
Remote Sens. 2020, 12, x FOR PEER REVIEW 1 of 7

Supplementary Materials: Semi-automatization of

support vector machines to map lithium (Li) bearing

pegmatites

Joana Cardoso-Fernandes*1,2, Ana C. Teodoro1,2, Alexandre Lima1,2 and Encarnación Roda-Robles3

1 Department of Geosciences, Environment and Land Planning, Faculty of Sciences, University of Porto, Rua

Campo Alegre, 4169-007 Porto, Portugal; amteodor@fc.up.pt (A.C.T.); allima@fc.up.pt (A.L.)
2 Institute of Earth Sciences (ICT), Pole of University of Porto, 4169-007 Porto, Portugal
3 Departamento Mineralogía y Petrología, Univ. País Vasco (UPV/EHU), Barrio Sarriena, 48940 Leioa,

Bilbao, Spain; encar.roda@ehu.es

* Correspondence: joana.fernandes@fc.up.pt

1. Splitting the data into training and test subsets

To ensure the independence between the training and test subsets, the samples were randomly

divided according to their respective region of interest (ROI). This means that the samples belonging

to the same ROI will either belong to the training or the test set. Unlike the scikit-learn’s

train_test_split function, the GroupShuffleSplit iterator does not allow to stratify the

sample splitting, i.e., GroupShuffleSplit does not guarantee that all classes will be present in both

subsets. Therefore, it is necessary to find, by trial and error method, a random state seed that satisfies

this condition (in this work the random seed found was 1020).

The data for this example can be found here: https://drive.google.com/drive/folders/1K43om-

5XMh0DBwSqwDF-Tz4CEW2ul92a?usp=sharing.

The Sentinel-2 image (S2B_MSIL2A_20190907T112119_N0213_R037_T29TPF_20190907T144322)

can be downloaded here: https://scihub.copernicus.eu/dhus/#/home.

The scikit-learn version is 0.20.1

Start with the general imports

import numpy as np

import pandas as pd

Load the data

path = '/user/…/'

S2_dataset = pd.read_csv(path, sep='\t')

Load the ROI information of every sample

path2 = '/user/…/'

groups = pd.read_csv(path2, sep='\t')

groups = groups['Groups'] # remove second column

groups = np.array(groups)

Create features

X_S2 = S2_dataset.drop('Classname', axis=1)

X_S2 = np.array(X_S2)

print("Features shape: {}".format(X_S2.shape))

https://drive.google.com/drive/folders/1K43om-5XMh0DBwSqwDF-Tz4CEW2ul92a?usp=sharing
https://drive.google.com/drive/folders/1K43om-5XMh0DBwSqwDF-Tz4CEW2ul92a?usp=sharing
https://scihub.copernicus.eu/dhus/#/home

Remote Sens. 2020, 12, x FOR PEER REVIEW 2 of 7

Create target

y_S2 = S2_dataset['Classname']

y_S2= np.array(y_S2)

print("Target shape: {}".format(y_S2.shape))

Use GroupShuffleSplit to create train/test set

from sklearn.model_selection import GroupShuffleSplit

train_inds, test_inds = next(GroupShuffleSplit(test_size=0.25,

random_state=1020).split(X_S2, y_S2, groups))

X_train, X_test, y_train, y_test = X_S2[train_inds],

X_S2[test_inds], y_S2[train_inds], y_S2[test_inds]

print("X_train shape: {}".format(X_train.shape))

print("y_train shape: {}".format(y_train.shape))

print("X_test shape: {}".format(X_test.shape))

print("y_test shape: {}".format(y_test.shape))

2. First stage grid-search

Having the data loaded and the training/test subsets created, it is possible to instantiate the grid-

search process. Since the first stage requires more control from the operator, each model was

addressed separately. In practice, the first stage grid-search was repeated every time one of the

following variables changed: (i) type of data (imbalanced/balanced); (ii) type of model (Linear model,

linear kernel, polynomial kernel, and RBF kernel); (iii) parameter range.

As mentioned, the metric score employed in this first stage was the harmonic mean of the

precision and recall, i.e., the F1-score of the selected classes (Li-bearing pegmatite and

Metasediments). For that, it was necessary to create a personalized metric score to pass was one of

the GridSearchCV attributes. Instead of using the f1_score function directly, we decided to use

the fbeta_score since it gives the operator the ability to attribute a bigger weight to precision or to

recall according to the final goal.

For demonstration purposes, only the source code employed for the Linear model using the

class-weight balancing strategy is shown.

General imports

import matplotlib.pyplot as plt

import seaborn as sns; sns.set()

from sklearn.svm import LinearSVC

from sklearn.model_selection import GridSearchCV

from sklearn.metrics import fbeta_score

from sklearn.metrics import make_scorer

Make notebook stable across runs

np.random.seed(42)

Remote Sens. 2020, 12, x FOR PEER REVIEW 3 of 7

Make a personalized score (F1-score), where precision and recall

have the same weight

score_beta = make_scorer(fbeta_score, beta=1,

labels = ['Li-bearing pegmatite','Metasediments'],

average = 'micro')

Specify the parameter range (search space) using a dictionary

 # using the parameters used by Noi & Kappas 2018

param_grid = {'C':[0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128]}

print("Parameter grid:\n{}".format(param_grid))

Create grid-search

grid_search = GridSearchCV(LinearSVC(class_weight='balanced'),

param_grid, cv=5, n_jobs=-1, verbose=1, scoring=score_beta,

return_train_score=True)

Fit grid-search

grid_search.fit(X_train, y_train)

View best hyperparameters

print('Best C:', grid_search.best_estimator_.get_params()['C'])

Show best cross-validation F1-score

print("Best CV F1-score: {:.6f}".format(grid_search.best_score_))

Show the results of the grid search

results = pd.DataFrame(grid_search.cv_results_)

results

Show results in an image

scores = np.array(results.mean_test_score)

C_param = [0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128]

plt.plot(C_param, scores)

plt.xlabel('C')

plt.ylabel('scores')

3. Second stage grid-search, model evaluation and image prediction

This section corresponds to the automatized part of the image classification process. During the

second stage grid-search, the Linear model, linear kernel and RBF kernel are confronted, and the best

model is automatically returned. The best model is evaluated using the test subset and used to predict

the whole image.

