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Abstract: Human activities are mainly responsible for the Aral Sea crisis, and excessive farmland
expansion and unreasonable irrigation regimes are the main manifestations. The conflicting needs
of agricultural water consumption and ecological water demand of the Aral Sea are increasingly
prominent. However, the quantitative relationship among the water balance elements in the oasis
located in the lower reaches of the Amu Darya River Basin and their impact on the retreat of the Aral
Sea remain unclear. Therefore, this study focused on the water consumption of the Nukus irrigation
area in the delta of the Amu Darya River and analyzed the water balance variations and their impacts
on the Aral Sea. The surface energy balance algorithm for land (SEBAL) was employed to retrieve
daily and seasonal evapotranspiration (ET) levels from 1992 to 2018, and a water balance equation
was established based on the results of a remote sensing evapotranspiration inversion. The results
indicated that the actual evapotranspiration (ETa) simulated by the SEBAL model matched the
crop evapotranspiration (ETc) calculated by the Penman–Monteith method well, and the correlation
coefficients between the two ETa sources were greater than 0.8. The total ETa levels in the growing
seasons decreased from 1992 to 2005 and increased from 2005 to 2015, which is consistent with the
changes in the cultivated land area and inflows from the Amu Darya River. In 2000, 2005 and 2010,
the groundwater recharge volumes into the Aral Sea during the growing season were 6.74×109 m3,
1.56×109 m3 and 8.40×109 m3; respectively; in the dry year of 2012, regional ET exceeded the river
inflow, and 2.36×109 m3 of groundwater was extracted to supplement the shortage of irrigation water.
There is a significant two-year lag correlation between the groundwater level and the area of the
southern Aral Sea. This study can provide useful information for water resources management in the
Aral Sea region.

Keywords: the Aral Sea; irrigation water consumption; evapotranspiration; surface energy balance
algorithm for land (SEBAL); water balance
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1. Introduction

The Aral Sea crisis has become a global ecological and social problem and is also one of the hotspots
in water resources research for Central Asia. As an inland lake, the variations in the water volume of
the Aral Sea are mainly determined by surface runoff, evaporation, rainfall and groundwater recharge.
Since the 1960s, surface runoff has been greatly reduced, and the Aral Sea has experienced the rapid
shrinkage, salinization and deterioration of its ecological environment. According to previous studies,
the shrinking of the Aral Sea has resulted from climate change and human activities; however, human
activities were the main factor, with natural climate variability being responsible for approximately
25% of the observed level drop and the remaining 75% due to human impacts [1–3]. Human activities
mainly include unsustainable irrigation methods and the expansion of cultivated land areas around
the Amu Darya and Syr Darya River Basins [4–7], which have led to the overuse and waste of surface
water resources and thus have indirectly affected the Aral Sea. For example, nearly all drainage of
the Amu Darya River, which is the largest river in central Asia, is presently controlled and used for
irrigation [5]. Due to the construction of water conservation facilities and irrigation systems in the
upper reaches, a number of immigrants were attracted to the middle and lower reaches to reclaim
land, which caused the irrigation area to continue expanding, and agricultural water conditions were
aggravated [8], which also influenced the water balance of the Aral Sea by perturbing surface runoff

and groundwater recharge [9–12]. Therefore, it is important to study the water balance dynamics of
the irrigation areas in the Aral Sea Basin when agricultural activities prevailed.

Several studies have examined the water balance elements in the irrigation areas of the Aral
Sea Basin but have mostly focused on single elements such as evapotranspiration (ET) or runoff.
For example, Singh et al. [13] used Gravity Recovery and Climate Experiment (GRACE) and MODIS
Global Evapotranspiration Project (MOD16) data with a coarse resolution to analyze changes in water
mass and ET in the lower Amu Darya River irrigation area. Nezlin et al. [11] and Asarin et al. [4]
analyzed runoff from the Amu Darya River into the Aral Sea over decades. Conrad et al. [14] studied
crop water consumption by using coarse-resolution MODIS data. Ochege et al. [15] used remote
sensing technology to analyze the annual variations in ET. However, the relationship among river
inflow, water utilization and transformation in irrigation areas was not analyzed from the perspective
of water resources.

As an important part of water balance, surface runoff, precipitation, groundwater recharge and
evapotranspiration have a great influence on regional agricultural production and water resource
management. The characteristics of the surface runoff of the Amu Darya River determine the water
inflows to the Aral Sea and the irrigation area in the Amu Darya delta [4,16]. Accurate measurement
of the region’s inflow is essential and can be obtained from the several hydrological stations which
located along the main stream of Amu Darya River, and variations of the runoff at the inlet station of
the Amu Darya delta showed a significant decreasing trend from 1960 to 2006 [4]. Precipitation is the
basic part of the water cycle and one of the main parameters in the water balance equation. However,
Uzbekistan is largely an arid region, where evaporation exceeds rainfall and annual precipitation is
below 200 mm; this means that precipitation is not the main component of irrigation water in the Amu
Darya delta [16,17]. In the lower Amu Darya River Basin, groundwater is a life-sustaining resource
that supplies water to local people, plays a central part in irrigated agriculture and influences the
health of many ecosystems [18]. Schettler et al. [19] found some isotope evidence that groundwater
from cretaceous aquifers in the Amu Darya delta recharged the Aral Sea. But there is little research on
the groundwater reserves in the Amu Darya delta and its influence on water balance in the irrigated
area. Evapotranspiration includes vegetation transpiration and soil and water evaporation and is an
important part of the surface energy balance and water balance as well as a key parameter for studying
and simulating land surface processes [20,21]. Accurate estimations of ET are essential for analyzing
the water balance in the Aral Sea region because ET is the main process for water dissipation in arid
regions [22,23]. Traditional site and field ET measurements include the Eddy correlation method [24],
Bowen ratio energy balance method [25], photosynthesis instruments [26], weighing lysimeters [27]
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and other methods, which can be used to accurately obtain ET at the point or field scales, but these
methods are limited by their small spatial scales and higher costs and would be difficult to use in the
inland basins of Central Asia, which have sparse observation networks [28]. The water balance can
be used to calculate ET values under conditions in which the other hydrologic factors are clear [29].
When integrated with the Penman–Monteith method and the Kc coefficients, the water demand of
irrigated crops can be estimated, but a fine and accurate classification of planting structures is required.
Increasingly mature remote sensing technology and evapotranspiration research open a new avenue
for measuring and modeling ET. However, due to the uncertainty of MOD16 in sparsely vegetated
areas, ET is underestimated [13]. Although Priestley-Taylor Jet Propulsion Laboratory Model (PT-JPL)
actual evapotranspiration (ETa) and Global Land Data Assimilation System (GLDAS) data are more
accurate than MOD16 data [30], the rough resolution is not sufficient to carefully characterize the ET
performance of irrigation areas. In general, existing global remote sensing data products do not meet
the requirements for water resources calculations in the Aral Sea region. The increasingly mature
evapotranspiration inversion model based on remote sensing can solve this problem, and the surface
energy balance algorithm for land (SEBAL) model has been widely used especially.

