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Abstract: A classification method of hyperspectral reflectance images named CHRIPS (Classification
of Hyperspectral Reflectance Images with Physical and Statistical criteria) is presented. This method
aims at classifying each pixel from a given set of thirteen classes: unidentified dark surface, water,
plastic matter, carbonate, clay, vegetation (dark green, dense green, sparse green, stressed), house
roof/tile , asphalt, vehicle/paint/metal surface and non-carbonated gravel. Each class is characterized
by physical criteria (detection of specific absorptions or shape features) or statistical criteria (use of
dedicated spectral indices) over spectral reflectance. CHRIPS input is a hyperspectral reflectance
image covering the spectral range [400–2500 nm]. The presented method has four advantages, namely:
(i) is robust in transfer, class identification is based on criteria that are not very sensitive to sensor
type; (ii) does not require training, criteria are pre-defined; (iii) includes a reject class, this class
reduces misclassifications; (iv) high precision and recall, F1 score is generally above 0.9 in our test.
As the number of classes is limited, CHRIPS could be used in combination with other classification
algorithms able to process the reject class in order to decrease the number of unclassified pixels.

Keywords: classification; hyperspectral; reflectance; reject class; specific absorption; spectral index;
transfer; training; unsupervised

1. Introduction

Hyperspectral remote sensing allows the simultaneous acquisition of hundreds of narrow and
contiguous spectral bands usually ranging from the visible to the short-wave infrared (SWIR). The pixel
spectra provided by such sensors are functions of the solar irradiation, the atmospheric effects
(absorption and diffusion by molecules and particles), the interaction of radiation with the ground
and the transfer function of the instrument. They can thus be exploited to extract information about
the components of the studied scene (material constituents, gaseous and aerosol concentrations) from
the modeling of the interaction between the electromagnetic radiation and the medium.

In this paper, we focus on the classification problematic for hyperspectral images. This topic has
been the subject of numerous studies in recent years and led to the development of many unsupervised
and supervised classification methods [1]. Unsupervised algorithms mainly gather centroid-based
clustering methods [2,3], density-based methods [4,5], biological clustering methods [6,7] and
graph-based methods [8–10].

Supervised methods can be separated into two groups—methods using metrics and machine
learning methods. Methods using metrics, such as Spectral Angle Mapper (SAM) and Spectral
Information Divergence (SID) [11–13], aim to match pixel spectra with a spectral database or learning
samples. Machine learning algorithms have been studied a lot for hyperspectral classification.
Many pixelwise classification methods exploiting only the spectral dimension were proposed,
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such as maximum likelihood [14], neural networks [15], random forest [16], multinomial logistic
regression [17] and support vector machines [18]. Several approaches were developed to exploit both
spectral and spatial information: extended morphological profiles [19,20], composite kernel [21],
morphological kernel [22,23]. Recently, many deep learning methods were developed and achieved
good performance [24,25]. Some of them are purely spectral [26–30] and others exploit both spectral
and spatial dimensions [31–33].

Besides, software such as TetraCorder [34] and Hysoma [35] allows the detection and the
characterization of physical features by computing some criteria dedicated to different types of surfaces
and materials. Such software could also be used for classification.

Some methods aim at characterizing specific types of surface based on spectral criteria by the mean
of dedicated indices. For instance, green vegetation can be detected with NDVI (Normalized Difference
Vegetation Index) due to plant photosynthesis [36,37], or CAI (Cellulose Absorption Index) can detect
senescent or mixture of vegetation/bare soils [38,39]. For natural bare soils, Hysoma [35] can be used to
assess soil, humidity, clay, carbonate contents, and so forth. Some spectral indices have also been
defined for impervious surface [40,41]—they are used to map urban areas mainly from satellite images.
But all these indices are used to assess specific surfaces and generally require thresholding from user,
which may be a tricky task.

Spectral reflectance is a very useful tool to characterize surfaces. Even if atmospheric effects still
can be observed as they are never perfectly removed by atmospheric correction, and illumination
may introduce a scaling on spectra, reflectance depends much less on atmospheric conditions and
illumination than spectral radiance. Reflectance may exhibit specific features at some spectral bands
that could give crucial information on material components (see Figure 1).
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Figure 1. Spectral reflectances of different types of materials acquired from the two different
hyperspectral instruments HySpex and HyMap: synthetic tarpaulin (HySpex), synthetic greenhouse
(HyMap), dry grass (HySpex) and green tree (HyMap). A factor is applied on each reflectance in order
to improve visualization. Specific features can be observed and used to identify these types of surface:
reflectance of synthetic matter exhibits a local minimum around 1730 nm due to specific absorption,
reflectance of green and stressed vegetation exhibit some similar geometric patterns: parabolic variation
in the spectral range [1500–1750 nm] and local maxima around 1660 nm and 2210 nm.

These features can be observed whatever the hyperspectral sensor as long as it contains
the appropriate spectral bands. Some robust criteria could then be built in order to identify
them: this is the purpose of the new classification method CHRIPS (Classification of Hyperspectral
Reflectance Images with Physical and Statistical criteria) that is presented in this paper. This method
considers the main surface types commonly present on land remote sensing images. It defines some



Remote Sens. 2020, 12, 2335 3 of 39

discriminant criteria dedicated to each class. These criteria exploit physical and statistical features that
may be observed on spectral reflectance. CHRIPS aims at reaching two main objectives.

• The first objective is to perform a classification without using any expert knowledge from user. For
unsupervised methods, the selection of the number of classes is not straightforward even if some
methods try to estimate it [42,43]. Methods using metrics (SAM, SID) require thresholds to be
tuned—this task cannot be performed easily. For machine learning methods, training samples
need to be selected for each class, but spatial location of these training samples on images is often
unknown. The number of classes CHRIPS could detect is fixed. For each class, CHRIPS applies
a set of criteria that depend on thresholds for which robust values were estimated once for all from
training samples covering as much as possible spectral variability of each class. Then, CHRIPS
only requires a hyperspectral reflectance image as input.

• The second objective is that the classification method can be applied on hyperspectral images
acquired at different spectral and spatial resolutions by common airborne hyperspectral sensors.
Machine learning methods may be quite accurate when the trained model is applied on images
acquired with the same sensor and the same spatial resolution as the training samples, but
may be less efficient when it is applied on images acquired with other sensors (transfer ability)
because they are generally not trained for more than one sensor. CHRIPS method is based on the
computation of criteria that are robust to the sensor change.

The paper is organized as follows. In Section 2, an overview of classification method CHRIPS
is presented. Section 3 presents hyperspectral datasets used to design and assess the CHRIPS method.
Section 4 presents pre-processings. In Section 5, all criteria used for the characterization of each
class are defined. In Section 6, a post-processing allowing the reduction of unidentified pixels is
presented. Section 7 explains how the CHRIPS method should be applied. In Section 8, CHRIPS
method is assessed on several hyperspectral images acquired with three different sensors at different
spatial resolutions and is compared with some widely used spectral classification methods. In Section 9,
main characteristics of CHRIPS are discussed. Finally, we give conclusion and highlight the potential
directions of future research work.

2. Overview of Classification Method Chrips

CHRIPS is a hierarchical classification method that can be applied on hyperspectral reflectance
images covering the spectral range [400–2500 nm]. For each class, a dedicated detection method
exploits specific spectral properties (specific absorptions or shape features) or spectral indices. CHRIPS
method identifies thirteen different classes that are gathered into four groups: dark surfaces, materials
with specific absorptions, vegetation and other types of surfaces (scattering surfaces). The class
assignment is hierarchical: classes are investigated one after the other in a given order. Class order is
defined by the complexity of class characterization. It allows to reduce the number of criteria that are
required to characterize each class. The ordered classes are given by the following list:

• dark surface

(1) dark green vegetation
(2) water
(3) unidentified dark surface

• material with specific absorptions

(4) plastic matter (aliphatic + aromatic)
(5) carbonate
(6) clay
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• vegetation

(7) dense green vegetation

(8) sparse green vegetation

(9) stressed vegetation

• classes with dedicated indices

(10) house roof/tile
(11) asphalt
(12) vehicle/paint/metal surface
(13) non-carbonated gravel

• unidentified

First of all, dark surfaces are identified: they are defined as surfaces for which reflectances are
very low in the SWIR range. They are also processed first because corresponding spectra are very
noisy and may check sometimes criteria of other classes. Secondly, materials with specific absorptions
are identified. They correspond to materials that present very local minima on spectral reflectance due
to electronic or vibrational processes [44]. For instance, reflectances of surfaces containing clay have a
local minimum around 2200 nm. Thirdly, vegetation classes are identified. They can be characterized
with dedicated indices [45] that highlight some bio-physical properties (chlorophyll content, water
content, stress, etc.) or geometric features (local maxima, etc.). In the end, the remaining classes
are more complex to describe—they do not exhibit any physical or observable features that make
it possible to characterize them. It is why they are processed after all other classes. We propose to
compute some combinations of indices in the same way as vegetation indices and that would be
dedicated to a given class.

These classes where chosen because they are often found in aerial images. Carbonate and clay
classes are less common but can still be observed in surfaces such as sand, limestone paths, clay soils
in agricultural fields, lithological formations, and so forth.

The classification process CHRIPS is based on a sequential tree of detection. Each class
is characterized with a few criteria and classes are ordered. The process of classification is as follows.
For each pixel, all criteria associated to class 1 are assessed. If all criteria are true, the pixel is considered
as belonging to class 1 and the process ends. If at least one criterion is false, the pixel does not belong
to class 1, criteria of class 2 are then assessed. The same process is conducted class after class. If at the
end, the pixel does not belong to any of the defined classes, it is considered as unidentified.

CHRIPS includes a reject class that reduces the risk of misclassification. In general, the reject
class includes spectra that do not correspond to any class of CHRIPS or correspond to mixed
spectra—depending on spatial resolution, many pixels may contain different materials or surfaces and
then a unique label could not be easily assigned to them (except in the case where a given class has
a large majority).

At the output of the CHRIPS method, a spatial regularization step is applied to possibly assign a
class to unclassified pixels. This processing is described in Section 6.

The full processing chain of CHRIPS is presented in Figure 2.
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Figure 2. Processing chain of CHRIPS (Classification of Hyperspectral Reflectance Images with Physical
and Statistical criteria) classification method. Atmospheric correction is not included: the input of the
processing chain is a reflectance image. The spectral range of input image needs to be [400–2500 nm]:
CHRIPS characterizes each class with criteria that use spectral bands in both VNIR and short-wave
infrared (SWIR) ranges.

CHRIPS class criteria only use spectral information—spatial dimension is not taken into account.
However, the regularization processing takes into account neighboring pixels. Otherwise, spatial
features are not used by CHRIPS criteria. Many machine learning methods, notably deep learning
methods, exploit spatial features and give quite accurate results. However, in practice, such spatial
features are hard to gather in hyperspectral images. Intraclass spatial information is sometimes
accessible but interclass spatial information is rarer. Currently, there is no database dedicated
to hyperspectral remote sensing which includes a lot of annotated data and then would make possible
to learn spatial features, on the contrary to many other types of images where deep learning could
be more easily applied: traditional color images, medical images, and so forth. Moreover, spatial
features are not very robust when changing spatial resolution: spatial characteristics at a given
resolution may be false at other resolutions and then may decrease classification performances and
transfer ability. Spatial features also depend on the layout of the landscape (different types of urban,
semi-urban, rural landscapes, etc.), while the CHRIPS method is developed to be as insensitive as
possible to this.

