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1. Splitting the data into training and test subsets 

To ensure the independence between the training and test subsets, the samples were randomly 

divided according to their respective region of interest (ROI). This means that the samples belonging 

to the same ROI will either belong to the training or the test set. Unlike the scikit-learn’s 

train_test_split function, the GroupShuffleSplit iterator does not allow to stratify the 

sample splitting, i.e., GroupShuffleSplit does not guarantee that all classes will be present in both 

subsets. Therefore, it is necessary to find, by trial and error method, a random state seed that satisfies 

this condition (in this work the random seed found was 1020). 

The data for this example can be found here: https://drive.google.com/drive/folders/1K43om-

5XMh0DBwSqwDF-Tz4CEW2ul92a?usp=sharing.  

The Sentinel-2 image (S2B_MSIL2A_20190907T112119_N0213_R037_T29TPF_20190907T144322) 

can be downloaded here: https://scihub.copernicus.eu/dhus/#/home. 

 

## The scikit-learn version is 0.20.1 

# Start with the general imports 

import numpy as np 

import pandas as pd 

 

# Load the data 

path = '/user/…/' 

S2_dataset = pd.read_csv(path, sep='\t') 

 

# Load the ROI information of every sample 

path2 = '/user/…/' 

groups = pd.read_csv(path2, sep='\t') 

groups = groups['Groups'] # remove second column 

groups = np.array(groups) 

 

# Create features 

X_S2 = S2_dataset.drop('Classname', axis=1) 

X_S2 = np.array(X_S2) 

print("Features shape: {}".format(X_S2.shape)) 

 

 

https://drive.google.com/drive/folders/1K43om-5XMh0DBwSqwDF-Tz4CEW2ul92a?usp=sharing
https://drive.google.com/drive/folders/1K43om-5XMh0DBwSqwDF-Tz4CEW2ul92a?usp=sharing
https://scihub.copernicus.eu/dhus/#/home
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# Create target  

y_S2 = S2_dataset['Classname'] 

y_S2= np.array(y_S2) 

print("Target shape: {}".format(y_S2.shape)) 

# Use GroupShuffleSplit to create train/test set 

from sklearn.model_selection import GroupShuffleSplit 

 

train_inds, test_inds = next(GroupShuffleSplit(test_size=0.25,  

random_state=1020).split(X_S2, y_S2, groups)) 

 

X_train, X_test, y_train, y_test = X_S2[train_inds],  

X_S2[test_inds], y_S2[train_inds], y_S2[test_inds] 

                                                    

print("X_train shape: {}".format(X_train.shape)) 

print("y_train shape: {}".format(y_train.shape)) 

print("X_test shape: {}".format(X_test.shape)) 

print("y_test shape: {}".format(y_test.shape)) 

2. First stage grid-search  

Having the data loaded and the training/test subsets created, it is possible to instantiate the grid-

search process. Since the first stage requires more control from the operator, each model was 

addressed separately. In practice, the first stage grid-search was repeated every time one of the 

following variables changed: (i) type of data (imbalanced/balanced); (ii) type of model (Linear model, 

linear kernel, polynomial kernel, and RBF kernel); (iii) parameter range.  

As mentioned, the metric score employed in this first stage was the harmonic mean of the 

precision and recall, i.e., the F1-score of the selected classes (Li-bearing pegmatite and 

Metasediments). For that, it was necessary to create a personalized metric score to pass was one of 

the GridSearchCV attributes. Instead of using the f1_score function directly, we decided to use 

the fbeta_score since it gives the operator the ability to attribute a bigger weight to precision or to 

recall according to the final goal.    

For demonstration purposes, only the source code employed for the Linear model using the 

class-weight balancing strategy is shown.  

 

# General imports 

import matplotlib.pyplot as plt 

import seaborn as sns; sns.set() 

from sklearn.svm import LinearSVC 

from sklearn.model_selection import GridSearchCV 

from sklearn.metrics import fbeta_score 

from sklearn.metrics import make_scorer 

 

# Make notebook stable across runs 

np.random.seed(42) 
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# Make a personalized score (F1-score), where precision and recall 

have the same weight 

score_beta = make_scorer(fbeta_score, beta=1,  

labels = ['Li-bearing pegmatite','Metasediments'], 

average = 'micro') 

 

# Specify the parameter range (search space) using a dictionary 

    # using the parameters used by Noi & Kappas 2018  

param_grid = {'C':[0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128]} 

print("Parameter grid:\n{}".format(param_grid)) 

 

# Create grid-search 

grid_search = GridSearchCV(LinearSVC(class_weight='balanced'), 

param_grid, cv=5, n_jobs=-1, verbose=1, scoring=score_beta, 

return_train_score=True) 

 

# Fit grid-search 

grid_search.fit(X_train, y_train) 

 

# View best hyperparameters 

print('Best C:',  grid_search.best_estimator_.get_params()['C']) 

 

# Show best cross-validation F1-score 

print("Best CV F1-score: {:.6f}".format(grid_search.best_score_)) 

 

# Show the results of the grid search 

results = pd.DataFrame(grid_search.cv_results_)  

results 

 

# Show results in an image 

scores = np.array(results.mean_test_score) 

C_param = [0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128] 

plt.plot(C_param, scores) 

plt.xlabel('C') 

plt.ylabel('scores') 

3. Second stage grid-search, model evaluation and image prediction 

This section corresponds to the automatized part of the image classification process. During the 

second stage grid-search, the Linear model, linear kernel and RBF kernel are confronted, and the best 

model is automatically returned. The best model is evaluated using the test subset and used to predict 

the whole image. 