Therefore, the objective of this study is to estimate the water consumption and analyze water
balance in the Nukus irrigation area, which is in the lower reaches of the Amu River Basin. The SEBAL
model was applied to model ETa levels over the study area from 1992 to 2018, and the simulated ETa

were statistically compared with ground-based ETa values for different land cover types in the study
area. The spatial and temporal variations in ETa were analyzed based on years of results. Additionally,
combined with rainfall, river inflow and groundwater observation data, a water balance model was
developed for analyzing the relationships among the main elements of the regional water resource
system. The results can provide useful data support for water resources management and ecological
protection in the Aral Sea region.

2. Materials and Methods

2.1. Study Area

The Nukus region is a typical agricultural irrigation area in central Asia, is located in the
northwestern part of Uzbekistan and is part of the Khorezm region; the Nukus region is connected
with Turkmenistan to the south and the Aral Sea to the north (Lat. 42◦ to 44◦N and Long. 58◦ to 61◦E).
The elevation of the study area is between 5 and 10 meters with a total area of 14,247 km2. The Amu
Darya River crosses the Nukus irrigation area and empties into the Aral Sea, while its high sediment
discharge has formed very dynamic deltas. Since the 1980s, only a small amount of river inflow to the
Aral Sea has occurred, and most of the water is utilized for Nukus agricultural irrigation [4]. Annual
precipitation in the region is less than 200 mm, which is concentrated in summer and has shown a
decreasing trend in recent years; the seasonal and intraday temperature differences are significant,
where the lowest temperatures are between −1.4 ◦C and 4 ◦C and the highest temperature can reach
30 ◦C [31]. The typical crop types are cotton, wheat, rice, corn and alfalfa, and flood irrigation with
low efficiency is the main irrigation method. The main wild vegetation types are ammodendron
and tamarisk, with Euphrates poplar and reeds near puddles. Farming and animal husbandry are
important sources of local income.

As shown in Figure 1, there are three meteorological stations, namely Nukus, Cungrad and
Chimboy, which have obtained continuous observation records since the 1960s. A hydrological station
called Samambay is located in the inlet of the Nukus irrigation area. In addition, an observation site
for measuring pan evaporation was built in Nukus city, which provided validation data for the 2019
growing season.
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Figure 1. Schematic diagram of the Nukus irrigation area. 

2.2. Data Availability 

Thematic Mapper (TM), Enhanced Thematic Mapper (ETM+) and Operational Land Imager 
(OLI) images for the Nukus irrigation area (path/row is 161,160/030) were downloaded from the 
United States Geological Survey (USGS) website (https://earthexplorer.usgs.gov/). Taking into 
account the quality of the images, the number of images available each year and the time intervals, a 
total of 144 images, including 42 TM images, 59 ETM images and 43 OLI images, were selected from 
the growing seasons (April to October) of 1992, 1996, 2000, 2005, 2010, 2012, 2015, 2018 and 2019. The 
amount of cloud cover above the irrigation areas in all images was below 5%, and the preprocessing 
for radiometric calibration, Fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) 
atmospheric correction and geographic correction using control points was carried out on ENVI (The 
Environment for Visualizing Images). Figure 2 shows the dates of the 144 remote sensing images. 

Figure 1. Schematic diagram of the Nukus irrigation area.

2.2. Data Availability

Thematic Mapper (TM), Enhanced Thematic Mapper (ETM+) and Operational Land Imager (OLI)
images for the Nukus irrigation area (path/row is 161,160/030) were downloaded from the United States
Geological Survey (USGS) website (https://earthexplorer.usgs.gov/). Taking into account the quality of
the images, the number of images available each year and the time intervals, a total of 144 images,
including 42 TM images, 59 ETM images and 43 OLI images, were selected from the growing seasons
(April to October) of 1992, 1996, 2000, 2005, 2010, 2012, 2015, 2018 and 2019. The amount of cloud
cover above the irrigation areas in all images was below 5%, and the preprocessing for radiometric
calibration, Fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) atmospheric
correction and geographic correction using control points was carried out on ENVI (The Environment
for Visualizing Images). Figure 2 shows the dates of the 144 remote sensing images.

https://earthexplorer.usgs.gov/
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Figure 2. The information about the acquisition time of Landsat images, including 42 TM images, 59 
ETM+ images, and 43 OLI images. 

A digital elevation model (DEM) with 90 × 90 m resolution was obtained from the SRTM DEM 
90 m resolution original elevation data (http://www.gscloud.cn). Land use and cover change (LUCC) 
and land cover maps from 1990, 2000, 2010 and 2015 based on Landsat Thematic Mapper (TM) images 
were processed by the Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences. 
Land use data published by the European Space Agency (ESA) were also collected 
(https://www.esa.int/). Areas of the southern Aral Sea from 1986–2019 were extracted by the Key 
Laboratory of GIS & RS Application, Xinjiang Uygur Autonomous Region, China. 

Meteorological data from 1990 to 2019 at the Nukus, Cungrad and Chimboy stations were 
obtained from the National Oceanic and Atmospheric Administration 
(https://gis.ncdc.noaa.gov/maps/ncei/cdo/daily) and included average temperature, daily maximum 
temperature, daily minimum temperature, dew point temperature, average wind speed, average air 
pressure and precipitation. The observation data of pan evaporation in 2019 were obtained from the 
Karapakstan Branch of the Institute of Water Problem, Uzbekistan. Monthly discharges at the 
Samambay hydrological station were collected from 1990 to 2015, and monthly groundwater level 
data from 1999 to 2017 were collected from the Ministry of Agriculture and Water Resources (MAWR) 
of Uzbekistan. 

