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Abstract: The autonomous vehicles (AV) industry has a growing demand for reliable, continuous,
and accurate positioning information to ensure safe traffic and for other various applications.
Global navigation satellite system (GNSS) receivers have been widely used for this purpose. However,
GNSS positioning accuracy deteriorates drastically in challenging environments such as urban
environments and downtown cores. Therefore, inertial sensors are widely deployed inside the land
vehicle for various purposes, including the integration with GNSS receivers to provide positioning
information that can bridge potential GNSS failures. However, in dense urban areas and downtown
cores where GNSS receivers may incur prolonged outages, the integrated positioning solution may
become prone to severe drift resulting in substantial position errors. Therefore, it is becoming
necessary to include other sensors and systems that can be available in future land vehicles to be
integrated with both the GNSS receivers and inertial sensors to enhance the positioning performance
in such challenging environments. This work aims to design and examine the performance of a
multi-sensor system that fuses the GNSS receiver data with not only the three-dimensional reduced
inertial sensor system (3D-RISS), but also with the three-dimensional point cloud of onboard light
detection and ranging (LiDAR) system. In this paper, a comprehensive LiDAR processing and
odometry method is developed to provide a continuous and reliable positioning solution. In addition,
a multi-sensor Extended Kalman filtering (EKF)-based fusion is developed to integrate the LiDAR
positioning information with both GNSS and 3D-RISS and utilize the LiDAR updates to limit the
drift in the positioning solution, even in challenging or ultimately denied GNSS environment.
The performance of the proposed positioning solution is examined using several road test trajectories
in both Kingston and Toronto downtown areas involving different vehicle dynamics and driving
scenarios. The proposed solution provided a performance improvement over the standalone inertial
solution by 64%. Over a GNSS outage of 10 min and 2 km distance traveled, our solution achieved
position errors less than 2% of the distance travelled.

Keywords: LiDAR Odometry; LiDAR/RISS/GNSS integration; Multi-sensor fusion; Autonomous
vehicles; Integrated Positioning
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1. Introduction

Reliable positioning and navigation are vital for self-driving car applications. Using position
fixing (PF) techniques such as the Global Navigation Satellite System (GNSS), the vehicle can navigate
easily in unknown environments. The GNSS provides an absolute long-term positioning solution
when in line of sight with four or more satellites. However, reliable GNSS signals are not guaranteed in
all environments due to satellite signal blockage, poor satellite geometry, and multipath in dense urban
areas [1]. Therefore, the Inertial Navigation System (INS), which is a dead reckoning (DR) technique is
usually integrated with the GNSS receiver to provide a positioning solution in case of GNSS failure.
The INS is an autonomous system that requires no external information to calculate the location
information, unlike the GNSS [2]. The INS consists of inertial sensors such as accelerometers and
gyroscopes, which given an initial position, velocity, and attitude, provides a positioning solution [3,4].
However, the positioning solution from the INS has good short-term accuracy, and this is because
it suffers from error in sensor measurements accumulating, which requires external information for
resetting those errors [5]. The GNSS and the INS have complementary features that led to the trend
of integrating both sensors using different filtering techniques to have a more reliable and accurate
solution that mitigates each sensor’s drawbacks [6]. The INS/GNSS integrated navigation system is the
most popular form of integration in which the GNSS provides measurement updates to the INS via
Kalman Filtering (KF). As the GNSS measurements prevent inertial sensors from drifting by resetting
their errors, the INS smooth the GNSS solution and provides a solution in the case of GNSS outage.
A low-cost micro-electro-mechanical system (MEMS)—based inertial sensors is used to cut the cost of
such a navigation system. During the past decade, the performance of low-cost MEMS-based inertial
sensors has improved significantly that it has found many uses mainly in the automobile industry [7].

Moreover, a three-dimensional reduced inertial sensor system (3D-RISS) was developed to
be integrated with the GNSS to provide a more reliable navigation solution for the land vehicle.
The 3D-RISS minimizes the usage of the accelerometers and gyroscopes, therefore, reducing the
accumulated drift errors [8]. The 3D-RISS mechanization method is mainly developed for land vehicle
navigation as it also utilizes the wheel odometer of the land vehicle, which measures the forward speed
of the vehicle to calculate the pitch and roll angles. However, the integrated solution fails to provide
a reliable navigation solution in extended outages due to the absence of a GNSS signal to reset the
residual biases that accumulate over time.

AVs are anticipated to navigate not only on controlled highways but also in suburban and dense
urban areas. The realization of such a goal is based on the development of robust and reliable,
fully autonomous systems that can make decisions based on the perception of its sensors [9]. Therefore,
autonomous cars house perception sensors that help in positioning the vehicle in these situations.
Generally, the most common sensors used for integrating with the INS are cameras, Light Detection and
Ranging (LiDAR), and Radio Detection and Ranging (RADAR). Compared to the camera, the LiDAR
has higher resolution and can provide detailed structural information of the surrounding area. Also,
laser scanners are not affected by ambient light like cameras and have a higher resolution than RADARs.
As LiDAR sensors are becoming cheaper and smaller in size, they are becoming more suitable for
autonomous vehicle applications. Therefore, the work in this paper utilizes mechanical rotating
3D-LiDAR that provides a 360◦ panoramic view of the surrounding environment.

As the GNSS becomes unreliable in downtown cores, studies emerged that favored DR solutions
such as simultaneous localization and mapping (SLAM) and odometry methods. Those techniques
enabled the calculation of the position and orientation of the vehicle based on the data obtained from
the onboard sensors. The LiDAR Odometry (LO) is based on the laser reflected from the surrounding
objects to estimate the position and orientation given a starting point. A method involving using LO
was introduced in [10] to estimate the movement between frames and matches the estimated solution
to a road map using particle filtering. Another author in [11] suggested that when the LiDAR scanning
rate is higher than the extrinsic motion, the standard Iterative Closest Point (ICP) is used to compute
a moving object velocity to address the motion distortion introduced in a single-axis 3D-LiDAR.
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However, the traditional ICP is computationally expensive, according to the authors in [12]. Using a
LiDAR, IMU, and a wheel odometer, the authors in [13], suggested an integration scheme for pose
estimation. They used a point-to-plane ICP approach for the registration of the LiDAR point clouds and
EKF for multi-sensor fusion and also a point cloud data map. However, their experiments were done
in a controlled and previously mapped environment with nearly static scenes. The authors in this work
used a point-to-plane approach, which is much faster in terms of computational complexity. However,
using a full IMU mechanization along with the proposed ICP increases the overall computational
complexity of the system. Another approach is the pose estimation using LO extracted using the ICP
and pseudo cellular ranges fused using EKF to estimate the heading of the vehicle accurately in [14].
A GNSS/INS/LiDAR-SLAM integrated navigation system was proposed in [15], where the GNSS/INS
result and the relative pose from a 3D probability map were matched with the graph optimizing.
However, in [15], the LiDAR’s point cloud was not preprocessed, and thus many errors would increase
in such a method.