The following source code exemplifies the automated process of model selection, evaluation and

classification for the imbalanced dataset. As before, the training/test subsets are already loaded.

Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 7

General imports

import matplotlib.pyplot as plt

import seaborn as sns; sns.set()

import pandas as pd

from sklearn.svm import SVC

from sklearn.svm import LinearSVC

from sklearn.model_selection import GridSearchCV

from sklearn.pipeline import Pipeline

import rasterio as rio

from rasterio import plot

import geopandas as gpd

Make notebook stable accross runs

np.random.seed(42)

Create a pipeline

pipe = Pipeline([("classifier", SVC())])

Create dictionary with candidate algorithms and their parameters

search_space = [{"classifier": [LinearSVC()],

 "classifier__max_iter": [2500],

 "classifier__C": [30.5, 31, 31.5, 32, 32.5, 33, 33.5]},

 {"classifier": [SVC()],

 "classifier__kernel":['linear'],

 "classifier__C": [6.5, 7, 7.5, 8, 8.5, 9, 9.5]},

 {"classifier": [SVC()],

 "classifier__kernel":['rbf'],

 "classifier__C": [0.5, 1, 1.5, 2, 2.5, 3, 3.5],

 "classifier__gamma": [1.4,1.6,1.8,2,2.2,2.4,2.6]}]

Create grid-search

grid_search = GridSearchCV(pipe, search_space, cv=5, n_jobs=-1,

verbose=1, scoring= 'accuracy', return_train_score=True)

Fit grid-search

best_model = grid_search.fit(X_train, y_train)

print("Best parameters: {}".format(best_model.best_params_))

print("Best CV score: {:.6f}".format(best_model.best_score_))

print("Test-score: {:.6f}".format(best_model.score(X_test,y_test)))

Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 7

Show the results of the grid search

results = pd.DataFrame(best_model.cv_results_)

Nested cross-validation to evaluate the best model

from sklearn.model_selection import cross_val_score

scores= cross_val_score(grid_search, X_S2, y_S2)

print("Cross-validation scores: ", scores)

print("Mean cross-validation score: ", scores.mean())

Evaluate the classifier predictions

Predict labels for new data

y_predicted = best_model.predict(X_test)

Get classification report

from sklearn.metrics import classification_report

print(classification_report(y_test, y_predicted))

Show confusion matrix

from sklearn.metrics import confusion_matrix

matrix = confusion_matrix(y_test, y_predicted)

class_names = np.unique(S2_dataset["Classname"])

dataframe = pd.DataFrame(matrix, index=class_names,

columns=class_names)

plt.figure(figsize = (16,10))

sns.heatmap(dataframe, annot=True, cbar=None,

fmt='g',cmap='YlGnBu', annot_kws={"size": 15})

plt.title("Confusion Matrix",fontsize=32, pad=15),

plt.tight_layout()

plt.ylabel("True Class",fontsize=25, labelpad=15),

plt.xlabel("Predicted Class",fontsize=25, labelpad=15)

plt.xticks(fontsize=16,rotation = 45)

plt.yticks(fontsize=16)

plt.show()

Compute kappa statistics

from sklearn.metrics import cohen_kappa_score

kappa = cohen_kappa_score(y_test, y_predicted)

print("kappa statistics: ", kappa)

Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 7

Predict the whole image

#Load the Sentinel-2 bands

b2 = rio.open('/user/…/B2.tif')

b3 = rio.open('/user/…/B3.tif')

b4 = rio.open('/user/…/B4.tif')

b8 = rio.open('/user/…/B8.tif')

b11 = rio.open('/user/…/B11.tif')

b12 = rio.open('/user/…/B12.tif')

B2 = b2.read(1).astype('float32')

B3 = b3.read(1).astype('float32')

B4 = b4.read(1).astype('float32')

B8 = b8.read(1).astype('float32')

B11 = b11.read(1).astype('float32')

B12 = b12.read(1).astype('float32')

Write image to stack

reshaped_img = np.dstack([B2, B3, B4, B8, B11, B12])

print(reshaped_img.shape)

Predict image

class_prediction = best_model.predict(reshaped_img.reshape(-1, 6))

Reshape image back into a 2D matrix

class_prediction =

class_prediction.reshape(reshaped_img[:, :, 0].shape)

Convert the classes’ string labels to a numpy array

class_prediction[class_prediction == 'Agricultural fields'] = 0

class_prediction[class_prediction == 'Burned areas'] = 1

class_prediction[class_prediction == 'Granite'] = 2

class_prediction[class_prediction == 'Li-bearing pegmatite'] = 3

class_prediction[class_prediction == 'Metasediments'] = 4

class_prediction = class_prediction.astype(float)

Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 7

Export final image

Imb_acc = rio.open('/user/…/Final_classified_map.tiff','w',

 driver='Gtiff',

 width = b4.width,

 height = b4.height,

 count=1,

 crs = b4.crs,

 transform = b4.transform,

 dtype='float64')

Imb_acc.write(class_prediction,1)

Imb_acc.close()