The sampling points of the agricultural planting structure were taken from field surveys in 
September 2018 and March 2019 and consisted of a total of 446 sampling points, including 121 rice 
sample points, 162 wheat sample points, 161 cotton sample points and 2 bare land points, which were 
located near three weather stations; for the specific locations, the reader is referred to the verification 
section. The detailed data are listed in Table 1. 

Table 1. The detailed description of the data. 
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TM The United States Geological Survey 30 m 16 d 
ETM The United States Geological Survey 30 m 16 d 
OLI The United States Geological Survey 30 m 16 d 

Meteorological 
data 

National Oceanic and Atmospheric 
Administration Weather station data Daily 
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LUCC (statistical 
data) 

Xinjiang Institute of Ecology and 
Geography Statistical data Yearly 

Figure 2. The information about the acquisition time of Landsat images, including 42 TM images,
59 ETM+ images, and 43 OLI images.

A digital elevation model (DEM) with 90 × 90 m resolution was obtained from the SRTM DEM
90 m resolution original elevation data (http://www.gscloud.cn). Land use and cover change (LUCC)
and land cover maps from 1990, 2000, 2010 and 2015 based on Landsat Thematic Mapper (TM) images
were processed by the Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences.
Land use data published by the European Space Agency (ESA) were also collected (https://www.esa.int/).
Areas of the southern Aral Sea from 1986–2019 were extracted by the Key Laboratory of GIS & RS
Application, Xinjiang Uygur Autonomous Region, China.

Meteorological data from 1990 to 2019 at the Nukus, Cungrad and Chimboy stations were obtained
from the National Oceanic and Atmospheric Administration (https://gis.ncdc.noaa.gov/maps/ncei/cdo/

daily) and included average temperature, daily maximum temperature, daily minimum temperature,
dew point temperature, average wind speed, average air pressure and precipitation. The observation
data of pan evaporation in 2019 were obtained from the Karapakstan Branch of the Institute of Water
Problem, Uzbekistan. Monthly discharges at the Samambay hydrological station were collected from
1990 to 2015, and monthly groundwater level data from 1999 to 2017 were collected from the Ministry
of Agriculture and Water Resources (MAWR) of Uzbekistan.

The sampling points of the agricultural planting structure were taken from field surveys in
September 2018 and March 2019 and consisted of a total of 446 sampling points, including 121 rice
sample points, 162 wheat sample points, 161 cotton sample points and 2 bare land points, which were
located near three weather stations; for the specific locations, the reader is referred to the verification
section. The detailed data are listed in Table 1.

http://www.gscloud.cn
https://www.esa.int/
https://gis.ncdc.noaa.gov/maps/ncei/cdo/daily
https://gis.ncdc.noaa.gov/maps/ncei/cdo/daily
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Table 1. The detailed description of the data.

Data Category Data Sources Spatial Resolution Temporal
Resolution

TM The United States Geological Survey 30 m 16 d
ETM The United States Geological Survey 30 m 16 d
OLI The United States Geological Survey 30 m 16 d

Meteorological data National Oceanic and Atmospheric
Administration Weather station data Daily

DEM http://www.gscloud.cn 90 m — —
LUCC European Space Agency 300 m Yearly

LUCC (statistical data) Xinjiang Institute of Ecology and Geography Statistical data Yearly

Irrigation water data The Ministry of Agriculture and Water
Resources (MAWR) of Uzbekistan Statistical data Monthly

Groundwater level data The Ministry of Agriculture and Water
Resources (MAWR) of Uzbekistan Statistical data Monthly

The Aral Sea area data Key Laboratory of GIS & RS Application
Xinjiang Uygur Autonomous Region, China

Statistical data
(from remote sensing

interpretation)
Yearly

Plantation structure Field research sampling Vector data Yearly

Evaporation pan Karapakstan Branch of the Institute of Water
Problem, Uzbekistan Statistical data Daily

2.3. Methods

2.3.1. SEBAL Model

The SEBAL model was initially developed by Bastiaanssen et al. [32]; this model is based on the
energy balance equation of the land surface, and the distribution of sensible heat flux is calculated by
the cyclic recursive method, while the ETa of a region is obtained by the energy residual method [33].
Bhattarai et al. [34] devised a simple decision-tree-based classifier to find “cold” and “hot” pixels. DEM
and slope data are used to adjust the parameters of the SEBAL model for mountainous terrain, and good
simulation results have been obtained [35]. The SEBAL model does not need large amounts of auxiliary
ground-based data and reaches high spatial resolutions in ET simulations; the Monin–Obukhov
similarity theory can reduce the uncertainty of iterations. However, the SEBAL model still has some
limitations such that the choice of “cold” and “hot” pixels has a great influence on the results, and due
to the unfavorable timing of remote sensing images, it is difficult to obtain accurate simulated results
for continuous time periods.

The basic principle of the SEBAL model is:

Rn = G + H + LET (1)

where Rn is the net radiant flux, G is the soil heat flux, H is the sensible heat flux and LET is the latent
heat flux.

(1) The net radiation flux is the net energy obtained after shortwave radiation from the sun reaches
the Earth’s surface and is reflected by the surface and is exchanged with the longwave radiation of the
atmosphere [32]. The calculation formula for net radiation flux is as follows:

Rn = (1− α)RS↓ + εoRL↓ −RL↑ (2)

where Rn is the surface net radiation (Wm−2), RS↓ is the short-wave solar radiation reaching the surface
(Wm−2), RL↓ is the downgoing atmospheric longwave radiation (Wm−2) and RL↑ is the longwave
radiation emitted from the Earth’s surface (Wm−2). α and εo represent the surface albedo and surface
emissivity, respectively.

http://www.gscloud.cn
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(2) Soil heat flux refers to the heat exchange energy that enters the soil. According to Bastiaanssen’s
research, the soil heat flux is calculated by the following method [36]:

G =

[
(Ts − 237.15)

α
×

(
0.0038α+ 0.0074α2

)
×

(
1− 0.98NDVI4

)]
×Rn (3)

Note that the above formula applies to vegetation; when the Normalized Difference Vegetation
Index (NDVI) is less than 0.157, use G = 0.2Rn according to experience, and for water bodies, G = 0.5Rn.