CHRIPS does not require exogenous data from the user—its only input is the hyperpectral
reflectance image. Some classical inputs such as the selection of training samples (for supervised
machine learning methods), the number of classes (for unsupervised methods) or the values
of thresholds (for metric-based methods) are not required. Each CHRIPS criterion depends on
thresholds for which robust values were estimated from training data and are proposed in this
paper, CHRIPS application is fully unsupervised. Moreover, CHRIPS criteria are designed to work
for several spectral resolutions, which make it possible to apply the method on images acquired with
different sensors.

CHRIPS could be applied for very different thematic applications: change detection (comparison
of classification maps between several dates), detection of plastic matter (garbage in uncontrolled
landfills, ocean waste plastic, synthetic structures, boats, etc.), identification of clay surfaces (study of
trafficability as clay may retain water), characterization of vegetation (agriculture, vegetation health,
trafficability, etc.), characterization of urban surfaces (roads, roofs, vehicles), and so forth. It could
also be used in the search for hydrocarbons (onshore oil spill, pipeline leak, etc.) as oil has the same
absorptions as plastic and could be detected with the same criteria.
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3. Datasets

3.1. Presentation of Hyperspectral Datasets

Eleven hyperspectral images acquired with four different sensors are used. These images are
used for the design of CHRIPS criteria (training) and for validation (test):

• five Odin images (training),
• two HySpex images : Fauga (training) and Mauzac (test),
• one HyMap image : Garons (test),
• three AisaFENIX images : surburban Mauzac (test).

Characteristics of these images are shown in Table 1. False color of all HySpex, HyMap and
AisaFENIX images are represented in Figure 3.

Fauga Mauzac Garons

Suburban Mauzac 0.55 m Suburban Mauzac 2.2 m Suburban Mauzac 8.8m

Figure 3. Three-band false color composite of HySpex images (Fauga, Mauzac), HyMap image (Garons)
and AisaFENIX images (suburban Mauzac). Images I2.2 and I8.8 are resampled at 0.55 m (nearest
neighbor) in order to make image views comparable.

3.1.1. Odin Images

Five hyperspectral images were acquired close to Toulon (France) with the Odin hyperspectral
sensor (Norsk Elektro Optikk) within the context of the Sysiphe Step 2 project, managed and funded
by the DGA. The Odin sensor provides 426 bands with a covering spectral coverage ranging between
423 nm and 2507 nm. The spatial resolution is 0.5 m. These images cover very different landscapes:
forest, sea, beach, urban area, parking lot, airport, harbour, and so forth.
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Table 1. Characteristics of hyperspectral images used in this paper: sensor used for acquisition, number
NI of images, number NS of spectral bands, mean value of full width at half maximum (FHWM) in
VNIR and SWIR ranges and spatial resolution.

FWHM FWHM Spatial
Sensor NI NS VNIR SWIR Resolution

HySpex 2 416 4 nm 6 nm 0.3 m
HyMap 1 125 15 nm 15 nm 4 m

Odin 5 426 4 nm 9 nm 0.5 m
AisaFENIX 3 420 3.5 nm 7.5 nm 0.55/2.2/8.8 m

3.1.2. HySpex Images

Two images of Fauga and Mauzac (France) were acquired by ONERA (Office National d’Etudes
et de Recherches Aérospatiales, The French Aerospace Lab) with the HySpex hyperspectral sensor
(Norsk Elektro Optikk [46]) within the context of the Hypex project, managed and funded by the
DGA (Direction Générale de l’Armement). The HySpex sensor is composed of two cameras—a VNIR
camera and a SWIR camera. The VNIR camera (VNIR-1600) provides 160 bands with a spectral
coverage ranging from 415 nm to 992 nm. The SWIR camera (SWIR-320m) provides 256 bands with
a spectral coverage ranging from 967 nm to 2500 nm. Spatial resolution was 0.3 m for VNIR images
and 0.6 m for SWIR images. SWIR images were oversampled at 0.3 m and registered on VNIR images
in order to obtain hyperspectral images covering the spectral range [415–2500 nm] with the same
spatial resolution. Both images cover parts of the villages of Fauga and Mauzac, South-West of France.
They gather vegetation (trees, grass), houses, road, limestone paths, vehicles, plastic matter (tarpaulin,
canopy/pergola, garbage bags, etc.).

3.1.3. HyMap Image

The HyMap sensor provides 125 bands with a spectral coverage ranging between 454 nm and
2496 nm. A hyperspectral image was acquired over the agricultural site of Garons (France) in August
2009. The flight was operated by the Deutschen Zentrum für Luft- und Raumfahrt (DLR, German
Aerospace Agency) during an ONERA campaign. The spatial resolution is 4 m per pixel. This image
gathers several vegetation types and cultures: vineyards, orchards (peach, kiwi, apricot), market
gardening (zucchini), meadows, forest, clay soils. It also contains greenhouses (plastic matter), roads,
limestone paths, rivers and sparse houses.

3.1.4. AisaFENIX Images

A hyperspectral image was acquired by ONERA over a suburban area of Mauzac,
a village in South-West of France, with the AisaFENIX sensor (Specim, Spectral Imaging Ltd,
http://www.specim.fi). The AisaFENIX sensor provides 420 bands in the spectral range [382–2502 nm].
In order to assess the impact of spatial resolution on classification performances, three hyperspectral
images of a suburban area of Mauzac (France) with different spatial resolutions are considered: 0.55 m,
2.2 m and 8.8 m. For convenience, images are denoted I0.55, I2.2 and I8.8 and corresponding ground
truth are denoted G0.55, G2.2 and G8.8 (see Section 3.3 for details on the process of creating the ground
truth). The image I0.55 was acquired with the hyperspectral sensor AisaFENIX. Images I2.2 and I8.8

were simulated using a dedicated processing chain [47]. A first atmospheric correction is applied to
airborne radiance using the COCHISE code (atmospheric COrrection Code for Hyperspectral Images
of remote SEnsing sensors [48,49]). COCHISE retrieves the surface spectral reflectance as well as the
water vapor content from a sensor-level radiance image. It removes atmospheric and environment
effects. The atmospheric radiative parameters are computed using MODTRAN 5 [50]. Spectral
reflectances are resampled to the same spectral resolution (3.5 nm in VNIR and 7.5 nm in SWIR). Then,

http://www.specim.fi
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satellite simulated radiance is computed with the Comanche code [48]. Spatial aggregation, noise
and point spread function are applied following the specifications of the future hyperspectral satellite
Hypxim [51]. Finally, reflectance spectra are retrieved using COCHISE.

3.2. Selection of Training Samples

CHRIPS method sorts the pixels into thirteen different classes as described in Section 2. For each
class, criteria are defined from a set S1

ρ of reflectance spectra that are used as training samples: S1
ρ

gathers around 9500 reflectance spectra. These training samples are extracted from a dataset SI
composed of the six following hyperspectral images: Fauga (HySpex) and five Odin images (more
details in Section 3.1) that were interpolated at HySpex spectral bands (spectral resolution of 4–6 nm).

These samples aim to cover as much spectral variability as possible for each class and to allow the
design of criteria that are as robust as possible. The sample collection has been enriched several times
by iterating the following process:

– design of optimal CHRIPS criteria from the training samples S1
ρ (see Section 5)

– application of CHRIPS on the set of images SI

– identification of misclassified pixels
– update of S1

ρ : addition of new training samples from misclassified pixels

Depending on the spectral variability of each class and the discriminating power of CHRIPS
criteria, the number of training samples varies from class to class: dark green vegetation (240 spectra),
water(400) unidentified dark surface (350), plastic matter (aliphatic and aromatic: 510), carbonate (250),
clay (210), dense green vegetation (630), sparse green vegetation (660), stressed vegetation (940), house
roof/tile (1230), asphalt (800), vehicle (3030), non-carbonated gravel (250).

Spectral resolution of sensors may have an impact on criteria robustness, especially for classes
with specific absorption bands. Indeed, depth of absorption bands may be reduced for spectral
resolutions higher than HySpex and then thresholds may vary depending on spectral resolution.
All spectral reflectances from S1

ρ are downsampled at HyMap spectral resolution (15 nm) and then
resampled at HySpex resolution (4–6 nm): these resampled spectra are gathered in a set denoted S2

ρ.
The final set of training samples Sρ is obtained by bringing together S1

ρ and S2
ρ (19,000 spectra). This

process allows to take into account reflectance spectra at HySpex spectral resolution as well as smooth
reflectance spectra acquired with sensors having a lower resolution than HySpex during the process of
threshold estimation (see Section 5.1).

It was preferred to use spectral reflectances acquired from images as training samples, even
though they may be contaminated by errors due to imperfect atmospheric correction, rather than
ground measurements. Indeed, ground measurements raise the problem of scaling when they are
transposed to airborne data. Local measurements need to be aggregated taking into account many
parameters such as the three-dimensional structure of materials, the spectral variability and spatial
distribution of its constituents, and so forth. Modelling remote sensing spectra is then a very complex
task that varies from class to class and may introduce inaccuracies. In addition, spectral variability is
easier to take into account with spectra extracted from images than with ground samples alone.

Quality of reflectance spectra acquired from hyperspectral images highly depends on radiometric
correction and atmospheric correction. These processings were carried out carefully for all images
from dataset SI . Radiometric calibration based on laboratory measurements is supplemented by an
in-flight calibration correction using reference panels placed on the flight line.

3.3. Images and Ground Truth Used for Assessment

Some classical images such as Pavia University and Pavia Center are often used to assess
classification algorithms. However, these images were acquired with the Reflective Optics System
Imaging Spectrometer (ROSIS-03) optical sensor and have a spectral coverage ranging from 430 to
860 nm. The CHRIPS method mainly uses SWIR spectral bands and then cannot be applied to these
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images. Another often used image is the agricultural Indian Pine test site (Indiana, USA) acquired
with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Ground truth in this image only
focuses on vegetation and is not suitable for the assessment of CHRIPS. The following hyperspectral
images are used for assessment:

• Fauga (HySpex)
• Mauzac (HySpex)
• Garons (HyMap)
• suburban Mauzac (AisaFENIX): images I0.55 (0.55 m), I2.2 (2.2 m) and I8.8 (8.8 m)

Further details on images are provided in Section 3.1. Some training samples come from the Fauga
image. No training samples are extracted from Mauzac, Garons and surburban Mauzac images.

Campaigns were conducted to collect ground truth for all these images (measurements of
reflectance spectra and visual recognition). For each image, a ground truth map was initialized
by combining classification maps of CHRIPS and two other methods that are also used for assessment
(SVM [18] and CNN-1D [26], see Section 8.1) with a majority vote. This ground truth map was then
modified by using in situ knowledge (around 80% of ground truth was seen during campaigns) and
visual inspection over hyperspectral images. Reflectance spectra are also used to suppress doubtful
areas, especially for plastic, clay soils and carbonated surfaces.

For the images on suburban Mauzac, ground truth map G0.55 is established from I0.55. Ground
truth maps G2.2 and G8.8 are obtained by downsampling G0.55. Each pixel of G2.2 is associated to
42 = 16 pixels in G0.55. Each pixel of G8.8 is associated to 162 = 256 pixels in G0.55. As pixels in
image I2.2 may contain several classes, each pixel from ground truth G2.2 is assigned the majority class
among G0.55 pixels associated to this pixel if this one exceeds 50%, and the unidentified class otherwise.
The same process is applied to compute G8.8.