In this paper, a multi-sensor fusion approach is introduced to bridge GNSS outages and provide
reliable and continuous positioning and navigation information. The proposed system is based on
integrating LiDAR, INS, and GNSS, supported by a method that smartly selects the best combination
from these three systems to provide the most reliable positioning information. The specific contributions
of this paper are the following:

• Design and implementation of denoising method for the raw LiDAR point cloud to remove any
outliers, thus reducing the computational complexity and enhancing the performance.

• Utilization of the Iterative Closest Point (ICP) algorithm to register the LiDAR point clouds and
minimize the root-mean-squared error between two consecutive point clouds.

• Realization of an Extended Kalman Filter (EKF) to fuse the positioning information from GNSS,
INS, and LiDAR and improve the overall positioning solution.

• Design and implementation of a selection criterion that can automatically select the set of
sensors/systems to be included in the fusion filter to mitigate the drift in the positioning solution.

• The performance of the proposed system is assessed based on road test experiments to quantitively
assess its merits and limitations when compared to a high-end reference solution.

The paper is structured as follows. In Section 2, the system architecture LiDAR/RISS/GNSS
integrated navigation system is explained along with the mathematical model of the reduced inertial
system. In Section 3, the experimental setup is presented. Next, in Section 4, the results are discussed.
Finally, Section 5 is the conclusion, along with future work prospects.

2. System Architecture and Mathematical Model

In prolonged and frequent GNSS outages, the INS/GNSS integration suffers from biases and
drifts that are modulated with time. The drifts in the INS mechanization are caused due to implicit
mathematical integrations associated with the algorithm. In a classic INS mechanization, all the
six Degree of Freedom (DoF) IMUs are used, integrating the rotation rates of the 3-axis orthogonal
gyroscopes to compute the attitude angles. Therefore, the error in the transformation from the body
frame to the local frame will linearly increase in time for every given gyroscope error. Also, since the
velocities are calculated by integrating the 3-axis accelerometer readings and then rotating by the
attitude angles, the linear gyroscope error becomes quadratic. Eventually, to get the 3D-position,
the velocity is integrated again, and the quadratic error becomes cubic order [6]. The land vehicle’s
motion has three characteristics that are defined in [16], which prove that three orthogonal gyroscopes,
along with a forward accelerometer, are sufficient for land vehicle navigation. However, increasing the
number of gyroscopes, as mentioned before, proven to increase the inherent errors from the integration
process. Therefore, to further simplify the system, a single gyroscope along with two accelerometers
and the vehicle wheel odometer is used to decrease the inherent errors in the system.
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2.1. Three-Dimensional Reduced Inertial Sensor System (3D-RISS)

The 3D-RISS utilizes only the vertical gyroscope (wz), the forward accelerometer ( fx), and the
transversal accelerometer ( fy) from the IMU unit along with the wheel odometer of the vehicle.
The odometer is used to measure the vehicle’s forward velocity (vod) to be differentiated into
the acceleration of the vehicle between each epoch to get the vehicle’s forward acceleration (aod).
Figure 1 gives a detailed description of the mechanization process [17].
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Figure 1. 3D-RISS Mechanization Block Diagram.

The 3D-RISS utilizes the denoised sensor measurements from the ( fx, fy, wz) and the measured
forward velocity from the odometer as the mechanization inputs. Accordingly, the navigation state
vector of the 3D-RISS is given by the following Equation (1):

x =
[
ϕ λ h ve vn vu r p Azi

]T
(1)

where (ϕ, λ, h) corresponds to the 3D-position components, namely the latitude, longitude, and the
altitude, respectively. The (ve, vn, vu) represents the velocity components in the local level frame (LLF),
the East, North, and Upward velocities, respectively. While (r, p, Azi) are the attitude angles, the roll,
pitch, and azimuth. The pitch and roll angles are calculated at each epoch k as follows in Equations (2)
and (3).

pk = sin−1
(

fyk − aodk

g

)
(2)

rk = −sin−1

 fxk + vodk

(
wzk − bz

)
g cos(pk)

 (3)

The bias in the gyroscope readings (bz) is taken into consideration. Also, the azimuth angle is
calculated as follows in (4), at each epoch k.

Azik = Azik−1 +

(
−

(
wzk − bz

)
+ we sin(ϕk−1) +

vek−1 tan(ϕk−1)

RN + hk−1

)
∆t (4)

where (RN) is the normal radius of the earth’s ellipsoid, and (we) is the earth’s rotation component.
Then, using the attitude angles the forward speed measured by the odometer is projected on to the



Remote Sens. 2020, 12, 2323 5 of 25

East (vek ), North (vnk ), and Upward (vuk ) velocity components in the local level frame as illustrated in
Equation (5): 

vek

vnk

vuk

 =


vodk
cos(Azik) cos(pk)

vodk
cos(Azik) cos(pk)

vodk
sin(pk)

 (5)

After that, the 3D-position states, latitude (ϕ), longitude (λ), and altitude (h) in each epoch are
derived from integrating the velocities in the LLF and rotating them using the normal (RN) and
meridian (RM) radii, as shown in Equation (6):


ϕk
λk
hk

 =


ϕk−1 +
0.5(vnk+vnk−1)

RN+hk
∆t

λk−1 +
0.5(vek+vek−1)

(RM+hk) cos(ϕk−1)
∆t

hk−1 + 0.5
(
vuk + vuk−1

)
∆t

 (6)

Therefore, by reducing the number of the inertial sensors used, the 3D-RISS reduced the complexity
of the system. Also, using the odometer and the accelerometers to calculate the pitch and roll angles
rather than the gyroscopes eliminates the need for numerical integration. Therefore, no drift or
error growth.

2.2. LiDAR Odometry

Scan matching algorithms have been widely popular in recent years as they provide an
understanding of the movement of the points between two consecutive scans. The ICP is widely used
as it is one of the dominant solutions for aligning three-dimensional models based on the Euclidean
distance [18], providing an initial estimate of the relative pose of the vehicle. The accuracy of the
registration using ICP is dependent on the number of points and the nature of the scene. Therefore,
preprocessing steps are required as navigating in a dynamic environment needs context awareness
of objects surrounding the vehicle, which happens in most perception pipelines [19]. Therefore,
point cloud segmentation is required before using the ICP to register the point clouds. Figure 2 shows
a flowchart of the point cloud preparation.
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2.2.1. Ego Points Removal

The 3D-LiDAR used generates an organized point cloud in the form an M-by-N-by-3 array
containing the (x, y, z) coordinates of the points in the LiDAR body frame in meters. It also has a 360◦

horizontal field of view (FOV) and a 30◦ vertical FOV. It is mounted on the vehicle’s roof, which causes
the ego vehicle points to appear in each scan that can affect the ICP algorithm’s accuracy. Therefore,
to determine the ego vehicle points in the point cloud, the mounting location of the LiDAR is estimated
in the LiDAR body frame considering the vehicle’s dimensions The measurements of the vehicle
are defined, as shown in Equation (7), and assuming that the LiDAR is mounted horizontally to the
ground plane.

