archaeological remains using a TPI landscape model [41]. These techniques have also been used
outside of the Maya region, in places such as Western Romania, for the detection of hillforts [38].

Here, I identified a total of 702 possible plazuelas using both TPI and SLRM. Out of the 315 surveyed
plazuelas, only 41% (n=129) were identified by using SLRM and TPI (Table 2). The confirmed positive
rate (41%) of identified settlements on the UAP lidar dataset is similar to other confirmed positive
rates in the Maya region. In the Yaxuná-Popola-Tzacauil area, 32% of mapped residential structures
were identified in lidar relief visualizations [35]. In Western Belize, 27% (4 of 15) mapped residential
structures were identified on the lidar hillshade and TPI raster [42]. In the Northern Yucatan, 47% of
mapped buildings were visible on the lidar between Ucí and Cansahcab, and at Ucanha, 48% of
architectural features were visible [7].

In total, 563 new possible plazuelas were identified (702 total plazuelas, minus 129 surveyed
plazuelas and 10 false positives). If the 563 new possible plazuelas represent a similar proportion
of remotely identified plazuelas (approximately 40%), it is possible that more than 1370 plazuela
groups are present on the landscape within the UAP lidar zone. Factoring in a 14.7% rate for false
positives, the number of new possible plazuelas is still over 1150. The ability to remotely detect large
plazuelas informs the extent of the settlement system, but the inability to detect more than half of the
surveyed plazuelas groups, and especially smaller plazuelas groups often associated with hinterland
households [49], highlights the need for ground-truthing in conjunction with remotely identified
archaeological features [17,35].

Previous settlement pattern studies suggest diversity in the size, clustering, and distribution
of Classic Maya plazuelas in Southern Belize [50,85]. The diversity and variability in the size
of documented plazuelas is likely representative of the variability in the size of newly identified
plazuelas. Furthermore, in the Maya region, the size of households—in this study, they are referred
to as plazuelas—is often directly linked to land tenure and the intergenerational transmission of
wealth, where the oldest households develop into the largest and wealthiest households [49,86].
Others have used lidar to assess changing settlement patterns over time, based on temporal variations
in architecture [4,43,84]. Among the newly identified plazuelas, larger plazuelas were distributed across
the landscape, possibly indicating long-standing households in the hinterlands between Uxbenká
and Ix Kuku’il and the Maya center Lubaantun to the east, although ground-truthing and test-unit
excavations to gain chronologic information are needed to confirm this hypothesis. Little pedestrian
survey has occurred between the regional Maya centers of Southern Belize, with the exception of a
transect survey between Nim Li Punit and Xnaheb [57] and extensive survey between Ix Kuku’il and
Uxbenká. The survey between Nim Li Punit and Xnaheb suggests a decrease in settlement density
acting as a boundary between the centers [87]; similar trends have been noted at Uxbenká and Ix Kuku’il
based on decreased settlement density in a river valley between the centers [48]. However, the results
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from this study suggest a more densely populated landscape between Lubaantun and Uxbenká,
highlighting the importance of ground-truthing and diversity in settlement patterns and household
clustering within the Southern Belize region [50].

Areas where archaeologists work are constantly changing as living landscapes. Within the
UAP lidar zone, there are expanding modern villages; shifting agricultural fields where maize,
beans, pumpkins, and rice are grown; tree orchards of cacao and palm groves; and, more recently,
cow pastures [80,88,89]. These constantly changing diverse settings must be accounted for during
the use of remote-sensing imagery to assess the landscape for archaeological features. For example,
modern house building often requires leveling of the land, resulting in rectangular cuts in the landscape
that are visible in the lidar data and resulting outputs (Figure 11). Likewise, modern footpaths, tracks
(unpaved roads), and football (soccer) fields are visible on the lidar DSM, DTM, and TPI and SLRM
raster files (Figure 11). The untrained eye could easily mistake these modern landscape modifications
for ancient modifications associated with archaeological features. Furthermore, modern anthropogenic
landscape modifications must be considered if conducting AFE [90].
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Figure 11. The visual effect of anthropogenic landscape modifications on the (a) DSM, (d) DTM, (e) TPI,
and (f) SLRM, which should be considered during the remote detection of archaeological features.
The GeoEye-1 satellite image in (b) color and (c) FCIR show the location of structures, roads and tracks,
and modified landscapes.