4. Pre-Processing: Correction of Spectral Data

Three pre-processings are applied to each airborne hyperspectral image presented in Section 3.1:
atmospheric correction, noise reduction and spectral interpolation. They also need to be applied on
every hyperspectral image for which CHRIPS method is applied.

4.1. Atmospheric Correction

Reflectance can be estimated from hyperspectral radiance images by applying atmospheric
correction methods based on radiative transfer codes [48,52–56]. In this paper, all HySpex, Odin and
AisaFENIX hyperspectral images were corrected with the COCHISE code [48]. The Garons image
(HyMap sensor) was corrected by the DLR. As some noise may be present on reflectance spectra after
atmospheric correction, a smoothing processing is proposed in next section to reduce its effects.

4.2. Smoothing of Reflectance Spectra

In order to reduce the noise in reflectance spectra without removing the information of interest,
two different filterings are considered. For classes with specific absorptions (plastic matter, carbonate,
clay), a bilateral filtering [57] is applied. It allows to reduce the noise while preserving absorptions.
For other classes, a Gaussian filtering is applied. ρλ designates reflectance at spectral band λ of a given
pixel. Application of bilateral filtering and Gaussian filtering on ρλ provides filtered reflectances ρB

λ

and ρG
λ:

ρB
λ =

∑
s

F(ρλ − ρs, σ1) F(λ− s, σ2) ρs

∑
s

F(ρλ − ρs, σ1) F(λ− s, σ2)
and ρG

λ =
∑
s

F(λ− s, σ3) ρs

∑
s

F(λ− s, σ3)
, (1)
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where F(r, σ) = 1
σ
√

2π
e−

r2

2σ2 , σ1, σ2 and σ3 define the filtering extension, and s describes the central
values of spectral bands. Several tests on data led us to use the following values: σ1 = 0.01, σ2 = 2 and
σ3 = 2.

Two hyperspectral images are created: an image IB from bilateral filtering and an image IG

from Gaussian filtering. CHRIPS criteria are applied to IB for classes associated with materials with
specific absorptions because it is crucial to preserve the absorptions. For other classes, the CHRIPS
method is applied to IG because the Gaussian filter allows a better attenuation of the noise. In practice,
CHRIPS method classifies each pixel p by following the order of the classification tree described in
Section 2. For notation, ρG and ρB are respectively the spectral reflectances of pixel p in IG and IB. First,
criteria of dark green vegetation class are applied to ρG (no specific absorption for this class). If these
criteria are not checked, criteria of water class are applied to ρG (no specific absorption for this class).
If these criteria are not checked, criteria of unidentified dark surface class are applied to ρG (no specific
absorption for this class). If criteria are not checked either, criteria of plastic matter class are applied to
ρB (it is a class with specific absorptions). This process is followed class after class by using either ρG or
ρB depending on the class being investigated.

4.3. Interpolation of Reflectance Spectra

As CHRIPS criteria associated to each class are defined from HySpex spectral bands (spectral
resolution of 4–6 nm), each reflectance spectrum needs to be interpolated on these bands. A simple
linear interpolation is applied to images IB and IG that were computed in the previous step.

Spectral resolution may have an impact on CHRIPS criteria, especially on depth of specific
absorption bands. In order to minimize potential problems, as explained in Section 3.2, spectral
resolution is taken into account in the design of criteria: associated thresholds are estimated from
training samples that are sampled at different spectral resolutions.

5. Definition of Chrips Criteria

In this section, all criteria used to characterize each CHRIPS class are defined. These criteria
are designed from the observation of physical and statistical features. They are supplemented by
additional criteria for the reduction of false detections. Classes are grouped into four categories:

• dark surface (dark green vegetation, water, unidentified dark surface)
• material with specific absorptions (plastic matter, carbonate, clay),
• vegetation (dense green, sparse green, stressed),
• classes with dedicated indices (house roof, asphalt, vehicle, non-carbonated gravel).

Criteria dedicated to each category are described in the Sections 5.2–5.5. The process of threshold
estimation is presented in Section 5.1.

It is important to note that criteria and associated thresholds provided in this paper can be directly
used to classify any hyperspectral reflectance image: no more training is needed. Nevertheless, some
specific thresholds can be tuned by the user depending on his needs and specificities of the studied
image: more details are given in Section 7. In the following, ρλ designates reflectance at spectral
band λ.

5.1. Threshold Estimation

All CHRIPS criteria depend on thresholds that are estimated from the set of training samples Sρ

(see Section 3.2). This section describes the process of threshold estimation for dark surfaces, materials
with absorption and vegetation classes. For classes with dedicated indices, the process of threshold
estimation is described in Section 5.5.

Let us consider a given class k that needs to be discriminated from all other classes. The training
samples set Sρ is divided into two separate sets: a set S1 containing spectral reflectances of the class k
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and a set S2 containing spectral reflectances of other classes. The characterization of class k exploits
several criteria, each criterion being associated to a specific threshold. Let us consider all the criteria Ci

of class k and its corresponding thresholds Ti. For notation, Ci
n is the set of all Ci values computed

from Sn, n = 1, 2 and Ci
n is the mean value of Ci

n.
It is important to minimize the dependency between criteria and then between thresholds. Indeed,

if a user wants to modify some thresholds according to his needs (see Section 7), he can expect the
impact of his modifications, which would not be the case if the thresholds were too dependent on each
other. For this reason, the thresholds are not estimated simultaneously but sequentially.

All thresholds Ti are set up with initial values Ti
0 chosen by visual inspection of samples available

in S1 and S2. The estimation process is iterative: each iteration is composed of four successive steps.

– Random selection of a criterion Cj among all criteria Ci.
– Random selection of a set of M real values αm, m = 1. . . M, in the range [0,1]. Typically, M = 10.

– Computation of new values for threshold T j, noted T j
m, m = 1. . . M. T j

m values are located between

centers of sets Cj
1 and Cj

2: T j
m = αmCj

1 + (1− αm)C
j
2.

– Computation of classification performances. All criteria Ci are applied on S1 and S2 by varying
T j

m values, m = 0. . . M. For mth run, T j = T j
m and Ti = Ti

0 for i 6= j. The retained threshold T j
m is

the one that minimizes the number of misclassifed samples. T j
0 is updated with this value.

The process loops until the number of misclassified spectra does not change anymore or until
a maximum number of cycles. For each class, several hundreds of runs were launched. The set
of estimated thresholds allowing the best classification performances was retained. If most thresholds
are estimated with the process described above, a few thresholds were also estimated by trial and error:
they are mainly associated to additional criteria used to reduce false detections.

5.2. Dark Surfaces

5.2.1. Dark Green Vegetation

When vegetation is shadowed, its spectral reflectance decreases, even more as wavelength
increases. The spectrum is then highly contaminated by noise, even after smoothing, and its shape is
modified. However, the red-edge can still be observed for green vegetation (see Figure 4).
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0.05
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green tree
green grass
green grass

Figure 4. Reflectance spectra of shadowed green vegetation (grass + trees). Reflectances are smoothed
with Gaussian filtering.
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The following criteria need to be fulfilled:

• The NDVI index [36], related to chlorophyll content, is high enough (typically above 0.3):
NDVI = (ρ800 − ρ650)/(ρ800 + ρ650) > Ta1.

• Reflectance after red-edge is not very low: ρ800 ≥ Ta2.
• Reflectance is low in the SWIR range: ρ1650 ≤ Ta3, ρ2200 ≤ Ta4.

The following threshold values were estimated with the process described in Section 5.1: Ta1 = 0.3,
Ta2 = 0.03, Ta3 = 0.10, Ta4 = 0.05.

5.2.2. Water

Spectral reflectance of water may vary a lot depending on conditions : purity, depth (underlying
soil likely to be observed), and so forth. From the set of images SI used for training, water reflectance
spectra were selected from swimming pools, sea, harbour, river, and so forth (see Figure 5). Note that
water observed under specular conditions is not included in this class because its spectral variations
may differ a lot.

500 1000 1500 2000 2500Wavelength (nm)
0.00

0.02
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river water
swimming pool water (r x 0.5)
harbour water
sea water

Figure 5. Reflectance spectra of water. Reflectances are smoothed with Gaussian filtering. Dashed
vertical lines delimit the spectral range [470–600 nm] in which the maximal reflectance ρ∗ lies.

Several criteria were designed on different spectral ranges.

• Reflectance is very low in the SWIR range:
ρ1200 ≤ Tb1, ρ1600 ≤ Tb2, ρ2200 ≤ Tb3.

• In VNIR range, maximal reflectance ρ∗ is located in the range [470–600 nm]:
ρ∗ = max

470≤λ≤600
ρλ = max

400≤λ≤1000
ρλ

• ρ∗ is significantly higher than reflectance in the range [800–850 nm]:
min

800≤λ≤850
(ρ∗ − ρλ)/(ρ∗ + ρλ) ≥ Tb4

The following thresholds values were estimated with method described in Section 5.1: Tb1 = 0.09,
Tb2 = 0.08, Tb3 = 0.06, Tb4 = 0.4.
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5.2.3. Unidentified Dark Surfaces (Shadowed Surfaces. . . )

This class includes dark surfaces that are not identified as vegetation or water. It mainly contains
shadowed surfaces (see Figure 6). Its criteria and associated thresholds are the same as the ones defined
for water in the SWIR range : ρ1200 ≤ Tc1, ρ1600 ≤ Tc2, ρ2200 ≤ Tc3, with Tc1 = 0.09, Tc2 = 0.08,
Tc3 = 0.06. This class may appear fuzzy but it should be distinguished from the unidentified class.
Some dedicated processing could be applied afterwards in order to better characterize the pixels
included in this class. For example, some spatial processing using spectral similarity could be applied
to identify shadowed surfaces: these ones are very likely to belong to the same class as neighboring
unshadowed pixels.

500 1000 1500 2000 2500Wavelength (nm)
0.00

0.01
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shaded asphalt
shaded dry meadow

Figure 6. Reflectance spectra of dark surfaces. Reflectances are smoothed with Gaussian filtering.

5.3. Classes with Specific Absorptions

Some materials have specific absorptions at given wavelengths due to electronical and vibrational
processes [44]. The identification of these absorptions in the observed reflectances can thus make
it possible to go back to the composition of the material. In this section, we focus on three types of
materials that are often observed in hyperspectral images: plastic matter, carbonate and clay.

5.3.1. Plastic Matter

Plastic matter gathers compounds synthesized from hydrocarbonaceous material: plastic, nylon,
vinyl, polyester, and so forth. Two main compounds can be observed: aliphatic compounds and
aromatic compounds. Aliphatic compounds have significant absorptions around 1730 nm and around
2300–2310 nm. For aromatic compounds, significant absorptions can be observed around 1670 nm,
2140 and 2320 nm [58]. These absorptions can be very sharp (see absorption at 1730 nm and 2310 nm
for the tarpaulin in Figure 7) or quite smooth (see absorption at 1670 nm of truck capote reflectance
in Figure 8). They can also be expressed by a significant decrease of the reflectance (see reflectance
around 2200–2300 nm in Figures 7 and 8. Note that some materials such as fiberglass or rubber exhibit
absorptions at the same spectral bands and will be detected in the same way.