Dimensions = [Xmin Xmax Ymin Ymax Zmin Zmax] (7)

where (Xmin Xmax) corresponds to the width of the vehicle, (Ymin Ymax) corresponds to the length of the
vehicle, and (Zmin Zmax) corresponds to the height of the vehicle. With the aid of the vehicle’s entered
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dimensions, a cube is constructed around the mounting location of the LiDAR. As a result, any points
lying inside the constructed cube are considered the ego vehicle points and therefore are eliminated
from the scene. Figure 3 shows the ego vehicle points in a point cloud labeled in red.
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2.2.2. Segmentation of the Ground Points from the Point Cloud

After removing the ego vehicle points from the point cloud scene, the ground points are removed
next from the scene. Also, assuming that the LiDAR is mounted horizontally to the ground plane
and that it appears in at least the lowest row of the point cloud. Therefore, an elevation angle (α)
is set as a threshold and the point of the lowest orientation angle (θi) is labeled as a ground point.
Then, the elevation angle is computed between a ground point and its four connected neighbor points.
The neighborhood point is labeled as a ground point if the difference is below the specified (α). Figure 4
shows the ground points labeled in yellow while the ego vehicle points are labeled in red.Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 27 
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2.2.3. LiDAR Point Cloud Clustering

Point cloud clustering methods have been widely used to group points with similar spectral
features into the same homogenous pattern [20]. The 3D-LiDAR used in this work is the Velodyne
PUCK LITETM [21], which has 16 channels of individual laser pulse projectors. This LiDAR has a 2◦

vertical angular resolution, while the horizontal angular resolution ranges from 0.1◦ to 0.4◦ depending
on the scanning speed. This considerable difference between the vertical and horizontal angular
resolutions has an impact on the clustering process. The clusters are created based on the Euclidean
distance between the neighboring points A and B. Threshold is set for the maximum distance between
two neighboring points. A potential problem would occur when the two laser measurements are
within the distance threshold but belong to another object. Therefore, another constraint on the angle
between the neighboring points and the LiDAR is employed. A line is created passing through the
sensor at O, and point A forms the first side of the angle. The second side of the angle is formed by
passing a line through points A and B, as illustrated in Figure 5.
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An angle (β) is formed and defined as the angle between the laser beam from the sensor and the
line connecting A and B. If the angle (β) is greater than the specified angle threshold, then the points are
grouped in the same cluster. Figure 6 shows the clustered point cloud with each cluster given a unique
color. It was observed that some of the clusters contained one or two points per cluster. Therefore,
clusters that contain such little points are discarded from the point cloud scene.
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2.2.4. Point Cloud Denoising

The point cloud may contain points that are beyond the scanning range of the LiDAR, or the laser
encountered an absorbing material that attenuated the laser pulse. When this phenomenon happens,
the LiDAR registers these points in the point cloud as either infinite (Inf) or Not a Number (NaN).
However, some points are noisy and irrelevant to the scene, which can cause noisy outputs when using
the ICP algorithm. Therefore, the point cloud is denoised to remove the outliers and noise from the
scene. The denoising is accomplished based on computing the standard deviation (SD) of the mean of
the average distance of the neighbor points, as shown in the following Equation (8):

SD =

√∑(
Di −D

)2

N − 1
(8)

where, Di is the distance measured at a point i, D is the mean of the distances of the neighboring
point, and N is the number of neighboring points. The term

(
Di −D

)
is the deviation of the distance of

point i from the mean. Increasing the number of neighboring points N would increase the number
of computations while decreasing it would make the filter more sensitive to noise. As illustrated in
Figure 7a shows the raw point cloud while the red circles highlight the most distinctive points that are
removed from the scene. Figure 7b illustrates the denoised point cloud.
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2.2.5. Point Cloud Downsampling

The 3D-LiDAR generates around 300,000 points per second [21]. Therefore, any scan matching
algorithm will require high computation power to process the point cloud [22]. So, the downsampling
step is essential to reduce the computational complexity of the scan matching algorithm. Downsampling
is achieved by applying a box grid filter on the point cloud. The Grid size is defined based on the
manner of not losing any distinctive features in the point cloud scene but reducing the number of points.
The downsampling step is considered the most critical parameter of the scan matching algorithm as it
controls the speed of the registration. Figure 8a shows the normal point cloud, and Figure 8b shows
the downsampled point cloud.
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2.2.6. Iterative Closest Point (ICP)

The ICP is the method used in this work to register the point clouds and obtain the translation
and rotation between the point clouds. The ICP relies on finding the least square rigid transformation
that minimizes the distance between two point cloud sets. Several implementations of the ICP suffer
drawbacks as its tendency to diverge if the initial alignment is not proper. This divergence in the ICP is
overcome by setting an initial point of (0, 0, 0) in the (x, y, z) coordinates of the LiDAR body frame.
A six DoF spatial rigid transformation in three-dimensional Euclidean space is estimated that preserves
the Euclidean distance between the point clouds. After the preprocessing done on the point cloud, the
ICP algorithm registers the points in the fixed point cloud with the closest point in the moving point
cloud to achieve the minimum Root Mean Squared (RMS) error. A point-to-plane approach, which is a
variant of the ICP, is applied in this work. This method leverages the advantages of the normal surface
information by minimizing the Root-Mean-Squared (RMS) error between a point and its tangent plane
to improve robustness and accuracy. The ICP algorithm output consists of a transformation matrix, as
shown in Equation (9) and the RMS error in the transformation.

T f orm =


cos

(
θy

)
∗ cos(θz) −sin(θz) sin

(
θy

)
0

sin(θz) cos(θx) ∗ cos(θz) −sin(θx) 0
−sin

(
θy

)
sin(θx) cos(θx) ∗ cos

(
θy

)
0

∆x ∆y ∆z 1

 (9)

The T f orm is a 4 × 4 matrix that is a combination of the translations and rotations that represent
the ways that objects move in the world. The translations are defined as the 4th and last row of the
T f orm which comprises of (∆x, ∆y, ∆z). While the angles (θx, θy, θz) are the Euler angles that define
each rotation in the (x, y, z) directions, respectively.