The following source code exemplifies the automated process of model selection, evaluation and 

classification for the imbalanced dataset. As before, the training/test subsets are already loaded. 
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# General imports 

import matplotlib.pyplot as plt 

import seaborn as sns; sns.set() 

import pandas as pd 

from sklearn.svm import SVC 

from sklearn.svm import LinearSVC 

from sklearn.model_selection import GridSearchCV 

from sklearn.pipeline import Pipeline 

import rasterio as rio 

from rasterio import plot 

import geopandas as gpd 

 

 

# Make notebook stable accross runs 

np.random.seed(42) 

 

# Create a pipeline  

pipe = Pipeline([("classifier", SVC())]) 

 

# Create dictionary with candidate algorithms and their parameters 

search_space = [{"classifier": [LinearSVC()], 

    "classifier__max_iter": [2500], 

    "classifier__C": [30.5, 31, 31.5, 32, 32.5, 33, 33.5]}, 

    {"classifier": [SVC()], 

     "classifier__kernel":['linear'], 

    "classifier__C": [6.5, 7, 7.5, 8, 8.5, 9, 9.5]}, 

    {"classifier": [SVC()], 

     "classifier__kernel":['rbf'], 

     "classifier__C": [0.5, 1, 1.5, 2, 2.5, 3, 3.5], 

     "classifier__gamma": [1.4,1.6,1.8,2,2.2,2.4,2.6]}] 

 

# Create grid-search 

grid_search = GridSearchCV(pipe, search_space, cv=5, n_jobs=-1, 

verbose=1, scoring= 'accuracy', return_train_score=True) 

                            

# Fit grid-search 

best_model = grid_search.fit(X_train, y_train) 

 

print("Best parameters: {}".format(best_model.best_params_)) 

print("Best CV score: {:.6f}".format(best_model.best_score_)) 

print("Test-score: {:.6f}".format(best_model.score(X_test,y_test))) 
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# Show the results of the grid search 

results = pd.DataFrame(best_model.cv_results_) 

 

# Nested cross-validation to evaluate the best model 

from sklearn.model_selection import cross_val_score 

scores= cross_val_score(grid_search, X_S2, y_S2) 

print("Cross-validation scores: ", scores) 

print("Mean cross-validation score: ", scores.mean()) 

 

 

### Evaluate the classifier predictions 

# Predict labels for new data 

y_predicted = best_model.predict(X_test) 

 

# Get classification report  

from sklearn.metrics import classification_report 

print(classification_report(y_test, y_predicted)) 

 

# Show confusion matrix 

from sklearn.metrics import confusion_matrix 

matrix = confusion_matrix(y_test, y_predicted) 

class_names = np.unique(S2_dataset["Classname"]) 

dataframe = pd.DataFrame(matrix, index=class_names,  

columns=class_names) 

 

plt.figure(figsize = (16,10)) 

sns.heatmap(dataframe, annot=True, cbar=None,  

fmt='g',cmap='YlGnBu', annot_kws={"size": 15}) 

plt.title("Confusion Matrix",fontsize=32, pad=15),  

plt.tight_layout() 

plt.ylabel("True Class",fontsize=25, labelpad=15),  

plt.xlabel("Predicted Class",fontsize=25, labelpad=15) 

plt.xticks(fontsize=16,rotation = 45) 

plt.yticks(fontsize=16) 

plt.show() 

 

# Compute kappa statistics 

from sklearn.metrics import cohen_kappa_score 

kappa = cohen_kappa_score(y_test, y_predicted) 

print("kappa statistics: ", kappa) 
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## Predict the whole image 

#Load the Sentinel-2 bands 

b2 = rio.open('/user/…/B2.tif') 

b3 = rio.open('/user/…/B3.tif') 

b4 = rio.open('/user/…/B4.tif') 

b8 = rio.open('/user/…/B8.tif') 

b11 = rio.open('/user/…/B11.tif') 

b12 = rio.open('/user/…/B12.tif') 

 

B2 = b2.read(1).astype('float32') 

B3 = b3.read(1).astype('float32') 

B4 = b4.read(1).astype('float32') 

B8 = b8.read(1).astype('float32') 

B11 = b11.read(1).astype('float32') 

B12 = b12.read(1).astype('float32') 

 

# Write image to stack 

reshaped_img = np.dstack([B2, B3, B4, B8, B11, B12]) 

print(reshaped_img.shape) 

 

# Predict image 

class_prediction = best_model.predict(reshaped_img.reshape(-1, 6)) 

 

# Reshape image back into a 2D matrix  

class_prediction =  

class_prediction.reshape(reshaped_img[:, :, 0].shape) 

 

# Convert the classes’ string labels to a numpy array  

class_prediction[class_prediction == 'Agricultural fields'] = 0 

class_prediction[class_prediction == 'Burned areas'] = 1 

class_prediction[class_prediction == 'Granite'] = 2 

class_prediction[class_prediction == 'Li-bearing pegmatite'] = 3 

class_prediction[class_prediction == 'Metasediments'] = 4 

 

class_prediction = class_prediction.astype(float) 
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# Export final image 

Imb_acc = rio.open('/user/…/Final_classified_map.tiff','w', 

                          driver='Gtiff', 

                          width = b4.width,  

                          height = b4.height,  

                          count=1,  

                          crs = b4.crs,  

                          transform = b4.transform,  

                          dtype='float64') 

Imb_acc.write(class_prediction,1) 

Imb_acc.close() 

 

 