Several approaches are possible to detect these absorptions. For example, a dedicated index [59]
can be computed to detect the absorption at 1730 nm. An approach often used to detect absorptions
in a spectrum is to remove its continuum [60]. The spectral continuum Cλ is defined as the convex
envelope of the upper part of the spectral reflectance ρλ, connecting the local maxima with segments.
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Figure 7. Reflectance of a tarpaulin covering a swimming pool (reflectance × 1.4). Sharp aliphatic
absorptions around 1730 nm and 2300 nm are observed. Segments are drawn in red. The ratio between
reflectance and segment is shown in green. Dash lines delimit the spectral range where the minimum
value of the ratio is computed.
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Figure 8. Reflectance of linoleum (on the left, reflectance× 3) and truck capote (on the right, reflectance
× 1.4). Aromatic absorptions are observed around 1670 nm, 2140 nm and 2300. Segments are drawn in
red. The ratio between reflectance and segment is shown in green. The absorptions are less pronounced
for truck capote than for linoleum

The reflectance after removal of the continuum is the ratio ρλ/Cλ. This ratio highlights the local
absorptions of ρλ. The method we propose to detect absorptions is similar to those implemented
in Tetracorder [34] and Hysoma [35] that are dedicated to minerals: wavelengths associated to the
segments ends are fixed. For each absorption, some reference wavelengths are fixed before (λ1) and
after (λ2) the absorption. The segment sλ connecting ρλ1 and ρλ2 is computed:

sλ = ρλ1 + (ρλ2 − ρλ1)(λ− λ1)/(λ2 − λ1). (2)

The proposed criterion for deciding whether an absorption exists is to compute the minimum
value of the ratio ρλ/sλ in a given spectral range [λ3, λ4] that is included in [λ1, λ2], and to assess if it
is below a given threshold T:

min
λ3≤λ≤λ4

ρλ/sλ < T. (3)

This criterion indicates if a local minimum or a local decrease of reflectance exists between λ3 and
λ4. It is then defined by a 5-uplet U = {λ1, λ2, λ3, λ4, T}.
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For aliphatic derivatives, two criteria are defined with the following 5-uplets:

• U1 = {1660, 1760, 1700, 1740, Td1}, Td1 = 0.93,
• U2 = {2200, 2360, 2290, 2320, Td2}, Td2 = 0.92.

For aromatic derivatives, the same process is applied for three different absorptions. The
corresponding 5-uplets are:

• U3 = {1630, 1760, 1650, 1710, Td3}, Td3 = 0.93,
• U4 = {2060, 2200, 2110, 2160, Td4}, Td4 = 0.92,
• U5 = {2200, 2360, 2310, 2330, Td5}, Td5 = 0.92.

For the classification purpose, aliphatic derivatives and aromatic derivatives are fused into a same
class named plastic matter but it is possible to separate them.

In order to exclude pixels with very low reflectance values and that are not detected as dark
surfaces, the following criterion is added: ρ1660 + ρ1760 + ρ2200 + ρ2360 ≥ Td6, with Td6 = 0.12.

5.3.2. Carbonate

Carbonate has several absorptions, including a dominant absorption between 2300 nm and
2350 nm (see Figure 9). It can be found in limestone rocks, limestone paths and in very
variable proportions in sand. Tetracorder [34] and Hysoma [35] allow accurate identification and
characterization of carbonate species. CHRIPS proposes simplified criteria that allow carbonate
detection without discriminating species. The following criteria are used:

• The reflectance highly decreases between 2250 and 2310 nm: ρ2250 − ρ2310 > Te1

• Reflectance has a local minimum around 2320–2350 nm:
min

2320≤λ≤2350
ρλ = min

2250≤λ≤2400
ρλ

• The reflectance of the local minimum is significantly below reflectances from before and after:
max

2250≤λ≤2320
ρλ − min

2320≤λ≤2350
ρλ > Te2

max
2350≤λ≤2400

ρλ − min
2320≤λ≤2350

ρλ > Te3
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Figure 9. Reflectances (from HySpex images) of surfaces containing carbonate. Reflectance decreases
along 2200–2300 nm and has a local minimum around 2340 nm: this property is used for detection.

By applying above criteria, two main sources of false alarms may occur. The first source is related
to low reflectance levels that may be highly contaminated by noise. The second source is related
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to green vegetation. In order to reduce as much as possible these false alarms, the two following
criteria are added:

• Reflectance level is not highly contaminated by noise:
min

2250≤λ≤2400
ρλ > Te4

• The NDVI index related to green vegetation (chlorophyll content) is low:

NDVI < Te5

The following threshold values were estimated with the process described in Section 5.1:
Te1 = 0.03, Te2 = 0.12, Te3 = 0.04, Te4 = 0.12, Te5 = 0.25.

5.3.3. Clay

Clay exhibits a main specific absorption around 2200 nm (see Figure 10). Some indices could be
computed to help their characterization [61] but the tuning of thresholds is not an easy task. In CHRIPS
method, the following criteria are computed to detect clay:

• Reflectance has a local minimum close to 2200 nm:
min

2195≤λ≤2220
ρλ = min

2180≤λ≤2230
ρλ

• The difference of reflectance between the local minimum and neighboring reflectances is high
enough:

max
2180≤λ≤2195

ρλ − min
2195≤λ≤2210

ρλ > Tf 1

max
2210≤λ≤2230

ρλ − min
2195≤λ≤2210

ρλ > Tf 2.

500 1000 1500 2000 2500
Wavelength (nm)

0.0

0.1

0.2

0.3

0.4

0.5

R
e
fl
e
c
ta

n
c
e

Figure 10. Reflectance of sand containing clay. A local minimum can be observed around 2200 nm.

The following threshold values were estimated with the process described in Section 5.1:
Tf 1 = 0.008 and Tf 2 = 0.5 Tf 1. These thresholds are low because clay absorption is often quite weak.
This low level is subject to noise effects—the bilateral filtering performed during pre-processing (see
Section 4) enables to reduce such problems. As the full computation of CHRIPS criteria for all classes
is quite fast, the user has the possibility of tuning some parameters when the observed performances
do not seem accurate enough—more details are provided in Section 7. For clay, thresholds Tf 1 and
Tf 2 could be slightly changed depending on the signal-to-noise and the spectral resolution around
2200 nm of the studied image. Using a continuum removal method as the one used for plastic matter
does not perform well for clay because thresholds are very difficult to fix—spectral positions of the
borders of absorption may slightly move depending on surface constituents.
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5.4. Vegetation

Vegetation has been longly investigated with hyperspectral remote sensing and many vegetation
indices have been developed [45]. Such indices could be used to detect and characterize vegetation
but thresholding is not an easy task and may be different from an image to another. Spectral reflectance
of vegetation have recognizable geometric patterns. Due to chlorophyll content, reflectance is very
low in the visible spectral range [450–650 nm] and is characterized by a sharp increase in the range
[680–760 nm] named red edge. This reflectance increase can be characterized with the NDVI index [36].
Moreover, reflectances of healthy green and stressed vegetation have the same overall behavior in SWIR
range—parabolic variation between 1500 nm and 1760 nm with a local maximum close to 1660 nm.
A local maximum close to 2210 nm is also observed (see Figure 11). These properties will be used to
detect vegetation.
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Figure 11. Reflectance of vegetation. Depending on the type of vegetation, reflectance is highly variable
before 1200 nm. However, spectral variations become similar after 1500 nm, where chlorophyll does
not have an optical impact anymore: reflectance is parabolic between 1500 nm and 1750 nm, with a
local maximum around 1660 nm. Reflectance also has a local maximum around 2200 nm.

Three thresholds on NDVI are used: Tg1 (stressed vegetation), Tg2 (sparse green vegetation) and
Tg3 (dense green vegetation). The following values are proposed and are used in this study: Tg1 = 0.15,
Tg2 = 0.50, Tg3 = 0.65. Note that the user may change these thresholds depending on his needs (see
Section 7). The criteria dedicated to vegetation characterization are:

• NDVI is above a given threshold: NDVI > Tg1. Tg1 is related to stressed vegetation.
• Reflectance in blue channel is below reflectance in green and red channels:

ρ450 < ρ550 and ρ450 < ρ650

• Reflectance has a local maximum close to 2210 nm (see CAI index [38]):
max

2200≤λ≤2230
ρλ = max

2100≤λ≤2310
ρλ

• Reflectance has a local maximum close to 1660 nm (see NDNI index, [62]): max
1640≤λ≤1670

ρλ =

max
1520≤λ≤1760

ρλ.

• Reflectance is parabolic between 1520 and 1760 nm. Let us note ρ∗ = max
1640≤λ≤1670

ρλ. Reflectance

is locally modelled as ρλ = ρ∗ + a(λ − 1660)2. The parameter a is estimated by minimizing
|ρλ− ρ∗|/(λ− 1660)2 with least square minimization for λ ranging between 1520 nm and 1760 nm.
The analysis of many vegetation reflectances led to the following criterion:
a < −8ρ∗

• Some false detections with house roofs (possible presence of lichen or moss) made us addying
another criterion: ρ∗λ/ρ1300 < 1.1.
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If all these criteria are true, the pixel is identified as vegetation. Then, another process is
performed to determine if it corresponds to dense green vegetation, sparse green vegetation or
stressed vegetation. For dense green vegetation, a high threshold on NDVI is applied and reflectance
in green channel is maximal in visible range (see spectral indices BRI, RGI and BGI [63] related to
plants pigments contents):

– NDVI ≥ Tg3,
– ρ550 > ρ450,
– ρ550 > ρ650.

If the reflectance does not belong to the dense green vegetation class, two choices are possible:
if NDVI > Tg2 and ρ550 > ρ450, the sparse green vegetation class is assigned. If not, the stressed
vegetation class is assigned.

5.5. Definition of New Indices for the Remaining Classes

5.5.1. Methodology

The concept is to create indices that may discriminate a given class among all other classes. These
indices have the generic formulation:

I =
ρλ1 + a2 ρλ2 + a3 ρλ3

ρλ4 + a5 ρλ5 + a6 ρλ6

, (4)

where λ1, λ2, λ3, λ4, λ5 and λ6 are spectral bands, a2, a3, a5 and a6 are scalars. The idea is to combine
spectral information in order to highlight characteristics of the studied class.

Different phenomena can induce a decrease in the average level of reflectance. Surfaces with
different inclinations do not receive the same amount of radiation per surface unit: it has an impact
on the amplitude of apparent reflectance, that is, the reflectance obtained assuming that the received
radiation per surface unit is homogeneous, but not on the relative spectral variations (see Figure 12).
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Figure 12. Two sides of a sunlit roof do not receive the same amount of radiation per unit area. This
results in a difference that can be significant on the apparent reflectance but does not modify the relative
spectral variations. After normalization with the quadratic norm, reflectances become very similar.
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A pixel consisting of the linear mixture between a material M and a dark surface (or even a flat
spectrum, such as a tarred coating) reveals a reflectance having the same spectral variations as the
material M but with a lower amplitude. Shadows can also reduce the observed reflectance. The use of
a ratio in the definition of the index makes it possible to compensate the amplitude of the reflectance
and thus to focus on the relative spectral variations. It also reduces the variability of reflectance spectra
that are used to compute these indices and then makes the process easier and more accurate.

The search for discriminating indices is composed of three successive steps—the selection of
learning samples, the selection of input parameters and the search for the most discriminating indices.
These steps are described below.