It is expected that when the vehicle is stationary, pedestrians and cars will be moving in the scene.
This phenomenon could lead to incorrect registration of the point clouds, and as a result, significant
deviations are imposed on the translations and rotations. However, when the vehicle is stationary,
it was observed that the RMS error between the point clouds is minimal in contrast to when the vehicle
is mobile. Therefore, when the ICP algorithm starts to work, a few epochs are used at first to calculate
an average for the RMS error of the ICP. The RMS error average is used as a threshold to determine if
the registration process does not provide reliable measurements. Therefore, an approach to use the
vehicle’s odometer with the RMS error to stop the registration of the ICP is introduced due to the
correlation of the vehicle’s speed and RMS error of the ICP. A threshold is set at 1 m/s for the vehicle’s
velocity. This way, we can ensure that when the car is nearly at rest, this would mean that the RMS
error should be less than the average RMS error calculated at first. Therefore, if a spike in the RMS
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error at low speeds occur, it would not affect the stopping of the ICP registration. Figure 9 shows over
180 s the relation between the RMS error and vehicle’s speed, highlighting the calculated average RMS
error of the ICP, which is 0.6 m in this scenario.
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The LO output is composed of the displacement and the heading from the initial point (0, 0, 0) to the
destination. These movements are the accumulation of the translations in (x, y, z) directions in the LiDAR
body frame. These movements are transformed from the body frame to the LLF. The transformation to
the LLF requires an initial point with curvilinear coordinates in the LLF (ϕo, λo, ho) to be known along
with its heading (Azi). After that, the position in the rectangular coordinates (E, N, U) is calculated as
follows: 

∆PEk

∆PNk

∆PUpk

 =


cos(Azik) −sin(Azik) 0
sin(Azik) cos(Azik) 0

0 0 1




∆xk
∆yk
∆zk

 (10)

where (∆PEk , ∆PNk , ∆PUpk ) denotes the change in position in the East, North, and Upward directions at
each epoch k in the LLF. The (∆PUpk ) is then accumulated each epoch on the initial altitude to calculate
(hLiDARk ) as depicted in Equation (11). Then, the (∆PNk ) and (∆PEk ) in each epoch are used to obtain
the (ϕLiDARk ) and (λLiDARk ) of the geodetic coordinates in Equations (12) and (13), respectively.

hLiDARk = ∆PUpk + hLiDARk−1 (11)

ϕLiDARk =
∆PNk

RM + hLiDARk

+ ϕLiDARk−1 (12)

λLiDARk =
∆PEk(

RN + hLiDARk

)
∗ cos

(
ϕLiDARk

) ) + λLiDARk−1 (13)

2.3. LiDAR/RISS/GNSS Integration

The LiDAR/RISS/GNSS, an integrated navigation system, is proposed to reset the biases of the
inertial sensors in the 3D-RISS solution, as shown in Figure 10. The system utilizes the EKF in a
loosely-coupled fashion for the integration. The 3D-RISS is used for prediction, while the switching
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algorithm toggle the GNSS and LiDAR to provide the measurement updates in the EKF. Nonetheless,
if both sensors fail to provide a reliable solution, the 3D-RISS works as a standalone system to provide
a navigation solution.
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Figure 10. LiDAR/RISS/GNSS System Architecture.

Switching Criterion

In order to maximize the benefits of integrating GNSS, LiDAR, and inertial sensors, we are
developing a method to choose the system (GNSS or LiDAR) that is most reliable for integration
with RISS. The position measurement update will switch between GNSS and LiDAR. The switching
criterion of this Multi-Sensor System (MSS) relies on several factors from the readings of the GNSS
receiver, the ICP algorithm, and values from the IMU measurements. This way, a dynamic and robust
integrated navigation system in urban environments is introduced. The GNSS receiver provides at
each epoch the number of satellites it is observing along with the value of the Geometric Dilution of
Precision (GDOP). The GDOP value provides an understanding of the satellite geometry observed
by the receiver [1]. Also, the SD of the 3D-position provided by the GNSS indicates the reliability of
the GNSS performance. Since an LC integration is utilized, the number of satellites observed plays a
massive role in the accuracy of the RISS/GNSS integration. Therefore, the GNSS would fail to provide
a reliable solution if the number of satellites observed falls below four. Moreover, if the GDOP value
is too high, this would also result in unreliable GNSS measurements. The GDOP is calculated using
the parameters of the user’s position and time bias errors, which are the latitude, longitude, altitude,
and time to those of the pseudo-range errors from the GNSS:

GDOP =
√

qxx + qyy + qzz + qtt (14)

where the (qxx, qyy, qzz, qtt) represent the variance of the estimated user position in each axis and in the
user time offset. It is also observed that when the SD of the 3D-position starts to increase in value,
the GNSS positioning solution starts to drift from the reference solution. Therefore, depending on the
GDOP value, and the SD of the 3D-position, the switching architecture acts accordingly. Therefore,
if the GDOP increase in value above two, then the SD of the 3D-position provided by the GNSS receiver
is checked. If the SD appears to be increasing over time and above the 1-meter specified threshold,
then the switching architecture changes to the LiDAR to provide the measurement updates within the
EKF. The SD of the GNSS can be calculated using the following formulas:

σ2
E = σ2H̃11; σ2

N = σ2H̃22; σ2
U = σ2H̃33; σ2

b = σ2H̃44 (15)
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H̃ =


EDOP2

NDOP2

VDOP2

TDOP2

 (16)

where, σE, σN, σU are the SD of the East, north, and up components of the position error, respectively.
Also, the diagonal elements of H̃ correspond to the East, north, vertical, and time DOP, respectively [6].
However, the SD in this paper is provided directly from the GNSS receiver [23].