(3) Sensible heat flux represents the process of energy transfer from the land surface to the
atmosphere and takes place mainly by conduction and convection. Sensible heat flux can be computed
as follows:

H =
ρa ×Cp × dT

rah
(4)

In the formula, ρa represents the air density, Cp is the air specific heat, dT = T1 −T2 and represents
the temperature difference between two heights (Z1 and Z2) and rah represents the aerodynamic
resistance to heat transport. However, dT and rah are unknown variables but can be calculated using
an iterative algorithm based on Monin-Obukhov similarity theory:

rah =
1

ku∗

[
ln

(
Z2 − dm

Z1

)]
(5)

u∗ =
kux

ln
(

Zx
Zom

) (6)

where k, u∗, dm, Z1, Z2, Zx, ux and Zom represent von Karman’s constant, the friction velocity, zero plane
displacement, reference heights (Z1, Z2, and Zx), wind speed at height Zx and momentum transfer
roughness, respectively. Zom can be calculated by using the NDVI:

Zom = 0.005 + 0.5×
( NDVI

NDVImax

)2.5
(7)

The calculation process of rah and u∗ involves an iterative algorithm. Since the algorithm is
complex, please refer to previous articles for more detail [37]. As mentioned above, dT can be calculated
as:

dT = aTs + b (8)

where a and b are regression coefficients and the SEBAL model assumes that there are “cold” and “hot”
pixels in the image. In this case, a and b can be calculated by the following formula:

a =
rah,hot

ρa ×Cp
×

(Rn −G)hot
Ts,hot − Ts,cold

(9)

b =
rah,hot

ρa ×Cp
×
(Rn −G)hot× Ts,cold

Ts,hot − Ts,cold
(10)

“Cold” pixels represent cases for which the sensible heat flux of a pixel is 0 and can be found under
conditions when the NDVI is greater than 0.3 and the temperature is lowest; “hot” pixels represent
cases for which the latent heat flux is 0 and can be found where the NDVI is less than 0.157 and greater
than 0 and the pixels have the highest temperature.

(4) Sensible heat flux can be calculated according to the energy balance formula:

λET = Rn −G−H (11)
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Only the instantaneous latent heat flux can be obtained above, and one day of ETa can be obtained
through time extrapolation. By introducing the concept of the evaporative fraction (EFins), which is
considered a constant throughout the day, EFins can be estimated as follows:

EFins =
λET

Rn −G
(12)

ET24_SEBAL =
86400× EFins × (Rn24 −Gn24)

λ
(13)

ET24−period =
n∑

i=m

[
(EFins) ×

(
ETr−period

)]
(14)

By using EFins, the daily ETa (ET24_SEBAL) can be determined. λ stands for the latent heat of vaporization,
and Rn24 and Gn24 represent the net radiation flux and the soil heat flux over one day, respectively;
the calculation method can be referred to in Allen [38]. ETr−period represents the overall ETr from the
observations for the studied period from m to n [15,37]. The seasonal ETa (ET24−period) is derived by
cumulatively adding the daily ETa grids of the growing season (April to October) [15,39,40].

Additionally, for Landsat TM/ETM/OLI images, the surface albedo (a) is calculated according to
different methods [37,41,42]:

α =

(
αtoa − αpathradiance

)
τsw2 (15)

αtoa(TM/ETM) = 0.356α1 + 0.130α3 + 0.373α4 + 0.085α5 + 0.072α7 − 0.0018 (16)

αtoa(OLI) = 0.356α2 + 0.130α4 + 0.373α5 + 0.085α6 + 0.072α7 − 0.0018 (17)

where αtoa is the reflectance at the top of the atmosphere, αpathradiance
refers to the path radiance, τsw is

the atmospheric transmissivity and α1~α7 correspond to the surface reflectance for bands 1~7 of the
satellite sensor.

The operation of the SEBAL model, including the preprocessing of the Landsat images and
retrieval of surface parameters, is entirely based on Interactive Data Language (IDL).

2.3.2. The FAO Penman-Monteith Equation

The FAO Penman-Monteith equation is considered a universal standard to estimate ETO because
it closely approximates the short-grass ETO [38,43] and is widely used around the world in the absence
of measured data [44–47]. The calculation formula is as follows:

ETO =
0.4084 (Rn24 −Gn24) + r 900

T+273 × u2 × (es − ea)

4+ r(1 + 0.34u2)
(18)

where 4 is the slope of the saturated vapor pressure curve, es is the saturated vapor pressure, ea is the
actual vapor pressure, r is the psychrometric constant and u2 is the wind speed at a height of 2 m.
The reference ET can be calculated using ETO Calculate software by using the maximum temperature,
minimum temperature, average temperature, wind speed and relative humidity as input sources, and
the missing weather data are replaced by default values in the software.

The crop evapotranspiration (ETc) is actual evapotranspiration, which differs distinctly from ETO,
as the ground cover, crop canopy properties and aerodynamic resistance of crops are different from
the properties of grass. The effects of the characteristics that distinguish field crops from grasses are
integrated into Kc. Crop ETc is calculated by multiplying the reference ET by a crop coefficient [38]:

ETc = Kc × ETO (19)
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where Kc is the crop coefficient at a specific growth stage. In this study, the Kc coefficients for rice,
wheat and cotton in this research area are referenced in the relevant research [48], refer to Table 2
for detailed values; the international Food and Agriculture Organization (FAO) considers the KC

coefficient of dry, bare land to be between 0.15 and 0.2, and a KC coefficient for bare land of 0.2 was
used in this study.

Table 2. Crop coefficients of wheat, corn, and cotton during the growing season.

Crops April May June July August September October

Rice/Kc - 1.05 1.13 1.2 1.2 0.95 -
Wheat/Kc 1.15 0.97 0.4 - - - -
Cotton/Kc 0.35 0.4 0.87 1.2 1.2 0.99 0.71
Bare land 0.2 0.2 0.2 0.2 0.2 0.2 0.2

2.3.3. Statistical Evaluation

Validation is one of the most challenging problems in satellite-based ET estimation research.
However, no actual ground-measured ET data were available in the study area. This study attempted
to assess the ET estimation accuracy via comparisons with ETc [38]. Based on the meteorological data
at three stations and the crop sampling points, we calculate the average rice ETa of 2018 (on 04/05/2018,
05/06/2018, 07/07/2018, 24/08/2018 and 25/09/2018), the average ETa for wheat (on 05/04/2018, 04/05/2018,
23/05/2018 and 05/06/2018) and the average ETa for cotton and bare land (on 05/06/2018, 07/07/2018,
24/08/2018, 25/09/2018, and 11/10/2018). Moreover, the observed evaporation (ETobservation) levels
from the Nukus meteorological station (on 06/04/2019, 07/05/2019, 08/05/2019, 23/05/2019, 08/06/2019,
09/06/2019, 17/06/2019, 24/06/2019 and 25/06/2019) are used to evaluate the simulation accuracy of water
evaporation from SEBAL.