Step 1: Selection of learning samples

In order to compute the indices, two sets of spectral reflectances need to be built—on one hand,
a set S1 containing spectral reflectances of the class we want to characterize, and on another hand
a set S2 containing spectral reflectances of other classes. These spectra are extracted from the set Sρ

presented in Section 3.2. S1 needs to be as exhaustive as possible to represent the spectral variability of
the class. S2 also needs to be exhaustive as much as possible. Indeed, some omissions may lead to
false alarms. The greater the spectral variability of the set S2 is, the more robust the indices are likely
to be but the more complex the search for discriminating indices is. Then, a trade-off has to be made
when selecting samples in set S2. It should include reflectances associated with classes that are not still
characterized. As the classification process is sequential, classes that were already tested before (dark
surfaces, surfaces with specific absorptions, vegetation) do not need to be discriminated with the class
described in set S1. However, adding some of their reflectance spectra in S2 could increase spectral
variability and exhaustivity of set S2 and then could be considered.

Step 2: Selection of input parameters

• Spectral bands λ1, λ2, λ3, λ4, λ5, λ6 are randomly selected in a discrete set Λ. As spectral
reflectance slowly varies outside the absorption bands, spectral bands can be chosen sparsely in
the spectral range. Moreover, gas absorption bands are removed. Typically, the following set of
spectral bands could be used (expressed in nanometers):
Λ = {450, 500, 550, 600, 650, 750, 800, 1000, 1100, 1250, 1550, 1650, 1750, 2150, 2250, 2350}.

• A range of possible values for a2, a3, a5 and a6 must be selected. After several tests, the following
discrete set of values leads to satisfactory results:
A = {−2,−1.5,−1,−0.5,−0.3, 0, 0.3, 0.5, 1, 1.5, 2}.

• The number N of indices used to characterize a class is also a parameter. Typically, N varies
between 3 and 10. Practically, this parameter is not fixed at the beginning of the process.
Depending on the discriminant power of estimated indices, more or less indices are computed.

• For each n between 1 and N, the maximum percentage Pn of samples from set S2 not being
discriminated after using the indices I1. . . In must be indicated. For three indices, for example,
the following values can be chosen: P1 = 30, P2 = 10 and P3 = 0. This means that after using the
first index I1, we tolerate that a maximum of 30% of the samples from set S2 are not discriminated.
After using indices I1 and I2, a maximum of 10% of samples from S2 are not discriminated. After
using the indices I1, I2 and I3, all the samples from set S2 are discriminated.

Note that all parameters from step 2 may be changed depending on the performances of
discrimination of indices. The process is quite fast and then each parameter can be tuned to improve
results or help the convergence. Notably, several values of parameters Pn may be tested before reaching
satisfactory results.



Remote Sens. 2020, 12, 2335 20 of 39

Step 3: Search for indices In

• Spectral bands λ1, λ2, λ3, λ4, λ5, λ6 are randomly drawn in the set Λ with constraints λ1 6= λ2 6=
λ3 and λ4 6= λ5 6= λ6.

• Coefficients a2, a3, a5, a6 are randomly drawn in the set A.
• The index In is computed for all samples from sets S1 and S2 from the Equation (4) with spectral

bands λi and coefficients ai, leading to the sets of values I1
n and I2

n.
• The minimum value Smin and the maximum value Smax of I1

n are identified.
• Indices in the set I2

n that are not between Smin and Smax are discriminated.

– If the percentage of undiscriminated samples from I2
n is higher than Pn, the index In is not

discriminant enough and is not retained. Another index In will be computed.
– If the percentage of undiscriminated samples from I2

n is lower than Pn, the index In is
satisfactory and is retained. The samples from set S2 that are discriminated by In are
suppressed from S2. Next index In+1 will be searched for by considering the set S1 and
the reduced set S2.

The final number of remaining elements from S2 is generally not zero. Indeed, if some elements
from S2 are very similar to some S1 elements, they will need additional specific indices to discriminate
them: it can lead to the computation of too many indices that may lack generalization when used with
different images. Step 3 is illustrated in Figure 14 for the class house roof/tile.

When samples from set S1 are very heterogeneous like in the vehicle class, the search for
discriminating indices may be quite difficult. To make the search easier, we propose to suppress
extreme values of computed indices from S1. A tolerance factor K is used, typically K = 3%. For each
index In, K% of smallest and highest values of In are removed for the computation of Smin and Smax.

Moreover, in order to make the indices more robust and to take into account the fact that the
samples used to characterize the set S1 may be not exhaustive, we introduce a margin M on the
thresholds Smin and Smax:

S∗min = Smin −M(Smax − Smin),
S∗max = Smin + M(Smax − Smin).

Typically, a value of 10% for M is used. S∗min and S∗max are used instead of Smin and Smax.

5.5.2. Application

The methodology was applied for the following classes: house roof/tile, asphalt,
vehicle/paint/metal surface, non-carbonated gravel. Notation for thresholds associated to index
In is Σn = {S∗min, S∗max}. It is important to note that these thresholds are estimated once for all and can
be directly used for image classification: additional training is not necessary.

(a) House roof/tile

Roof tiles generally contain iron oxides. Iron oxide presents smooth absorptions in VNIR
range [64]—such information is useful for characterizing this material but is not sufficient to build
a robust criterion. Moreover, the class house roof/tile is more general and cannot be characterized
with criteria dedicated to iron oxide alone. The computation of dedicated indices is performed for this
class. A selection of spectral reflectances from sets S1 and S2 are shown in Figure 13. Application of
the process is illustrated in Figure 14.
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Figure 13. Selection of reflectances from sets S1 (blue) and S2 (red) used to compute indices dedicated to
the characterization of the class house roof/tile , and corresponding normalized reflectances (quadratic
norm). S1 is composed of the selection of 1230 reflectances that have been selected from set Sρ. Likewise,
the set S2 includes 3500 reflectances from Sρ with very different classes: roads, trucks, cars, soils, sand,
plastic matter, green vegetation, stressed meadow.
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Figure 14. Successive values of indices I1, I2, I3 and I4 computed to characterize the class house
roof/tile . Samples from set S1 and set S2 are respectively drawn in blue and red. A margin of 10% is
chosen for every index: thresholds S∗min and S∗max are represented with dash lines. Index In is computed
for all samples of S1 and for remaining samples from S2 after discrimination from indices I1 . . . In−1.
Values of horizontal axis are meaningless: each sample is drawn at a different abscissa. The number of
samples in set S1 is 1230. Initial number of samples in S2 is 3500. The number of remaining samples in
S2 after computation of each index is 383 (after I1), 67 (after I2), 30 (after I3) and 2 (after I4). The search
for indices was stopped with indice I4. Indeed, the remaining spectra are very similar and may have
similar composition. It is preferred to stop the process rather than reducing the generalization power
of the computed indices.
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Characterization of this class requires the computation of the four following indices:

I1 =
ρ650 − 2 ρ500 + ρ1550

ρ1720 − ρ450 + ρ1050
, Σ1 = {0.54, 0.78}

I2 =
ρ1550 − 0.5 ρ1720 − 2 ρ2300

ρ1660 − 2 ρ2200 + 0.5 ρ500
, Σ2 = {1.04, 1.87}

I3 =
ρ1660 − 2 ρ1050

ρ1720 + ρ900 − ρ700
, Σ3 = {−1.40,−0.19}

I4 =
ρ1720 − ρ1610 + 0.5 ρ900

ρ900 + 0.5 ρ2300 − 0.5 ρ2200
, Σ4 = {0.40, 0.70}.

(b) Asphalt

The following five indices allow the characterization of the class asphalt:

I1 =
ρ800 + ρ1610

ρ2300 + 0.5 ρ750
, Σ1 = {1.50, 1.74}

I2 =
ρ750 + ρ500

ρ1050 − 2 ρ650 − ρ1200
, Σ2 = {−1.08,−0.91}

I3 =
ρ2150 − 0.5 ρ650 − 0.5 ρ750

ρ1610 − 2 ρ1050 + 0.5 ρ2200
, Σ3 = {−1.00, 0.70}

I4 =
ρ450 + 2 ρ1550

ρ1050 − ρ1250 + 0.5 ρ2300
, Σ4 = {5.83, 8.63}

I5 =
ρ600 + 0.5 ρ1660

ρ750 + ρ850 + ρ1550
, Σ5 = {0.40, 0.49}.

(c) vehicle/paint/metal surface

This class is very heterogeneous. As colours in visible range may vary a lot, spectral bands below
700 nm are excluded from the range Λ in the search for indices. Many trials have been led and made
us introduce many different spectra in set S2 in order to reduce the false alarm rate related to this
class. The final characterization includes ten indices listed below. This number of indices may appear
very high but it is due to the high spectral variability of this class. A criterion based on a spectral
index involves twelve parameters—six spectral bands, four coefficients and two thresholds. The total
number of parameters for vehicle characterization is 120 and is finally not so high when compared to
machine learning methods that use thousands or millions of parameters for class characterization.

I1 =
ρ2200 + 2 ρ2250

ρ1050 − 2 ρ1250 + 1.5 ρ1550
, Σ1 = {1.85, 7.95}

I2 =
ρ2150 − 0.3 ρ2350

ρ2300 − 0.3 ρ1050 − 0.5 ρ2200
, Σ2 = {−21.65, 1.36}

I3 =
ρ2350 − ρ1200 − ρ2250

ρ1050 + 0.5 ρ900 − 0.5 ρ800
, Σ3 = {−1.20,−0.88}

I4 =
ρ2150 − ρ1600

ρ1550 − 1.5 ρ2300
, Σ4 = {−4.13, 4.02}
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I5 =
ρ2300 − 0.5 ρ1550

ρ2300 − 0.5 ρ2100 − 0.3 ρ2200
, Σ5 = {−7.49, 9.04}

I6 =
ρ850 + 0.5 ρ750 − 0.5 ρ1250

ρ850 + ρ1690 − 2 ρ700
, Σ6 = {−10.34, 8.69}

I7 =
ρ2250 − ρ1600 + 0.3 ρ2100

ρ1550 − ρ1730
, Σ7 = {−6.47, 5.86}

I8 =
ρ850 − 0.5 ρ1050

ρ700 − ρ2300 − 0.5 ρ900
, Σ8 = {−6.35, 7.33}

I9 =
ρ1600 + 2 ρ1730

ρ2150 − ρ2100
, Σ9 = {−559.9, 304.3}

I10 =
ρ2250 + 0.3 ρ2300 − 0.5 ρ1730

ρ850 + 0.5 ρ1600 − 1.5 ρ2150
, Σ10 = {−4.34, 6.98}.

(d) Non-carbonated gravel

This class excludes limestone gravel, which is included in the carbonate class. Only one index is
necessary to characterize this class. Remind this class is the final one and is considered only after all
the other classes have been rejected.

I1 =
ρ450 + 0.5 ρ880

ρ550 + ρ600
, Σ1 = {0.54, 0.61}.

Actually, this class is essentially a complement to the asphalt class. Practically, both classes are
fused into a single one—asphalt / gravel.

6. Post-Processing: Spatial Regularization

Many pixels may not have been classified by CHRIPS because they do not check the criteria that
are associated to the different classes. These criteria use thresholds which have been chosen to obtain a
good trade-off between good detection and false alarm but can thus exclude some spectral reflectances
which belong to one of the classes. A regularization step is applied to classify the unassigned pixels
by considering neighboring classified pixels. Let us consider an unclassified pixel P. The proposed
approach breaks down into two successive steps—a step dedicated to classes with specific absorptions
and a step dedicated to other classes.