Furthermore, the switching algorithm switches to the LiDAR to provide the measurement updates
based on the RMS error value of the ICP algorithm. Therefore, if the RMS error increases in value
above the calculated average, it switches to the 3D-RISS standalone. The 3D-RISS uses the last reliable
measurement as an initial point. The 3D-RISS solution starts to drift when a sudden dynamic is
captured in the IMU unit. Therefore, a threshold is set on the (wz) between (0.1) and (−0.1) to maintain
the 3D-RISS only solution. The (wz) are specified based on observation and analysis. Therefore,
the readings above (0.1) and lower than (−0.1) reflects a vehicle dynamic, which can be either a lane
change or a turn. The algorithm will switch back to either the GNSS or the LiDAR to provide the
measurement updates if (wz) is not within the threshold. Figure 11 provides a detailed flowchart of the
switching algorithm.
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In the MSS proposed, the 3D-RISS is used for the prediction while the measurement updates
are provided by the multi-modal switching algorithm’s output. For the RISS/GNSS case, the system
and measurement models are explained in detail in [6]. In the LiDAR/RISS case, the system model
is similar to that of the RISS/GNSS, while the measurement model is different as other states are
observed. Hence, the design matrix (Hk, LiDAR) will change as the states observed in the LiDAR are
the 3D-position and the azimuth. The measurement model for the LiDAR/RISS will be formulated,
as shown in Equation (15)

δzk, LiDAR/RISS =


ϕRISS −ϕLiDAR
λRISS − λLiDAR
hRISS − hLiDAR

AziRISS −AziLiDAR

 (17)
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Also, the design matrix (Hk, LiDAR) at discrete-time (k) is presented in Equation (16):

Hk,LiDAR =


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0

. (18)

Similar to the GNSS in the measurement update, the vector of measurement noise (ηk, LiDAR) has a
zero-mean Gaussian distribution with covariance matrix (Rk, LiDAR) that is measured at each epoch.
The (Rk, LiDAR) diagonal terms represent the variance of the measured states, as shown in Equation (17):

Rk,LiDAR =


σ2
φLiDAR

0 0 0

0 σ2
λLiDAR

0 0
0 0 σ2

hLiDAR
0

0 0 0 σ2
ALiDAR

 (19)

3. Experimental System Setup

Two real road trajectories were conducted to analyze and evaluate the performance of the proposed
MSS. In both trajectories, a Toyota Sienna minivan showed in Figure 12a was used in data collection,
and on the roof of the vehicle, the LiDAR is mounted as shown in Figure 12b. A custom-made mount
is made to get the maximum vertical FOV and to prevent any vibrations.
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Figure 12. (a) Minivan Used for the Trajectories; (b) Sensors Mounted on the Rooftop. 

A testbed is rigidly mounted in the car’s trunk, accomodating the reference solution from 

NovAtel along with two low-cost MEMS-based IMU, as shown in Figure 13. Only the VTI unit (Model 

number: SCC1300-D04 [25]) is used in providing the IMU measurements and the IMU unit used in 

our solution. Moreover, a GNSS antenna supplied by Ublox (Model number: ANN-MS-0-005 [26]) is 

Figure 12. (a) Minivan Used for the Trajectories; (b) Sensors Mounted on the Rooftop.

A testbed is rigidly mounted in the car’s trunk, accomodating the reference solution from NovAtel
along with two low-cost MEMS-based IMU, as shown in Figure 13. Only the VTI unit (Model number:
SCC1300-D04 [24]) is used in providing the IMU measurements and the IMU unit used in our solution.
Moreover, a GNSS antenna supplied by Ublox (Model number: ANN-MS-0-005 [25]) is used to collect
the GNSS signal used in the solution. The Ublox antenna is an active GNSS antenna that is considerably
low cost and used in most commercial cars with navigational capabilities. More detailed specifications
about the IMUs used for the reference and integration are listed in Table 1. The reference consists of an
OEM4 SPAN-SE GNSS receiver (Model number: OM-2000124 [26]) with a pinwheel receiver antenna
integrated with a tactical grade SPAN-CPT IMU (Model number: OM-2000122 [27]) in an ultra-tightly
coupled fashion.
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Scale Factor <0.15% <2%

Angle Random Walk 0.0667 deg/
√

hr 0.86 deg/
√

hr

Accelerometers

Scale Factor <0.4% <1%
Range ±10 g ±6 g

4. Results and Discussion

4.1. Road Trajectories

The proposed MSS’s performance is evaluated by the 2D maximum error and the 2D RMS error.
The system performance is also assessed using an additional metric of the deviation along the distance
traveled, which is calculated by dividing the RMS error by the total distance traveled for the whole
outage scenario. Since the main concern is the navigation for land vehicles, the metrics are limited
to 2D. The data is analyzed on an Intel Core i7-8750H CPU, at 2.20 GHz, with a 32GB RAM running
Windows 10 with an NVIDIA GeForce RTX 2070 Max-Q design GPU. The map overlays were created
on Google earth using an online tool called GPS visualizer [28].

The results presented in this paper are divided into two trajectories. The first trajectory focus on
evaluating the performance of the LiDAR/RISS tested in a suburban area while introducing an artificial
GNSS outage. The second trajectory focuses on switching between the LiDAR, GNSS, and the 3D-RISS
standalone to achieve a robust and continuous navigation solution in different scenarios.

4.1.1. First Road Trajectory

The first trajectory was performed in the city of Kingston, Ontario, Canada, which is considered
as a suburban environment as low-mid rise buildings characterize it. The trajectory was conducted in
the afternoon around 4 pm on 23 May 2018. It lasted for 17 min and was 2.25 km in length. Due to
the infrastructure of the city, and there is hardly any place with extended GNSS coverage. Therefore,
two artificial outages were introduced in a post-processing mode to evaluate the performance over
different scenarios. Figure 14 shows the full trajectory highlighting the simulated outages chosen to
assess the proposed LiDAR/RISS navigation solution.
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Figure 14. First Trajectory Highlighting the Simulated Outages.

The first simulated outage shown in Figure 15, lasted for 80 s, and covered a distance of 380 m,
passing through a four-way intersection and one sharp turn. Figure 15 presents the results from the
LiDAR/RISS solution, the 3D-RISS standalone, and the NovAtel reference solution.
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Figure 15. Navigation Solution for 3D-RISS, LiDAR/RISS, and NovAtel Reference during Simulated
GNSS Outage 1, First Trajectory.

The 3D-RISS standalone resulted in an RMS error of 7.8 m, while the LiDAR/RISS resulted in an
RMS error of 4.6 m, which is a 41% improvement. Moreover, the 3D-RISS resulted in a 2D maximum
error of 11.87 m, while the LiDAR/RISS showed a slight improvement to 11 m, which is a 7.3%
improvement. The deviation over the 380 m traveled was 2.05% for the 3D-RISS, while the LiDAR/RISS
was only 1.21%. Figure 16 shows the 2D position error over the first simulated outage.
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The second simulated outage, as shown in Figure 17, also lasted for 80 s, and traveled a distance
of 225 m with two sharp turns and a four-way intersection.
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Figure 17. Navigation Solution for 3D-RISS, LiDAR/RISS, and NovAtel Reference during Simulated
GNSS Outage 2, First Trajectory.

The 3D-RISS standalone resulted in an RMS error of 13.4 m, while the LiDAR/RISS showed an
improvement to 1.7 m, which is an 87% improvement. Moreover, the 2D maximum error in the 3D-RISS
was 28.03 m, while the LiDAR/RISS showed considerable improvement to 3.37 m, which is an 88%
improvement in the 2D maximum error. The deviation over the 225 m outage, the 3D-RISS deviated
12.45%, while the LiDAR/RISS only deviated 1.5%. The LiDAR/RISS was able to produce an overall
better performance compared to the 3D-RISS. Figure 18 shows the 2D position error in meters over the
second simulated outage.
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Figure 18. 2D Position Error for Outage 2, First Trajectory.