Vegetation type, height, and density impact the lidar returns. In the Yucatan [6], Pasion region [8,43],
and in Southern Belize [9,18], medium-growth vegetation results in decreased visibility of archaeological
remains. The findings presented here and elsewhere [6,43] indicate that recently burned milpas and low
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pastures positively impact the ability to detect small structures. Here, the number of ground returns is
higher for 2011 milpas than for older milpas or areas of forest regrowth (Figures 12 and 13).
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Figure 13. (a) Vegetation types, 2011 milpas, orchards, and areas of forest regrowth are visible on
the lidar DSM and impact the lidar point cloud. (b) Ground points are randomly dispersed in the
forest regrowth area and show the outline of orchard trees resulting in large patches, with few points,
especially when compared to (c) the total point cloud coverage, creating challenges for archaeological
prospection of small features. The ground points of the 2011 milpa are higher than the surrounding
landscape, thus facilitating archaeological prospection.

In addition to the height of vegetation, the type and density of vegetation impacts archaeological
prospection [10,62], especially in the identification of small architectural features such as house mounds
(see Figure 9). Within medium to high canopies, the variation in underbrush height and density impact
the ability of lidar laser shots to hit the ground [6], resulting in patches of land containing little-to-no
ground points [8]. These patches with few ground points directly impact the ability to remotely detect
small archaeological features. Areas with recent milpas and low grass of cow pastures contain higher
ground points than areas of forest regrowth or even orchards, where the dense, low foliage of the trees
prevent the laser from passing to the ground (Figure 13b).

5. Conclusions

The use of remote sensing and lidar technology has revolutionized the effectiveness and efficiency
of archaeological prospection and survey [11]. Every relief visualization technique has benefits and
disadvantages based on topography, vegetation, and archaeology type, including feature size and
shape [64]. In this case study from Southern Belize, lidar-derived relief visualization methods SLRM
and TPI were selected to visually identify Classic Maya plazuelas and structures. In total, 580 possible
plazuelas were identified by using SLRM, and 503 were identified by using TPI, of which 381 overlap.
Combined, a total of 702 possible plazuelas were remotely identified, 129 of which align with previously
surveyed plazuelas, and 10 were known false positives, for a total of 563 newly identified possible
plazuelas. These data help shed light on the density and dispersal of Maya settlements in areas that
lack pedestrian survey.

While the results of these methods underestimate the number of plazuelas, in conjunction with
previous pedestrian survey data, it is possible to estimate the total number of Classic Maya plazuelas
within the lidar area. In total, 563 new possible plazuelas were identified by using SLRM and TPI,
although many more likely exist. The 41% confirmed positive rate of previously surveyed plazuelas
indicates that upwards of 1370 previously unrecorded Classic Maya plazuelas could be present on
the landscape. Considering the 14.7% false-positive rate of SLRM and TPI, combined there could still
be more than 1150 possible plazuelas on the landscape that are yet to be documented. These results
emphasize the need for ground-truthing, in order to identify false positives, record the number of
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the structures which are difficult to detect on the relief visualization, and survey areas that were not
identified through the use of SLRM and TPI, as they may contain ephemeral archaeological features.

Manual feature extraction is effective and allows the user to apply checks and balances to their
processes [19]. Here, I used previously surveyed data to assess the accuracy of remote archaeological
prospection to the location and size of known plazuelas. Future work will expand on this study by using
AFE to test the utility of machine intelligence for archaeological prospection, in comparison to manual
identification of archaeological features. AFE is increasingly popular for archaeological prospection [91]
and has been successful in a variety of archaeological contexts using satellite imagery [5,92,93].
The application of AFE to lidar data has taken off in recent years (see References [21,64,94]), but it
is yet to be extensively applied to settlement studies for the identification of small archaeological
features within the Maya Lowlands (see Reference [90] for a recent application of AFE on Airborne
Laser Scanning data in the Maya region). Applications of AFE to settlement studies in the Maya region
has the potential to further advance the geospatial revolution in Mesoamerican archaeology.

Relief visualization methods are useful for archaeological prospection, but results can vary based
on local vegetation, landscapes, and type of archaeological features. Modern human behaviors such as
expanding villages, agroforestry (orchards), cow pastures, and shifting agriculture cycles impact lidar
data and the ability to remotely detect archaeological features in the different ways. Remote sensing
and lidar relief visualization techniques such as SLRM and TPI can increase our understanding of
Classic Maya settlement systems, forcing us to re-evaluate the extent of settlement systems, population
estimates, and the relationships of people in the past.
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