During the first step, specific absorptions are searched on pixel P. The features associated with
plastic, carbonate and clay classes of CHRIPS are computed on P with softer thresholds. For instance,
thresholds Td1 and Td2 associated to aliphatic plastic matter are respectively given the values of 0.94
and 0.93 (before regularization, values of 0.93 and 0.92 are used by CHRIPS, see Section 5.3.1) . Let us
consider for example the plastic class. If the pixel P is identified as plastic with the softer thresholds
and if there is at least one pixel in its neighborhood that is associated with the plastic class, then pixel P
will be classified as plastic. In practice, the neighborhood encompasses the pixels located at a distance
of less than 2 in line and in column of P. The same process is applied for carbonate and clay classes.

In the second step, if the pixel P is not yet classified after the first step, then it is compared
with its neighboring pixels in terms of spectral angle. The spectral angle formed by the pixel P and
each classified pixel of its neighborhood is computed—the neighborhood pixel having the minimum
spectral angle is noted P∗. If the spectral angle between P and P∗ is below a given threshold, typically
3◦, then the class of P∗ is assigned to P. Classes with specific absorptions are excluded because the
spectral angle does not take into account sufficiently these absorptions. Dark surfaces are also excluded
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because they are associated with very noisy spectra whose spectral form is not informative. Thus, this
step covers the following classes: vegetation (dense green, sparse green, stressed), house roof/tile,
asphalt, vehicle/paint and non-carbonated gravel. The process is iterated several times until no new
pixel is classified. This approach is simple to implement and gives reliable results because it does
not perform arbitrary assignments. However, some pixels may remain unclassified at the end: it is
preferred not to classify rather than risking a wrong assignment.

7. Usage of Chrips Method

CHRIPS is only applicable on a hyperspectral reflectance image covering the spectral range
[400–2500 nm]. Two pre-processing steps are mandatory—atmospheric correction and spectral
interpolation. A third pre-processing step, noise reduction, is optional but recommended as it allows
to increase classification performances (see details in Section 4).

All CHRIPS criteria dedicated to the characterization of each class are described in Section 5.
These criteria depend on thresholds that were estimated from training samples once for all. They can
be directly used to classify any hyperspectral image—CHRIPS application is then fully unsupervised.
It could also be said that machine learning classifiers are unsupervised once the training phase is
completed. However, for these methods, modifying the location and the width of spectral bands
may heavily decrease classification performances. Moreover, changing spatial resolution may heavily
impact classification performances of methods using spatial context. CHRIPS is not very sensitive to
these problems—its criteria were designed to be accurate on pure pixels regardless of the spectral and
spatial characteristics of the sensor. This robustness of transfer is assessed in Section 8.

The provided values of CHRIPS thresholds should be used the first time CHRIPS is applied
to classify a given image. They were tested over a large set of hyperspectral images and lead to
accurate results. However, some of these thresholds may be modified depending on the user needs.
For example, in low spatial resolution images, pixels are likely to be mixed. The linear mixing of
materials containing specific absorptions with other materials could keep the absorptions but reduce
their depths. Even if pixels are mixed, the design of CHRIPS criteria (see Section 5.3) could allow the
detection of these absorptions but with less strict thresholds. Similarly, a reduced detection due to a
coarser spectral resolution could be improved by slightly modifying some thresholds. The following
thresholds can be modified:

– dark vegetation: Ta1 (NDVI), Ta3 and Ta4 (low reflectance in SWIR)
– water: Tb1, Tb2 and Tb3 (low reflectance in SWIR) and Tb4 (comparison between maximal reflectance

and ρ800≤λ≤850)
– dark surface: Tc1, Tc2, Tc3 (low reflectance in SWIR)
– plastic matter: Td1, Td2, Td3, Td4 and Td5 (absorption depth)
– carbonate: Te2 and Te3 (absorption depth)
– clay: Tf 1 (absorption depth)
– vegetation: Tg1, Tg2 and Tg3 (NDVI)

Criteria defined for classes house roof/tile, asphalt, vehicle and gravel (Section 5.5) are
combinations of indices depending on very different spectral bands. The modification of associated
thresholds has an impact that is very hard to apprehend and is then not recommended.

As the full computation of criteria is quite fast (a few tens of seconds on a processor Intel(R)
Xeon(R) E5-1620 for a hyperspectral image of size 1800 columns × 830 rows × 416 bands),
the classification process can be quickly executed several times with different thresholds if necessary.
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8. Experiments

8.1. Methodology

Classification performances are assessed on six hyperspectral images, as described in
Section 3.3—Fauga, Mauzac, Garons and suburban Mauzac (three images). Some parts of the Fauga
image were used for training, but classification results are still interesting to analyze. No training
samples are extracted from Mauzac, Garons and surburban Mauzac images. Three-band false color
images of the hyperspectral data sets of these images and corresponding ground truths are illustrated
in Figures 15, 17, 18 and 20.

CHRIPS is an expert spectral classification method for which criteria were estimated once for
all by a supervised way. In order to assess classification performances, images are classified with
CHRIPS method including spatial regularization and three widely used supervised methods that
exploit only the spectral dimension—the Convolutional Neural Network proposed by Hu et al.,
(CNN-1D [26]), Support Vector Machine (SVM [18]) and Random Forest Classification (RFC [16]).
CHRIPS was applied with all threshold values presented in Section 5—no threshold tuning was
performed. No two-dimensional or three-dimensional deep learning network was applied even if
it belongs to the state-of-the-art methods. The main reason is that their training requires a spatial
context—pixels from different classes cannot be characterized alone, their neighborhood also needs
to be taken into account. This cannot be easily performed in practice because available ground
truth generally corresponds to precise objects or homogeneous surfaces that are often separated by
unidentified pixels.

CNN-1D, SVM and RFC are trained with the same training samples that were used to design
CHRIPS criteria (spectral set Sρ, see Section 3.2). Sρ gathers around 19,000 training reflectance spectra.
For the training phase, the distinction between dark green, dense green and sparse green vegetation is
done. But when building the ground truth used for evaluation, this distinction may be tricky. Then,
in order to avoid wrong assignments, these three classes are fused into a single one: green vegetation.
Objects that cannot be identified or that are not represented by any CHRIPS class are gathered in the
ground truth class ’unidentified’.

CNN-1D, SVM and RFC were applied on images obtained after bilateral filtering and spectral
interpolation. For SVM and RFC, a grid search was applied to find optimal parameters, including the
use of all spectral bands on the one hand and a selection of forty spectral bands on the other hand.
Parameters of SVM grid search are:

- radial basis function kernel: γ = {10−1, 10−2, 10−3}, C = {1, 10, 102, 103},
- linear kernel: C = {10−1, 1, 10, 102, 103},
- polynomial kernel: degree = {1, 2, 3}, γ = {10−1, 10−2, 10−3}.

Best performances are obtained using a linear kernel with C = 100 and the selection of forty
spectral bands. Parameters of RFC grid search are:

- number of trees nt: {200, 500},
- number of features n∗f to consider when looking for the best split: {n0.5

f , log2 n f }, where n f is the
number of features of the image,

- maximum depth of each tree md: {5, 10, 20, 50},
- criterion to measure the quality of a split : {gini, entropy}.

Best performances are obtained using the selection of forty spectral bands and the following
parameters: nt = 200, n∗f = log2 n f , md = 20, criterion is entropy.

As CHRIPS method is designed for being as accurate as possible and for not classifying a pixel in
doubtful situations, it is preferred to present the classification performances in terms of precision/recall
for each class as it is done for detection algorithms. F1 score is a trade-off including precision and
recall. When assessing a given class C, precision, recall and F1 score are defined by:
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– precision = TP / (TP + FP),
– recall = TP / (TP + FN),

– F1 score = 2
(

precision−1 + recall−1
)−1

,

where TP (True Positive) is the number of pixels classified in class C and belonging to class C, FP (False
Positive) is the number of pixels classified in class C but not belonging to class C, FN (False Negative)
is the number of pixels not classified in class C but belonging to class C.

8.2. Classification and Assessment

Classification maps obtained with CHRIPS, CNN-1D, SVM and RFC are shown on Figures 15, 17,
18 and 20. Classification performances are gathered in Table 2.

Table 2. Classification performances of CHRIPS, Convolutional Neural Network (CNN-1D), Support
Vector Machine (SVM) and Random Forest Classification (RFC) (P: Precision, R: Recall and F1 score)
for images of Fauga (used for training), Mauzac, Garons and suburban Mauzac I0.55. For images of
suburban Mauzac I2.2 and I8.8, F1 score is displayed depending on pixel purity.

CHRIPS CNN-1D SVM RFC
Class P R F1 P R F1 P R F1 P R F1

Fa
ug

a
(t

ra
in

in
g)

unid. dark surface 0.894 0.968 0.929 0.987 0.472 0.638 0.981 0.586 0.734 0.975 0.576 0.724
water 0.879 0.990 0.931 0.903 0.880 0.890 0.900 0.880 0.890 0.326 0.878 0.475

plastic matter 0.708 0.998 0.828 0.667 0.588 0.625 0.342 0.775 0.475 0.154 0.479 0.234
carbonate 0.993 0.883 0.935 0.565 0.939 0.705 0.694 0.943 0.799 0.982 0.808 0.887

green vegetation 0.960 0.898 0.928 0.921 0.942 0.931 0.910 0.953 0.931 0.939 0.840 0.887
stressed vegetation 0.515 0.739 0.607 0.645 0.528 0.581 0.701 0.510 0.590 0.526 0.539 0.532

house roof/tile 1.000 0.964 0.982 0.943 0.883 0.912 0.967 0.934 0.950 0.976 0.888 0.930
asphalt/gravel 0.987 0.974 0.981 0.964 0.909 0.936 0.953 0.954 0.954 0.998 0.702 0.824
vehicle/paint 0.823 0.381 0.520 0.170 0.745 0.277 0.379 0.630 0.473 0.072 0.927 0.134

M
au

za
c

unid. dark surface 0.857 0.980 0.914 0.887 0.464 0.609 0.891 0.556 0.684 0.860 0.534 0.659
water 0.995 0.810 0.893 0.985 0.853 0.914 0.987 0.844 0.910 0.877 0.828 0.852

plastic matter 0.991 0.951 0.971 0.720 0.338 0.460 0.387 0.643 0.483 0.094 0.167 0.120
carbonate 0.994 0.762 0.863 0.211 0.424 0.281 0.294 0.548 0.382 0.782 0.200 0.319

green vegetation 0.994 0.984 0.989 0.974 0.940 0.956 0.945 0.970 0.957 0.975 0.876 0.923
stressed vegetation 0.391 0.687 0.498 0.134 0.274 0.180 0.136 0.201 0.162 0.111 0.304 0.163

house roof/tile 0.999 0.971 0.985 0.968 0.912 0.939 0.981 0.943 0.962 0.981 0.886 0.931
asphalt/gravel 0.995 0.928 0.961 0.899 0.801 0.847 0.908 0.892 0.900 0.997 0.521 0.684
vehicle/paint 0.743 0.462 0.570 0.032 0.832 0.062 0.128 0.625 0.212 0.017 0.932 0.033

G
ar

on
s

unid. dark surface 0.998 0.398 0.569 0 0 0 0 0 0 0 0 0
plastic matter 1.000 0.907 0.951 0.944 0.827 0.882 0.683 0.927 0.787 0.281 0.497 0.359

carbonate 0.953 0.946 0.950 0.552 0.961 0.702 0.067 0.593 0.121 0.543 0.167 0.256
clay 0.934 0.888 0.910 0.876 0.534 0.664 0.577 0.684 0.626 0.980 0.192 0.322

green vegetation 0.974 0.939 0.956 0.911 0.921 0.916 0.937 0.852 0.892 0.966 0.723 0.827
stressed vegetation 0.861 0.771 0.814 0.756 0.075 0.136 0.495 0.272 0.351 0.539 0.293 0.380

house roof/tile 0.931 0.970 0.951 0.003 0.228 0.006 0.008 0.289 0.016 0.006 0.538 0.012
asphalt/gravel 0.790 0.557 0.654 0.753 0.498 0.600 0.577 0.573 0.575 0.874 0.381 0.531

Su
b.