As observed in Figure 18, the 3D-RISS deviates from the reference solution due to dynamics
introduced in the (wz). However, it is observed that between the seconds 61 to 74, the 3D-RISS
standalone solution has a lower 2D position error than the LiDAR/RISS. This observation has led to
the motivation of using the 3D-RISS standalone in the switching algorithm, which was explained in
Section 3. As the 3D-RISS is given an appropriate initial point, it can perform for a short period without
drifting, and this will further be illustrated the second trajectory.

4.1.2. Second Road Trajectory

The second road trajectory was done in a dense urban area environment. It was conducted
in the city of Toronto, Ontario, Canada, which is considered a challenging urban area in which the
GNSS signal frequently suffers from total blockage and multipath. Therefore, this is considered the
main challenge for the proposed MSS and how it can operate in various environments with different
scenarios. The trajectory was conducted around noon on 13 June 2018. It lasted for 1 h and 14 min and
was 24.4 km in length. Figure 19 shows the trajectory highlighting the scenario selected. The scenario
selected started with a good signal of GNSS, then the GNSS signal degrades.

The scenario, as shown in Figure 19, lasted for 9 min and 45 s and covered a distance of 1.98 km.
The scenario starts at the highway, where a direct line of sight with the GNSS satellites was established,
and the GNSS provided a reliable result. Then, leaving the highway through an exit and facing a stop
sign where we took a right turn into a tunnel. While entering the tunnel, the GNSS signal was lost.
Then, coming out of the tunnel, the vehicle encountered an intersection and a red traffic light. The car
then took a sharp left at the intersection, where the downtown area began to form with high-rise
buildings on each side. After that, the vehicle faced a straight road with two traffic lights. Then, at the
second traffic light, a slight right turn was made into a straight road until a traffic light where the
vehicle took a right turn at the traffic light. Figure 20 shows the complete selected scenario and the
navigation solution between the 3D-RISS, the GNSS, the proposed solution LiDAR/RISS/GNSS, and the
reference solution.
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Figure 20. Navigation Solution for 3D-RISS, GNSS, LiDAR/RISS/GNSS, and NovAtel Reference During
the Selected Scenario.

The 3D-RISS standalone resulted in an RMS error of 46.37 m, while the proposed MSS showed a
massive improvement to 16.28 m, which is a 64% improvement in the RMS error value. Moreover,
the 3D-RISS standalone resulted in a 2D maximum error of 121.8 m, while the MSS showed considerable
improvement to 40 m, which is a 67% improvement in the 2D maximum error value. Also, the deviation
along the distance traveled for the standalone 3D-RISS was 6% compared to the MSS of only 2%.
Figure 21 shows the 2D position error in meters, highlighting the switching between the systems.
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Figure 21. 2D Position Error for Second Trajectory Scenario.

LiDAR/RISS/GNSS does not imply a positioning solution from the three sensors at the same
time. However, it is an overall positioning solution toggling between the sensors according to the
switching criteria. The algorithm worked on switching between the LiDAR, the GNSS and the 3D-RISS
standalone as follows:

• For the first 147 s, the algorithm was using the GNSS to provide updates in the EKF as it was an
open sky environment with good satellite geometry, as shown in Figure 22 from the GDOP values.

• After that, for the next 111 s, the algorithm switched to the LiDAR to provide the measurement
updates as the ICP’s RMSE has a low value. As the GDOP values in Figure 22 have spiked as it
lost all the GNSS satellites while entering the tunnel. Also, observed in Figure 23 that the SD of
the 3D-position begins to increase in value.

• Then, for the next 80 s, the algorithm switched to the 3D-RISS standalone to provide a navigation
solution as the RMS error in the ICP was increasing, as shown in Figure 24.

• Finally, when relying only on the 3D-RISS solution, when a sharp turn is detected by the (wz),
as shown in Figure 25, it is switched back to the LiDAR. Therefore, for the last 247 s, the switching
criteria will check the GDOP and SD of the GNSS and will find them unsuitable for toggling
to the GNSS. Therefore, it will use the LiDAR to provide the measurement updates for the
system. As observed in Figures 22 and 23, the GDOP and the SD of the 3D-position provided
by the GNSS are still high, which is the reason why we did not rely on the GNSS to provide the
measurement updates.

To further explain the scenario, Figure 26 shows the beginning of the chosen scenario. The
scenario begins on the highway, where a clear line of sight with the satellites is present, and the
GNSS signal provides a reliable solution. The GNSS reliability can be verified from the measurements
in Figures 22 and 23. However, as the vehicle exits the highway, the GNSS measurements become
unreliable. Also, as observed in Figure 26, the standalone 3D-RISS begins to drift as the vehicle starts
exiting the highway.
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Figure 23. The SD of the 3D-position Provided by the GNSS Before, During, and After the Scenario
Highlighting the Switching Between the Systems.

Figure 27 shows the LiDAR taking the place of the GNSS in providing the measurement updates
in the EKF. As shown in Figure 24, the RMSE of the ICP is decreasing as we exit the highway and
moving on lower speeds. Therefore, the LiDAR/RISS takes over from the RISS/GNSS at the exit of
the highway, then to a right turn where the car enters the tunnel. Inside the tunnel, the vehicle is
faced with a stalled car, and from this point, the 3D-RISS starts to drift. However, the LiDAR with
the stopping criterion proposed to stop the registration when the vehicle’s speed is lower than the
specified threshold of 1 m/s. The LiDAR still provides excellent accuracy and does not drift until the
vehicle reaches the traffic light and then takes a left turn. After the left turn, due to the glass panels on
the buildings, the LiDAR/RISS solution begins to drift.
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Figure 25. The (wz)measured by the IMU in the Selected Scenario.

The LiDAR/RISS solution began to drift when nearing buildings with large glass panels in the
front. When the RMS error of the ICP is above the set threshold, this indicates the LiDAR is beginning
to drift. Therefore, the algorithm checks the (wz) of the IMU if it is within the specified range, as shown
in Figure 25. So, the algorithm switches to the 3D-RISS standalone to provide the navigation solution.
The last valid update of the LiDAR/RISS is used as an initial point for the 3D-RISS. As illustrated in
Figure 28, the 3D-RISS takes over for 80 s while the LiDAR registration is working in the background.
The switching algorithm keeps monitoring the (wz) of the IMU until it detects that the value is below
or above the specified range, as shown in Figure 25. Then, the algorithm switches to back the LiDAR
when it finds that the GDOP and the SD of 3D-position from GNSS have high values that correspond
to unreliable GNSS measurements.
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Figure 26. Navigation solution for 3D-RISS, GNSS, LiDAR/RISS/GNSS, and NovAtel reference at the
Beginning of the Scenario.
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Figure 27. Navigation solution for 3D-RISS, GNSS, LiDAR/RISS/GNSS, and NovAtel Reference During
the Scenario (First Switch).