The agreement between the SEBAL model-derived ETa and ETc calculated from ground
meteorological datasets was assessed using the Pearson correlation, root mean square error (RMSE),
mean absolute error (MAE) and percent bias (PBIAS); these methods are frequently used to measure
the differences between the values predicted by a model or an estimator and the values observed.
In the following formulas, x represents the true value and y represents the approximate value.

PBIAS =

∣∣∣x− y
∣∣∣

|x|
× 100% (20)

MAE =
1
n

n∑
i=1

∣∣∣xi − yi
∣∣∣ (21)

RMSE =

√√
1
n

n∑
i=1

(xi − yi)
2 (22)

2.3.4. Water Balance Analysis

The water balance explores the relationship between the amount of water available under
natural conditions and the demand for water in the socioeconomic environment. According to the
characteristics of incoming water and considering that water consumption in the Nukus irrigation area
involves most of the inflow water from the Amu Darya River being used for agricultural activities
with little or no surface runoff flowing outward, a water balance formula over the growing season is
established based on the available data:

P + Rin f low + Grecharge − E−Gleaving = 4G (23)
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where P is the precipitation in the Nukus irrigation area, Rin f low is the inflow from the Amu Darya
River, which is also the main source of irrigation water in the study area, Grecharge is the groundwater
recharge from the upstream region to the Nukus irrigation area, E is the total ETa, Gleaving is the total
groundwater recharge to the Aral Sea or elsewhere (it is an unknown variable need to be calculated)
and 4G is the variation in the groundwater volume, which can be calculated from the groundwater
level. P, Rin f low, E and 4G are all available from the data sources mentioned above. However, Grecharge
data cannot be obtained at present. Here, it is assumed that the groundwater recharge of the Nukus
irrigation area is 0 to explore the changes in the water balance of the irrigation area under closed
groundwater conditions. The water balance formula can be used to calculate Gleaving.

2.3.5. Lag Correlation Analysis

In the relationship between two time series (yt and xt), the series yt may be related to past lags of
the x-series. The cross-correlation function (CCF) is helpful for identifying lags of the x-variable that
might be useful predictors of yt, and τ is the lag time.

There is a correlation between the hydrological elements and the area of the Aral Sea, and the time
may be delayed. For example, the groundwater needs the propagation time to recharge. To explore
the lag correlation between the hydrological elements and the area of the Aral Sea, cross-correlation
analysis is used to extract the lag time and correlation coefficient, which can be implemented by the
CCF function in R language. For continuous functions, CCF functions are defined as follows:

(x ∗ y)(τ) =
∫ +∞

−∞

x∗(t)y(t + τ)dt (24)

3. Results Analysis

3.1. Accuracy Assessment of the SEBAL Model

The estimation results are evaluated at 446 sample locations and compared with independently
estimated ETc following the FAO Penman–Monteith equation [38]. Figure 3 shows comparisons
between the crop evapotranspiration and SEBAL-estimated ETa (ETc and ETSEBAL) for the satellite
image acquisition dates in 2018. The results indicate that the R2 and RMSE values between the
ETobservation and ETSEBAL values for water bodies are 0.81 and 1.76, respectively (Figure 3a). For rice,
the ETSEBAL values near the Nukus and Cungrad stations match well with the ETc values with R2
values of 0.94 and 0.88 (Figure 3b,d), respectively, while the R2 value for rice near the Chimboy station
is 0.61 (Figure 3c); the RMSEs between the ETc and ETSEBAL for rice are 0.52, 0.73 and 0.63 at the Nukus,
Chimboy and Cungrad stations, respectively. The wheat R2 near the Nukus and Cungrad weather
stations returns high values of 0.82 and 0.86, respectively (Figure 3e,f), similar to cotton, for which the
two separate R2 values are 0.89 and 0.90 (Figure 3g,h); the R2 and RMSE for bare land are 0.85 and 0.19,
respectively (Figure 3i). For bare land, the R2 and RMSE values between ETc and ETSEBAL are 0.85 and
0.19, respectively.

Figure 4 shows the correlation analysis results of ETc and ETSEBAL for all sampling points. To be
more specific, there were a total of 446 crop sampling points, and the simulated ETa at each point was
modeled by SEBAL ordered in a chronological sequence, which correlated with ETc. The results show
that the correlation coefficients (R) at most sample points range from 0.8 to 1, especially for wheat
(Figure 4). More statistics are summarized in Table 3. In most regions, the correlation is greater than 0.6,
except for a minority of rice sampling points near the Chimboy meteorological station; in particular,
the correlations of all wheat sampling points in the Cungrad region exceed 0.6, the MAE of each crop is
within 1.43 mm and the percentage deviation is within 11.42%. These results demonstrate that SEBAL
has good applicability in the study area.
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Table 3. Performance of passing rate of different crops’ ETa correlation among three meteorological
station area.

Crops Location
Number of the
Sampling Point

The Correlation Percent of Pass
(>0.6) MAE PBIAS

>0.8 0.6~0.8 <0.6

rice
Nukus 92 68 5 18 0.79 0.54 8.27%

Cungrad 21 12 7 2 0.90 0.39 5.09%
Chimboy 8 3 0 5 0.38 0.59 7.71%

wheat
Nukus 75 59 11 5 0.93 0.35 5.53%

Cungrad 87 79 8 0 1 0.88 8.93%

cotton
Nukus 52 19 17 16 0.69 1.43 11.42%

Cungrad 109 52 33 24 0.78 1.26 10.36%

The simulation results of the monthly ETSEBAL and ETc values also exhibit good consistency.
Figure 5 shows comparisons of the simulation results for rice, wheat and cotton near the Nukus
meteorological station (Loc1), Cungrad meteorological station (Loc2) and Chimboy meteorological
station (Loc3) in 2018. The results show that the monthly deviations of the simulated ETa values of
rice, wheat and cotton are within 50 mm, 30 mm and 40 mm, respectively. In addition, the trends of
monthly ETsebal and ETc are consistent.
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3.2. Spatiotemporal Variation of Evapotranspiration