M
au

za
c

I 0
.5

5

unid. dark surface 0.990 0.997 0.993 1.000 0.317 0.481 0.999 0.408 0.579 0.999 0.396 0.568
water 0.988 0.964 0.976 1.000 0.918 0.957 1.000 0.910 0.953 0.667 0.765 0.712

plastic matter 0.962 0.983 0.972 0.518 0.663 0.582 0.141 0.864 0.242 0.093 0.321 0.144
carbonate 0.595 0.983 0.741 0.036 0.797 0.068 0.031 0.735 0.059 0.083 0.285 0.129

clay 0.068 1.000 0.127 0 0 0 0 0 0 0 0 0
green vegetation 0.947 0.994 0.970 0.724 0.951 0.822 0.727 0.938 0.819 0.711 0.806 0.755

stressed vegetation 0.995 0.958 0.976 0.866 0.218 0.348 0.974 0.437 0.604 0.879 0.255 0.395
house roof/tile 0.974 0.955 0.964 0.045 0.243 0.076 0.224 0.703 0.340 0.184 0.868 0.303
asphalt/gravel 1.000 0.922 0.959 0.974 0.913 0.942 0.982 0.917 0.948 0.999 0.754 0.859
vehicle/paint 0.579 0.478 0.523 0.088 0.688 0.157 0.073 0.775 0.134 0.011 0.941 0.022
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Table 2. Cont.

CHRIPS (F1 score) CNN-1D (F1 score) SVM (F1 score) RFC (F1 score)
Class pure mixed all pure mixed all pure mixed all pure mixed all

Su
b.

M
au

za
c

I 2
.2

unid. dark surface 0.576 0.039 0.190 0 0 0 0.320 0 0.081 0 0 0
water 0.500 0 0.300 0.714 0 0.481 0.714 0 0.455 0 0 0

plastic matter 0.894 0.618 0.745 0.842 0.338 0.482 0.352 0.087 0.134 0.092 0.019 0.040
carbonate 0.667 0.286 0.353 0.011 0.052 0.033 0.012 0.099 0.041 0 0.074 0.051

clay 1.000 0.933 0.960 0 0 0 0 0 0 0 0 0
green vegetation 0.937 0.877 0.899 0.700 0.800 0.759 0.725 0.793 0.765 0.700 0.712 0.707

stressed vegetation 0.979 0.737 0.914 0.363 0.464 0.394 0.652 0.554 0.626 0.447 0.418 0.439
house roof/tile 0.992 0.696 0.925 0.065 0.374 0.104 0.384 0.613 0.415 0.306 0.516 0.329
asphalt/gravel 0.661 0.500 0.586 0.984 0.834 0.913 0.981 0.787 0.892 0.899 0.697 0.809
vehicle/paint 0 0.276 0.242 0 0.172 0.138 0 0.058 0.053 0 0.019 0.012

I 8
.8

green vegetation 0.533 0.802 0.770 0.271 0.687 0.610 0.254 0.641 0.558 0.235 0.636 0.542
stressed vegetation 0.957 0.749 0.845 0.276 0.519 0.420 0.524 0.643 0.590 0.383 0.465 0.428

house roof/tile 0.933 0.526 0.642 0.019 0.522 0.215 0.187 0.694 0.387 0.187 0.755 0.422
asphalt/gravel 0.842 0.438 0.471 1.000 0.839 0.850 1.000 0.762 0.779 1.000 0.675 0.701

8.2.1. Fauga Image (Training)

Classification maps are presented in Figure 15. CHRIPS precision is very close to 1 for classes
carbonate, green vegetation, house roof, asphalt. It is around 0.88 for water and around 0.7 for plastic.
Errors are due to a mixing with vehicle class: some vehicles may contain plastic matter, such as
synthetic hoods for trucks (see Figure 16), and confusion occurs because ground truth considers
that all pixels of a given vehicle belong to the vehicle class even if plastic matter may be present.
Stressed vegetation precision is around 0.5, errors are mainly due to pixels that are classified as stressed
vegetation whereas they are considered as sparse green vegetation in ground truth. Note that changing
thresholds on NDVI for these classes may affect precision and recall for both classes. Moreover, the
ground truth is not necessary perfect, the limit between stressed and green grass is not objectively clear.
Vehicle class is very diversified and hard to characterize. Precision is around 0.82 but recall is around
0.38 for CHRIPS. Recall is penalized by the complementary behaviour that is observed with plastic
matter—parts of vehicles are detected as plastic matter rather than being assigned to the vehicle class.
Note that very local areas in the image, often close to houses, are also classified in this class. But no
ground truth is available for these areas and then their analysis is not possible.

CNN-1D, SVM and RFC performances are lower than CHRIPS for every class. CNN-1D and
SVM provide satisfactory results for water, green vegetation, house roof and asphalt (0.89 ≤ F1 ≤ 0.95),
acceptable results for carbonate (0.71 ≤ F1 ≤ 0.80) and stressed vegetation (F1 = 0.58–0.59),
and unsatisfactory results for vehicle (F1 = 0.28–0.47). For plastic matter, CNN-1D is acceptable (F1 = 0.63)
whereas SVM is inaccurate (F1 = 0.48). RFC performances are lower than the three other methods:
satisfactory for green vegetation, house roof and carbonate (F1 ≥ 0.89), acceptable for asphalt (F1 = 0.82),
unsatisfactory for stressed vegetation (F1 = 0.53) and very poor for plastic and vehicle (F1 ≤ 0.23).
As vehicle class is very heterogeneous, it could be expected that these three methods would be inaccurate.

It is important to note that plastic matter can have very variable reflectance spectra. This class
is mainly characterized by its absorption bands. Methods such as CNN-1D, SVM or RFC are not
efficient for this kind of class if training is not exhaustive in terms of spectral variability, which is hard
to achieve for this kind of class. CHRIPS criteria dedicated to plastic matter are focused on absorptions
bands and allow accurate detection.
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False color Ground truth

CHRIPS classification map CNN-1D classification map

SVM classification map RFC classification map

unidentified dark surface plastic matter carbonate
clay house roof/tile asphalt / gravel vehicle / paint
water stressed vegetation

Classification map: dense green veg. sparse green veg. dark green veg.
Ground truth: dark / dense / sparse green vegetation

Figure 15. Three-band false color composite, ground truth and classification maps obtained by CHRIPS
(after post-processing), CNN-1D, SVM and RFC for the Fauga image. In ground truth, the three
classes of green vegetation (dark, dense and green) are fused into a single one. Fauga image was
used for training.
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unidentified dark surface dark green veg.
dense green veg. sparse green veg. stressed vegetation
plastic matter vehicle / paint asphalt / gravel

Figure 16. Several vehicles such as trucks may have synthetic hoods. CHRIPS may consider these parts
as belonging to the class plastic matter and other parts as belonging to the vehicle class.

8.2.2. Mauzac Image

Classification maps for Mauzac image are presented in Figure 17. No training samples were
collected from this image. The scene looks alike Fauga image and the sensor is the same (HySpex).
Precision and recall are very high for every class for CHRIPS method (F1 ≥ 0.86) except for the classes
vehicle (F1 = 0.57) and stressed vegetation (F1 = 0.50) for which the same observations as for Fauga
image can be made. Performances of CNN-1D, SVM and RFC are also quite similar as those obtained
for Fauga, which is expectable as both images were acquired with the same sensor over the same kind
of scene, and remain lower than CHRIPS performances.

8.2.3. Garons Image

Classification maps are presented in Figure 18. Garons image was not used for training. The scene
is very different from Fauga and Mauzac images. Vehicle class is not present in this image but clay
class appears (plowed fields, dirt roads).

Precision and accuracy are quite high for every class for CHRIPS (0.81 ≤ F1 ≤ 0.96) except for the
asphalt class (F1 = 0.65). Weak detection of asphalt is due to the fact that pixels associated to roads
are often not spectrally pure (spatial resolution of 4 m). Performances of CNN-1D, SVM and RFC are
overall much lower than those of CHRIPS for this image. HyMap sensor has fewer spectral bands
(125) than HySpex (416) and its spectral resolution is lower (15 nm versus 3–6 nm for HySpex)—the
impact of spectral resolution can then be observed in this dataset. Reflectance spectra are smoother
in this image because HyMap has less spectral bands than HySpex and reflectances are possibly
smoothed during atmospheric correction. It can have a significant impact on the performances of
SVM and RFC. But the main reason for their poor performance is that both methods are very sensitive
to training samples. For example, for stressed vegetation, Garons image contains pixels for which
reflectance spectra may not be included in spectral variability of this class in the training dataset Sρ.
Then, SVM hyperplanes and RFC decision criteria are not adjusted to correctly classify them. This is
also the case for CNN-1D because the performances of convolutional networks strongly depend on the
representativeness of the training samples. On the opposite, CHRIPS criteria dedicated to stressed
vegetation are based on geometric features that are robust and allow an accurate detection.

If the house roof class is well detected in Fauga and Mauzac images with all four methods,
CHRIPS still provides accurate results in Garons (F1 score = 0.95), whereas CNN-1D, SVM and RFC
are not efficient (F1 score ≤ 0.02). Lots of confusions are present for these methods between the two
classes house roof/tile and clay, which might be explained by the fact that tiles and clay may have
quite similar spectral shapes. Figure 19 shows the accurate detection of house roof class with CHRIPS.
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False color Ground truth

CHRIPS classification map CNN-1D classification map

SVM classification map RFC classification map

unidentified dark surface plastic matter carbonate
clay house roof/tile asphalt / gravel vehicle / paint
water stressed vegetation

Classification map: dense green veg. sparse green veg. dark green veg.
Ground truth: dark / dense / sparse green vegetation

Figure 17. Three-band false color composite, ground truth and classification maps obtained by CHRIPS
(after post-processing), CNN-1D, SVM and RFC for the Mauzac image. In ground truth, the three
classes of green vegetation (dark, dense and green) are fused into a single one. Mauzac image was not
used for training.
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False color Ground truth CHRIPS classification map

CNN-1D classification map SVM classification map RFC classification map

unidentified dark surface plastic matter carbonate
clay house roof/tile asphalt / gravel vehicle / paint
water stressed vegetation

Classification map: dense green veg. sparse green veg. dark green veg.
Ground truth: dark / dense / sparse green vegetation

Figure 18. Three-band false color composite, ground truth and classification maps obtained by CHRIPS
(after post-processing), CNN-1D, SVM and RFC for the Garons image. In ground truth, the three
classes of green vegetation (dark, dense and green) are fused into a single one. Garons image was not
used for training.
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unidentified plastic matter carbonate clay
dense green veg. sparse green veg. stressed vegetation house roof/tile

Figure 19. House roofs are well detected with the CHRIPS method in the class house roof/tile
(orange colour).