Figure 27 shows the final part of the scenario, where the LiDAR/RISS provides a solution for 250 s.
Monitoring the GDOP values and SD of the 3D-position provided by the GNSS in Figures 22 and 23,
the GNSS still does not provide a reliable solution. Moreover, the 3D-RISS standalone at this point due
to the sensor error accumulation drifts far away from the solution. The LiDAR/RISS, however, provides
a robust, reliable solution in urban areas. As shown in Figure 29, the vehicle passed three traffic lights
making a right turn at the last one. After the right turn, as shown in Figure 21, the 2D-position error
increases at the end. This increase was due to the large glass panels on the buildings. Therefore, this is
the part where the algorithm will detect the increase in the RMS error of the ICP and act accordingly.
To either switch to the standalone 3D-RISS or the GNSS.
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The previous results and analysis indicate that the proposed MSS mitigates the 3D-RISS drift
during the GNSS outage period. Moreover, the MSS provides an overall reliable navigation solution
due to its capability of switching between different systems.

5. Conclusions

In conclusion, the work done in this paper introduced an integration scheme of the
LiDAR/RISS/GNSS to provide a navigation solution for land vehicles in challenging GNSS environments.
Moreover, a switching criterion is proposed to select among the sensors to provide an overall robust
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navigation solution in different scenarios. The performance of the proposed MSS is assessed based on
two different trajectories in two different environments.

The first trajectory conducted in a suburban environment, which is why we introduced an artificial
GNSS outage to assess the performance of the LiDAR/RISS integration. It was observed that in an
80-second outage, the LiDAR/RISS showed an improvement over the 3D-RISS standalone. Over two
simulated outages without the aid of GNSS, the LiDAR/RISS showed an improvement of 41% and 87%
percent, respectively. Also, the LiDAR/RISS provided only a 1% deviation over the distance traveled
on both outages while the 3D-RISS standalone showed a 2.05% and a 12.45% deviation, respectively.

The second trajectory, conducted in a downtown area with high rise buildings and crowded
areas. As the GNSS signals are faced with multipath and shadowing, the switching algorithm was
created to toggle between the LiDAR and GNSS in aiding the INS. The switching algorithm used
the GDOP value, the number of satellites, and the SD of the 3D-position provided by the GNSS.
Also, the RMS error of the ICP along with the value of the (wz) from the IMU. Over a 10-min outage,
the system switched between the RISS/GNSS system to the LiDAR/RISS to the 3D-RISS standalone
to accommodate different scenarios and provide a robust and reliable navigation solution for land
vehicles. The LiDAR/RISS/GNSS showed a significant improvement over the 3D-RISS standalone
by 64%. Furthermore, the total distance traveled was 2 km, and the deviation of the MSS was 2%
compared to the 3D-RISS, which was a 6% deviation over the traveled distance.

Author Contributions: Conceptualization, A.A., A.S.E.-W., H.E. and A.N.; methodology, A.A., A.S.E.-W., H.E.,
and A.N; software, A.A; formal analysis, A.A., A.S.E.-W., H.E. and A.N.; investigation, A.A., A.S.E.-W., H.E.
and A.N.; data collection, A.A, A.S.E, and H.E; writing—original draft preparation, A.A; writing—review and
editing, A.S.E, H.E, and A.N; supervision, A.N.; funding acquisition, A.N. All authors have read and agreed to the
published version of the manuscript.

Funding: This research is supported by a grant from the Natural Sciences and Engineering Research Council of
Canada (NSERC) under grant number: RGPIN-2020-03900.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wang, K.; Teunissen, P.J.G.; El-Mowafy, A. The ADOP and PDOP: Two Complementary Diagnostics for
GNSS Positioning. J. Surv. Eng. 2020, 146, 04020008. [CrossRef]

2. Georgy, J.; Noureldin, A.; Goodall, C. Vehicle Navigator Using a Mixture Particle Filter for Inertial
Sensors/Odometer/Map Data/GPS Integration. IEEE Trans. Consum. Electron. 2012, 58, 544–552. [CrossRef]

3. Peshekhonov, V.G. Gyroscopic navigation systems: Current status and prospects. Gyroscopy Navig. 2011, 2,
111. [CrossRef]

4. Binder, Y.I. Dead Reckoning Using an Attitude and Heading Reference System Based on a Free Gyro with
Equatorial Orientation. Gyroscopy Navig. 2017, 8, 104–114. [CrossRef]

5. Li, T.; Zhang, H.; Gao, Z.; Niu, X.; El-Sheimy, N. Tight Fusion of a Monocular Camera, MEMS-IMU,
and Single-Frequency Multi-GNSS RTK for Precise Navigation in GNSS-Challenged Environments.
Remote Sens. 2019, 11, 610. [CrossRef]

6. Noureldin, A.; Karamat, T.; Georgy, J. Fundamentals of Inertial Navigation, Satellite-Based Positioning and Their
Integration; Springer: Berlin, Germany, 2013; pp. 297–313.

7. El-Wakeel, A.S.; Osman, A.; Zorba, N.; Hassanein, H.S.; Noureldin, A. Robust Positioning for Road
Information Services in Challenging Environments. IEEE Sens. J. 2020, 20, 3182–3195. [CrossRef]

8. Iqbal, U.; Okou, A.F.; Noureldin, A. An Integrated Reduced Inertial Sensor System—RISS/GPS for Land
Vehicle. In Proceedings of the 2008 IEEE/ION Position, Location and Navigation Symposium, Monterey, CA,
USA, 5–8 May 2008; pp. 1014–1021. [CrossRef]

9. Balid, W.; Tafish, H.; Refai, H.H. Intelligent Vehicle Counting and Classification Sensor for Real-Time Traffic
Surveillance. IEEE Trans. Intell. Transp. Syst. 2018, 19, 1784–1794. [CrossRef]

10. Veronese, L.d.; Badue, C.; Cheein, F.A.; Guivant, J.; de Souza, A.F. A Single Sensor System for Mapping in
GNSS-denied environments. Cogn. Syst. Res. 2019, 56, 246–261. [CrossRef]

http://dx.doi.org/10.1061/(ASCE)SU.1943-5428.0000313
http://dx.doi.org/10.1109/TCE.2012.6227459
http://dx.doi.org/10.1134/S2075108711030096
http://dx.doi.org/10.1134/S2075108717020031
http://dx.doi.org/10.3390/rs11060610
http://dx.doi.org/10.1109/JSEN.2019.2958791
http://dx.doi.org/10.1109/PLANS.2008.4570075
http://dx.doi.org/10.1109/TITS.2017.2741507
http://dx.doi.org/10.1016/j.cogsys.2019.03.018