3.2.1. Annual Variations of the Simulated Evapotranspiration

Evapotranspiration was spatiotemporally variable over the study area due to differences in
the moisture content of the surface and the energy exchange properties of the different land covers.
Furthermore, the ETa was also spatiotemporally variable within the same land cover type due to
variations within land cover types [49]. Figure 6 shows the SEBAL-estimated monthly ETa for two
typical years. Generally, the moist areas over the southern farmland part of the study area had higher
ETa than the northern areas. Water bodies, the reed swamp and well-irrigated and mid-stage crops
exhibited the maximum ETa. On the other hand, the dry, bare land and sparsely vegetated parts of
the plain had limited moisture, which resulted in low ETa in the study area. The monthly ETa clearly
changed during the growing season. From April to August, the maximum ETa increased month by
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month, and after August, the maximum ETa generally decreased. The spatial pattern of the monthly
ETa varied and was dependent on land use type and climate conditions at the same time. The monthly
ETa for cultivated land and bare land in April and May exhibited low values in the growing season,
and the differences between the two were small. Between June and August, the monthly ETa values
for cultivated and bare land were significantly different. In July 2012, the monthly average ETa of
cultivated land in the southern irrigation area was approximately 209 mm, while the monthly average
ETa for bare land in the northern irrigation area was 77.50 mm. The ETa for cultivated land was
clearly greater than that for bare land until September and October, at which point the differences
diminished again.
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Figure 7 shows the regional monthly average ETa in the growing season. The results roughly
formed a single peak, and the highest ETa values were found in July with a range of 187.79 to 231.46 mm.
The ETa in June and August ranked second, and the monthly ETa values were in the ranges from
120.02 to 197.67 mm and from 137.83 to 195.46 mm, respectively. In spring, the monthly ETa in April
and May ranged from 114.80 to 131.34 mm and from 121.35 to 186.33 mm, respectively; the main ETa

consumption was by water bodies and by cultivated land near water bodies. In autumn, the harvest
season lasted from September to October, and the monthly average ETa were 141.59 mm and 119.31 mm
respectively; the values became smaller because of the truncated Rn and low air temperatures. The total
ETa in the growing season were between 900 mm and 1200 mm.
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3.2.2. Interannual Variations of the Simulated Evapotranspiration

Figure 8a–g shows the spatial distributions of total ETa in the growing season from 1992 to 2018.
Overall, the spatial ETa distributions over the years are generally the same, and local differences are
caused by changes in planting structure and land use. The ETa of water bodies (mazarine blue–dark
green block in Figure 8a–g) can reach 1100–1500 mm during the growing season, while the ETa of
cultivated land are between 700 and 1100 mm. Figure 8h shows the annual change rate of ETa from
1992 to 2018, and it is easy to see that the ETa near most of the water bodies (red-orange block in the
northern irrigation area in Figure 8h) showed a decreasing trend, while the ETa of cultivated land in
the southeast and southwest parts exhibited an increasing trend. These observations indicate that there
were obvious expansions or abandonments of farmland; meanwhile, the area of reservoirs and lakes
that met the needs of agricultural production in the Nukus irrigation area was shrinking.

According to the 1992–2015 ESA LUCC data, the average daily ETa trends for cultivated land,
forest and bare land were generally consistent, but there were some differences (Figure 9). In general,
the ETa of cultivated land and forestland were higher than that of bare soil. Evapotranspiration in
cultivated land was higher, and most values were between 5 mm and 8 mm, whereas that in bare land
was between 0 mm and 4.5 mm.
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Figure 9. The average daily ETa variation of cultivated land, forest land and bare land from 1992
to 2015.

Figure 10 shows that the changes in ETa in the study area mainly exhibited two periods. One period
was from 1992 to 2005, in which the ETa showed a decreasing trend, and the total ETa in the growing
season (May to September) decreased from 960 mm to 690 mm; the second period was from 2005 to
2015, in which the seasonal ETa in the irrigation areas increased from 690 mm to 780 mm.
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3.3. Water Balance Analysis

The main factors for the water balance in Nukus irrigation area are the inflow from the AmuDarya
River, evapotranspiration, precipitation and groundwater inflow and outflow. Figure 11a shows the
changes in the river inflow and underground water quantities from 1999 to 2015. The results indicate
that the inflows from the inlet station fluctuated during 1999 and 2017, as is observable in the moving
average curve. There were obvious dry and wet years. For example, in 2003, 2005, 2010 and 2012,
which were typical wet years, the inflow water amounts were greater than 1.00 × 1010 m3 per year,
while the inflow in dry years, such as 2001, 2008 and 2011, was less than 2.00 × 109 m3 per year.
The changes in groundwater also fluctuated with the river inflows. When inflow water was abundant,
the groundwater increased, and groundwater decreased with low inflows.

Due to the availability of evapotranspiration data (SEBAL modeled), rainfall data, groundwater
data and runoff data, the years 2000, 2005, 2010 and 2012 were selected as typical years for a regional
water balance analysis (Figure 11b). The results indicate that ET and surface runoff were the two major
components in the water balance of the irrigation area, and the rainfall values were small. In 2005,
the river inflow was 1.11 × 1010 m3, ET consumption was 9.87×109 m3, the groundwater volume
increased by 1.20 × 108 m3, and ET consumption accounted for most of the inflow water. In 2010,
river inflow was 1.31 × 1010 m3, ET consumption was 9.79 × 109 m3 and groundwater increased by
2.56 × 109 m3. In 2012, the inflow water was 7.84 × 109 m3, ET consumption was 1.31 × 1010 m3,
the groundwater decreased by 2.66 × 109 m3 and the ET was greater than the river inflow amount,
which resulted in decreased groundwater levels.
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irrigation area, 1999–2015. (b) Variations of ET, surface inflow, groundwater and precipitation of Nukus
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Table 4 shows the calculated groundwater loss volumes for the Nukus irrigation area in the
growing seasons of 2000, 2005, 2010 and 2012. Generally, ET was lower than the amount of incoming
water, which came from precipitation and river inflow in wet years, so the surface runoff could meet
the water consumption requirements in the study area, and a part of the surface water converted
to underground runoff through soil infiltration; the groundwater could recharge to the Aral Sea.
In the wet years of 2005 and 2010, the groundwater losses in 2005 and 2010 were 1.56 × 109 m3 and
8.40 × 108 m3, respectively. However, in the dry years, ET exceeded the amount of incoming water,
and groundwater was extracted for irrigation. In 2000, the Nukus irrigation area had high groundwater
levels, which not only satisfied the regional crop irrigation requirements but also replenished the Aral
Sea by 6.74 × 109 m3. In 2012, the groundwater levels were low, the surface water and groundwater in
the study area could not meet the irrigation requirements and underground runoff from the upstream
regions of the Nukus was needed for supplementation.
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Table 4. The groundwater leaving volume of Nukus irrigation area during the growing season of 2000,
2005, 2010, and 2012.