8.2.4. Impact of Spatial Resolution: Suburban Mauzac Images

Images, ground truth and classification maps of CHRIPS, SVM and CNN-1D methods are
presented in Figure 20. No training sample come from these images.

CHRIPS has better results than other methods for most classes and is very accurate—F1 ≥ 0.97
for water, vegetation, plastic matter, house roof, asphalt, and F1 = 0.74 for carbonate. For
vehicles (F1 = 0.52), CHRIPS performances are higher than other methods (F1 ≤ 0.16) that have a
better recall but a low precision. For clay, CHRIPS recall is very high (R = 1) but precision is very
low (P = 0.07) due to a lot of noisy pixels detected as clay in the highway. However, the only parcel
actually containing clay is well detected. If the threshold Tf 1 dedicated to clay is modified (Tf 1 = 0.015
instead of 0.008), performances are significantly improved as noisy pixels are not misclassifed anymore:
P = 0.51, R = 1, F1 = 0.68. All other methods are unable to detect clay in this image (P = R = F1 = 0).
On this image, CHRIPS appears to be more robust than other methods.

All pixels from image I0.55 for which ground truth is available are considered as pure. It is not the
case for images I2.2 and I8.8 for which ground truth G2.2 and G8.8 are obtained from a downsampling
of ground truth G0.55. Let us note A the abundance of the majority class in a given pixel. As CHRIPS is
designed to work on pure reflectance spectra, the following cases are considered for the assessment of
classification of images I2.2 and I8.8.

• Case 1: 90% ≤ A ≤ 100%, pixels are considered as pure
• Case 2: 50% ≤ A < 90%, pixels are considered as mixed
• Case 3: 50% ≤ A ≤ 100%, pixels are considered as pure or mixed

Performances of CHRIPS for images I2.2 and I8.8 are then assessed depending on the state of
mixing of classified pixels. F1 score of all methods for these images are presented in Table 2.

For image I2.2, except for the vehicle class, CHRIPS has better performances than all other methods
for pure and mixed pixels. For pure pixels, F1 score is very high (F1 ≥ 0.89) for many classes such as
plastic matter, clay, green and stressed vegetation, house roof. It remains acceptable for carbonate and
asphalt (F1 = 0.68–0.72) and quite low for water (F1 = 0.5). Note that there is no pure pixel of vehicle
in image I2.2. As expected, CHRIPS performances decrease with mixed pixels, notably for classes
with specific absorptions: plastic matter (F1 = 0.62) and carbonate (F1 = 0.29). Performances remain
high for classes clay, green and stressed vegetation, house roof (F1 = 0.70–0.83). For the vehicle class,
other methods allow a higher recall than CHRIPS but are far less accurate: F1 score is around 0.24 for
CHRIPS and below 0.17 for other methods. The classes where CHRIPS has a lower F1 score are water
(F1 = 0.3) and asphalt (F1 = 0.59). As it can be seen in the image I0.55, mixed pixels considered as asphalt
in image I2.2 also contain other materials/surfaces such as guardrails, road markings and vegetation.
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Ground truth: dark / dense / sparse green vegetation

Figure 20. Three-band false color composite, ground truth and classification maps obtained by CHRIPS,
CNN-1D and SVM for the three suburban Mauzac images I0.55, I2.2 and I8.8. Images I2.2 and I8.8 are
resampled at 0.55 m (nearest neighbor) in order to make image views comparable. In ground truth, the
three classes of green vegetation (dark, dense and green) are fused into a single one.
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.
For image I8.8, pixels are highly mixed and most classes disappear from ground truth as they

become too small in comparison to spatial resolution: one pixel has an area of approximately
77.4 m2. Four classes remain in ground truth—green vegetation, stressed vegetation, house roof
and asphalt. Classes of vegetation remain extended and then still show accurate performances for
CHRIPS (F1 = 0.77–0.85). Pixels containing house roofs are rarely pure, but F1 score is still higher for
CHRIPS (F1 = 0.64) than other methods (F1 ≤ 0.42). For asphalt class, the mixing is important as seen
in I2.2, then CHRIPS performances are lower than other methods but precision remains high (P = 0.93).

9. Discussion

The CHRIPS method has several advantages—high accuracy, existence of a reject class, robustness
in transfer. CHRIPS is very accurate as it is shown in Table 2. This is mainly due to the implicit
existence of a reject class corresponding to unidentified pixels—the method prefers not to classify
rather than risking a wrong assignment whereas other classification methods would certainly assign
the most likely class among the set of possible classes. In return, using a reject class could impact
recall by reducing it. However, recall remains quite high for CHRIPS and is above other methods for
studied images.

Pixels that belong to boundaries between different classes are generally assigned to reject class—as
they are often mixed pixels, then may not be identified by CHRIPS for whose classification criteria
were defined from pure reflectance spectra. However, some mixed pixels can still be characterized
in some cases, especially when specific absorptions (plastic, clay, carbonate) or geometric patterns
(vegetation) can be detected.

Let us consider the Garons image—it contains several vineyards. Vineyard pixels are actually
mixed pixels as explained in Figure 21. They contain vine leaves, stressed short vegetation and soil
that may contain clay. Then, if several classes are likely to be mixed, ground truth makes a choice
that does not gather all information. As shown in Figure 21, two close vineyards are classified in a
different way: the first one exhibits clay signature and is classified by CHRIPS as clay, the second one
only exhibits vegetation signature and is classified as green vegetation. This second case is the most
frequently observed in this image.

All reflectance spectra from the training set were obtained by applying COCHISE on radiance
spectra. HyMap image was not corrected with the same process and we could expect that different
methods of correction could result in slightly varying outcomes. However, it can be noticed that
CHRIPS performances remain high while the performances of all other methods decrease a lot for
this image. CHRIPS criteria are quite robust—thresholds were estimated by taking into account some
margins. These margins reduce the impact of the fact that training samples may not be exhaustive for
each class and also reduce the impact of some variations in reflectance spectra due to the atmospheric
correction process. Then, CHRIPS is less sensitive to atmospheric correction errors. The smoothing
process presented in Section 4.2 also reduces potential atmospheric correction errors.

Overall, as it can be observed on classification maps, most pixels are classified by CHRIPS for
all studied images, except image I8.8 which is highly mixed. As specified, CHRIPS is designed to
classify pure pixels and should be used in this purpose. The method could still be used on images
which potentially contain many mixed pixels: these ones are generally assigned to the unidentified
class. It is then up to the user to apply another method, for example, an unmixing method, to process
these unidentified pixels. Moreover, the unmixing method could use CHRIPS classification to directly
extract some endmembers.

One of main advantages of CHRIPS is its robustness in transfer—its performances remain stable
whatever the hyperspectral sensor used. It is illustrated with Garons and suburban Mauzac images
I0.55 and I2.2—classification performances remain very high for CHRIPS whereas they highly decrease
with other methods.
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Figure 21. Three-band false color composite of a part from Garons image containing two vineyards
(1 and 2), CHRIPS classification of this image, reflectance of pixels from vineyard 1 and vineyard 2, and
in situ photography of vineyard 1. In Garons image, vineyards are composed of parallel vine ranks
every 2.5 m. Each vine rank is around 1 m width and the inter-rank is around 1.5 m width. Surface of
inter-rank is composed of stressed vegetation and soil containing clay. As a HyMap pixel has a size
of 4 × 4 m, it contains a mixing of vineyard and inter-rank content. Then, spectral reflectances also
mix their properties. CHRIPS classifies pixels from vineyard 1 as clay and pixels from vineyard 2 as
green vegetation. It could be counter intuitive when looking at the image in the visible range: both
vineyards seem green, the increase of reflectance in the red-edge is observed and then a class of green
vegetation would be expected for both parcels. Presence of clay induces a local minimum on reflectance
around 2200 nm: it can be observed on spectral reflectance of pixel from vineyard 1 and it is detected
by CHRIPS. However, the whole reflectance spectrum also satisfies criteria that are dedicated to green
vegetation except the criterion requiring a local maximum around 2200 nm. Indeed, this criterion is
opposite to the criterion dedicated to clay detection. In this case, the absorption of clay prevails and
then CHRIPS considers the presence of clay. In vineyard 2, the clay content of soil is lower and a local
maximum can be observed around 2200 nm, all criteria for vegetation are true and CHRIPS classifies it
as green vegetation.

Another advantage of CHRIPS is that its criteria have been defined from a reduced set of training
samples (19,000 samples, see Section 3.2) on the contrary to deep learning networks which require
huge datasets to be set. In practice, the selection of training samples is not an easy task. Ground truth
is often focused on very local areas, and samples from all existing classes are not necessarily available.
Moreover, spectral variability (and spatial variability for 2D or 3D networks) of each class is rarely fully
characterized with training samples. In CHRIPS method, classes with specific absorptions do not need
exhaustive datasets to be characterized. They just require the spectral location and typical depths of its
absorption bands. It is the same for vegetation classes—they are characterized with geometric patterns.

Other classes characterized by CHRIPS are described with dedicated indices—these ones need
datasets that are as exhaustive as possible to account for spectral variability. Spectral information is
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sufficient to reach high accuracy (see Table 2). Spatial context can be very informative to reduce the
number of unclassified pixels using the regularization step but is not essential.

10. Conclusions and Future Work

A new workflow for classification, the CHRIPS method, has been presented. It aims at classifying
each pixel from a defined set of classes, each class being characterized with discriminant criteria
over spectral reflectance. Its input is a hyperspectral reflectance image covering the spectral range
[400–2500 nm]. CHRIPS is composed of four successive steps—two pre-processings (noise reduction
and spectral interpolation), classification and a spatial post-processing (reduction of the number of
unidentified pixels). CHRIPS class criteria only use spectral information. However, the post-processing
takes into account neigbouring pixels and then introduces a spatial context. This method does not
require a complex tuning of parameters by users. Each criterion uses thresholds for which optimal
values have been estimated and do not need to be modified. Therefore, it can be used by non-specialist
users. However, the user can still modify some of these thresholds for some classes, for example, NDVI
values for vegetation characterization, depending on his needs.

Performances of CHRIPS have been assessed on six hyperspectral images acquired with three
different sensors. It has been proven that it is more accurate than other widely used pure spectral
classification methods. It offers several very interesting advantages. It has a high accuracy for specified
classes. It includes a reject class and still offers a high recall. It does not require training—criteria are
defined for each class once for all. As class identification is based on criteria that are not very sensitive
to the sensor type, the method is robust in transfer—it has been proven that it remains accurate for
various hyperspectral sensors and spatial resolutions. The main condition for accuracy is purity of
pixels—mixed pixels containing different classes are generally assigned to the reject class.

The number of classes that can be identified could be increased. To add a class of material
that have specific absorptions, the work would consist of establishing criteria that are similar to
the ones described in Section 5.3 for plastic, carbonate and clay. If no specific absorption is present,
the methodology described in Section 5.5 could be applied.

As CHRIPS method does not cover all possible classes, it could be used in combination with other
methods that would classify the pixels from the reject class.
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