Remote Sens. 2020, 12, 2323 25 of 25

11. Rusinkiewicz, S.; Levoy, M. Efficient Variants of the ICP Algorithm. In Proceedings of the Third International
Conference on 3-D Digital Imaging and Modeling, Quebec, QC, Canada, 28 May–1 June 2001; pp. 145–152.
[CrossRef]

12. Mohamed, S.A.S.; Haghbayan, M.; Westerlund, T.; Heikkonen, J.; Tenhunen, H.; Plosila, J. A Survey on
Odometry for Autonomous Navigation Systems. IEEE Access 2019, 7, 97466–97486. [CrossRef]

13. Zhang, S.; Guo, Y.; Zhu, Q.; Liu, Z. Lidar-IMU and Wheel Odometer Based Autonomous Vehicle Localization
System. In Proceedings of the 2019 Chinese Control and Decision Conference (CCDC), Nanchang, China,
3–5 June 2019; pp. 4950–4955. [CrossRef]

14. Khalife, J.; Ragothaman, S.; Kassas, Z.M. Pose Estimation with Lidar Odometry and Cellular Pseudoranges.
In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June
2017; pp. 1722–1727.

15. Chang, L.; Niu, X.; Liu, T.; Tang, J.; Qian, C. GNSS/INS/LiDAR-SLAM Integrated Navigation System Based
on Graph Optimization. Remote Sens. 2019, 11, 1009. [CrossRef]

16. ABrandt; Gardner, J.F. Constrained Navigation Algorithms for Strapdown Inertial Navigation Systems
with Reduced Set of Sensors. In Proceedings of the 1998 American Control Conference, ACC (IEEE Cat.
No. 98CH36207), Philadelphia, PA, USA, 26 June 1998; Volume 3, pp. 1848–1852.

17. Iqbal, U.; Georgy, J.; Abdelfatah, W.F.; Korenberg, M.; Noureldin, A. Enhancing Kalman Filtering–based
Tightly Coupled Navigation Solution Through Remedial Estimates for Pseudorange Measurements Using
Parallel Sascade Identification. Instrum. Sci. Technol. 2012, 40, 530–566. [CrossRef]

18. Aboutaleb, A.; Ragab, H.; Nourledin, A. Examining the Benefits of LiDAR Odometry Integrated with GNSS
and INS in Urban Areas. In Proceedings of the 32nd International Technical Meeting of the Satellite Division
of The Institute of Navigation (ION GNSS+ 2019), Miami, FL, USA, 16–20 September 2019.

19. Bogoslavskyi, I.; Stachniss, C. Efficient Online Segmentation for Sparse 3D Laser Scans. Photogramm.
Fernerkund. Geoinf. 2016, 85, 41–52. [CrossRef]

20. Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep Learning for 3D Point Clouds: A Survey.
arXiv 2019, arXiv:1912.12033.

21. Velodyne LiDAR PUCK LITETM Datasheet. Available online: https://velodynelidar.com/products/puck-lite/

(accessed on 20 January 2020).
22. Zermas, D.; Izzat, I.; Papanikolopoulos, N. Fast Segmentation of 3D Point Clouds: A Paradigm on LiDAR

Data for Autonomous Vehicle Applications. In Proceedings of the 2017 IEEE International Conference on
Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 5067–5073. [CrossRef]

23. NovAtel. OEM4 Family User Manual-Volume 1. Available online: https://forsbergpnt.com/wp-content/
uploads/2016/04/OEM4-user-manual-Rev-19.pdf (accessed on 1 June 2020).

24. Abosekeen, A.; Noureldin, A.; Karamt, T.; Korenberg, M. Comparative Analysis of Magnetic-Based RISS using
Different MEMS-Based Sensors. In Proceedings of the 30th International Technical Meeting of the Satellite
Division of The Institute of Navigation (ION GNSS+ 2017), Portland, OR, USA, 25–29 September 2017.

25. Ublox. ANN-MS Active GPS Antenna Manual. Available online: https://www.u-blox.com/en/docs/UBX-
15025046 (accessed on 8 May 2020).

26. NovAtel. NovAtel SPAN-SETM Manual. Available online: https://www.novatel.com/assets/Documents/
Manuals/om-20000124.pdf (accessed on 8 May 2020).

27. NovAtel. NovAtel SPAN IMU-CPT Manual. Available online: https://www.novatel.com/assets/Documents/
Papers/IMU-CPT.pdf (accessed on 8 May 2020).

28. Schneider, A. GPS Visualizer. Available online: www.gpsvisualizer.com (accessed on 8 May 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/IM.2001.924423
http://dx.doi.org/10.1109/ACCESS.2019.2929133
http://dx.doi.org/10.1109/CCDC.2019.8832695
http://dx.doi.org/10.3390/rs11091009
http://dx.doi.org/10.1080/10739149.2012.704470
http://dx.doi.org/10.1007/s41064-016-0003-y
https://velodynelidar.com/products/puck-lite/
http://dx.doi.org/10.1109/ICRA.2017.7989591
https://forsbergpnt.com/wp-content/uploads/2016/04/OEM4-user-manual-Rev-19.pdf
https://forsbergpnt.com/wp-content/uploads/2016/04/OEM4-user-manual-Rev-19.pdf
https://www.u-blox.com/en/docs/UBX-15025046
https://www.u-blox.com/en/docs/UBX-15025046
https://www.novatel.com/assets/Documents/Manuals/om-20000124.pdf
https://www.novatel.com/assets/Documents/Manuals/om-20000124.pdf
https://www.novatel.com/assets/Documents/Papers/IMU-CPT.pdf
https://www.novatel.com/assets/Documents/Papers/IMU-CPT.pdf
www.gpsvisualizer.com
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	System Architecture and Mathematical Model 
	Three-Dimensional Reduced Inertial Sensor System (3D-RISS) 
	LiDAR Odometry 
	Ego Points Removal 
	Segmentation of the Ground Points from the Point Cloud 
	LiDAR Point Cloud Clustering 
	Point Cloud Denoising 
	Point Cloud Downsampling 
	Iterative Closest Point (ICP) 

	LiDAR/RISS/GNSS Integration 

	Experimental System Setup 
	Results and Discussion 
	Road Trajectories 
	First Road Trajectory 
	Second Road Trajectory 


	Conclusions 
	References