Year 2000 2005 2010 2012

Underground water
leaving/109 m3 6.74 1.56 0.84 −2.36

4. Discussion

4.1. Evaluation the Accuracy of the ET Products Modeled by SEBAL

According to previous studies, the ETa results obtained by the SEBAL model in highly vegetated
areas will be slightly higher than those calculated using the Penman–Monteith formula by 5% and
slightly lower for water bodies [50–52]. To eliminate this error as much as possible, the following
improvements were made to the regular SEBAL model. Considering that the surface and atmospheric
temperatures decrease with increasing altitude, it was necessary to adjust the surface temperature in
the entire research area to the same reference height [53]. When calculating some parameters of the
regular SEBAL model, a single empirical formula is adopted for the whole region, which is insufficient
to reflect the complexity of the underlying surface. In this paper, different empirical formulas were used
to calculate parameters such as soil heat flux and emissivity for different underlying surfaces [35,54,55].
To reduce the influence of clouds on the accuracy of “cold” pixel selection, higher NDVIs with the
lowest surface temperatures were selected as the “cold” pixels. After adjustments, the simulation
results agreed well with the ETc results. Ideally, a greater number of measured ET should have been
used in the assessment but were not available; only the observed evaporation levels in 2019 from a 20 cm
pan were obtained at the Nukus station. However, there was some deviation between the evaporation
of the water surface observed with an evaporating pan and the actual water evaporation, and more
experiments are needed to eliminate these biases; the verification accuracy from using the evaporation
pan was not high. Generally, the ETsebal has a high fitting degree with ETc in this study. However,
the fitting degrees were different among the main crop types, and higher RMSE values over 2 mm were
found in the evapotranspiration estimation of the cotton. The source of error may contain the random
error caused by crop sampling points and the impact from different soil backgrounds. The sensible
heat flux and the soil heat flux are affected by soil adjusted vegetation index (SAVI), referring to
the Allen et al. [37] study, and the soil impact factor (L) in SAVI was defined as 0.1, which means
SEBAL model is insensitive to low vegetation coverage. The rice evapotranspiration is close to water
evaporation due to its high water consumption, affected by field water, and the soil background has
little disturbance to it. The soil also has less effect on wheat, which has a higher NDVI in early spring.
As for the cotton, between April and October, it goes through the process of germination, growth,
ripening and picking, and its NDVI shows the change of unimodal shape. The soil background has
greater influence on the inversion results of cotton evapotranspiration. From the perspective of regional
water balance, the error of crop evapotranspiration inversion would increase the uncertainty in regional
ET calculation and water balance analysis. Future studies will improve the inversion accuracy by
combining fine crop classification and field-scale evapotranspiration observation data.

With reference to previous studies, the SEBAL-modeled seasonal ETa were over 1200 mm from
April to October in 2004 in Khorezm, which is near the Nukus irrigation area [14], the seasonal ETa of
another Area Sea basin irrigation area to the north of the Nukus irrigation area were as high as 850 mm
and the ETa of water bodies were as high as 1135 mm in 2012; the daily ETa values of the oasis-irrigation
area in the growing season were within the range from 4 mm to 8 mm [15], while evaporation from
an oasis agriculture evaporation pan could be as high as 1546 mm in Central Asia [56]. Annual
evaporation from the Aral Sea as calculated by water balance was approximately 900–1100 mm [7].
In the 1990s, the observed evaporation of the Aral Sea actually reached 1220 mm [28]. Létolle et al. [57]
predicted the evaporation of the Aral Sea from 2000 to 2050 with an average annual increase of 1.5 m,
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which could reach 1500 mm. In conclusion, compared with previous studies, the seasonal ETa results
are within an acceptable range, and detailed information can be found in Table 5.

Table 5. Demonstration of research results on ETa in the Aral Sea basin.

Name Time Methods Location Evapotranspiration Range

Conrad et al. [14] 2004 SEBAL Other irrigated areas in
the Amu Darya delta 0 mm~1500 mm

Ochege et al. [15] 2012 SEBAL Irrigated areas in the
north of the Aral Sea 0 mm~1135 mm

Li et al. [56] 2004 Evaporation pan The oasis irrigated area
in central Asia Over 1546 mm

Bortnik [7] 1911–1989 Water balance The Aral Sea 900 mm~1100 mm

Small et al. [28] 1990 Observed
evaporation The Aral Sea Over 1220 mm

Létolle et al. [57] 2000–2050 Mathematical
method prediction The Aral Sea Could be over 1500 mm

4.2. The Impact of LUCC on ET Variations

In this study, the results of seasonal ETa from 1992 to 2015 show a trend of decreasing first and
then increasing; this phenomenon can be explained by LUCC. Table 6 presents the area changes of
the main LUCC types in the Nukus irrigation area in 1992, 2000, 2010 and 2015. Cultivated land,
grassland and bare land were the main land cover types in the Nukus irrigation area, which accounted
for approximately 90% of the total area. Due to the characteristic high water consumption and large
area of cultivated land, the ET of cultivated land is the main body of the total ET in the research area.

Table 6. The area changes of main LUCC types in Nukus irrigation area.

Land-Use Type 1990 2000 2010 2015

Cultivated land 7386.17 km2 7050.66 km2 5851.82 km2 6631.97 km2

Grassland 4342.24 km2 3419.15 km2 3235.01 km2 3528.69 km2

Scrub forest 639.21 km2 691.23 km2 1712.34 km2 747.26 km2

Bare land 2505.97 km2 2159.63 km2 1711.51 km2 2162.95 km2

Waterbody 203.63 km2 101.19 km2 453.38 km2 334.53 km2

Since the 1960s, the land reclamation movement throughout the Soviet Union led to desertification;
soil fertility declined, and large areas of natural vegetation were destroyed. After the collapse of
the Soviet Union, farmland irrigation technology was not mature, and flood irrigation was the main
irrigation method, which caused the surface area of the Aral Sea to shrink significantly; when people
realized the seriousness of the rapid shrinkage of the Aral Sea, they began to abandon the cultivated
land. The cultivated land area in the Nukus irrigation area decreased from 1992 to 2010 and increased
from 2010 to 2015. Other studies showed that the cultivated land in Uzbekistan showed a slight decline
from 1993 to 2003 [16,58].

To further explore the relationship between changes in cultivated land area and ET changes,
Figure 12 shows the change trend of the total ET and total ET of cultivated land. It is found that the
change trend of cultivated land ET was the same as that of the cultivated land area and that total ET
and ET of cultivated land accounted for 55% of total ET. All evidence indicates that the changes in the
cultivated land area are the main reason for regional ET variations, especially in the irrigation areas
where is dominated by highly water-consuming crops such as cotton and rice.



Remote Sens. 2020, 12, 2317 20 of 25

Remote Sens. 2020, 12, 2317 19 of 23 

 

Scrub forest 639.21 km2 691.23 km2 1712.34 km2 747.26 km2 
Bare land 2505.97 km2 2159.63 km2 1711.51 km2 2162.95 km2 

Waterbody 203.63 km2 101.19 km2 453.38 km2 334.53 km2 
     

To further explore the relationship between changes in cultivated land area and ET changes, 
Figure 12 shows the change trend of the total ET and total ET of cultivated land. It is found that the 
change trend of cultivated land ET was the same as that of the cultivated land area and that total ET 
and ET of cultivated land accounted for 55% of total ET. All evidence indicates that the changes in 
the cultivated land area are the main reason for regional ET variations, especially in the irrigation 
areas where is dominated by highly water-consuming crops such as cotton and rice. 

 
Figure 12. Trends of cultivated land area, total ET and total ET of cultivated land. 

4.3. Exploring the Influences of the Nukus Water Balance on the Aral Sea 

The hydrological factors of the Amu Darya delta are closely related to the changes in the Aral 
Sea. Previous studies have shown that the high groundwater levels in the lower Amu Darya irrigation 
area caused the groundwater to recharge to the Aral Sea [10,19]. Moreover, human activities and 
climate change also affected the Aral Sea volume. Human activities include the excessive reclamation 
of cultivated land and the construction of irrigation channels and various hydraulic facilities 

[16,59,60], which resulted in increased irrigation water consumption and decreased surface inflow to 
the Aral Sea. Climate change mainly affects temperature and precipitation and thus indirectly affects 
runoff. Several studies have shown that in the past few decades, rising temperatures and decreasing 
precipitation have caused the source of Amu River runoff to exhibit a decreasing trend [60–62]. Here, 
lag cross-correlation analysis can more clearly provide the connections between the hydrological 
factors of the Nukus irrigation area with the Aral Sea area. 

Figure 13 shows the lag cross-correlation analysis of the inflow volume to the Nukus irrigation 
area (a), groundwater level (b), annual precipitation (c) and annual average temperature (d) with the 
area of the southern Aral Sea. Only groundwater levels exhibit dominant cross-correlations with the 
Aral Sea area, while the other hydrological factors do not exhibit strong lag correlations. This is 
because Nukus is the nearest irrigation area to the southern Aral Sea with minimal surface runoff 
flows into the Aral Sea in recent years, while groundwater recharge is the main direct supply source 
to the southern Aral Sea. Based on the 1999–2017 data, the dominant cross-correlations occur when 
Lag = 2, the groundwater levels show a significant positive correlation with b and the correlation 
coefficient is 0.44. These results indicate that rising groundwater levels in the Nukus irrigation area 
will lead to expansion of the Aral Sea with a two-year delay. Two years may be the time needed for 

Figure 12. Trends of cultivated land area, total ET and total ET of cultivated land.

4.3. Exploring the Influences of the Nukus Water Balance on the Aral Sea

The hydrological factors of the Amu Darya delta are closely related to the changes in the Aral
Sea. Previous studies have shown that the high groundwater levels in the lower Amu Darya irrigation
area caused the groundwater to recharge to the Aral Sea [10,19]. Moreover, human activities and
climate change also affected the Aral Sea volume. Human activities include the excessive reclamation
of cultivated land and the construction of irrigation channels and various hydraulic facilities [16,59,60],
which resulted in increased irrigation water consumption and decreased surface inflow to the Aral Sea.
Climate change mainly affects temperature and precipitation and thus indirectly affects runoff. Several
studies have shown that in the past few decades, rising temperatures and decreasing precipitation have
caused the source of Amu River runoff to exhibit a decreasing trend [60–62]. Here, lag cross-correlation
analysis can more clearly provide the connections between the hydrological factors of the Nukus
irrigation area with the Aral Sea area.

Figure 13 shows the lag cross-correlation analysis of the inflow volume to the Nukus irrigation
area (a), groundwater level (b), annual precipitation (c) and annual average temperature (d) with
the area of the southern Aral Sea. Only groundwater levels exhibit dominant cross-correlations with
the Aral Sea area, while the other hydrological factors do not exhibit strong lag correlations. This is
because Nukus is the nearest irrigation area to the southern Aral Sea with minimal surface runoff flows
into the Aral Sea in recent years, while groundwater recharge is the main direct supply source to the
southern Aral Sea. Based on the 1999–2017 data, the dominant cross-correlations occur when Lag = 2,
the groundwater levels show a significant positive correlation with b and the correlation coefficient is
0.44. These results indicate that rising groundwater levels in the Nukus irrigation area will lead to
expansion of the Aral Sea with a two-year delay. Two years may be the time needed for groundwater
to flow from the Nukus irrigation area to the southern Aral Sea, although further research is needed to
prove this hypothesis.
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5. Conclusions

In this study, the SEBAL model was developed to simulate the ETa in the Nukus irrigation area
in the lower reaches of the Amu Darya River Basin, and station-based ETc calculated by the FAO
Penman–Monteith method were used to evaluate the accuracy of the simulated ETa results. Based
on multiple years of results, the spatial and temporal variations in ETa were analyzed. Moreover,
a water balance model of the study area was established by coupling the ETa estimated by SEBAL to
observed inflow, precipitation and groundwater data. The ETSEBAL values were more consistent with
the ETc values at daily and monthly scales, and the correlation coefficients (R) at most sample points
were above 0.8. The ETa exhibited spatiotemporal variations for different land cover types and varied
within specific land cover types; the daily ETa of cultivated land were approximately 5 mm to 8 mm,
and the ETa of bare land varied from 0 mm to 4.5 mm. Due to the uneven vegetation coverage, the ETa

in irrigation areas showed spatial heterogeneity such that the southern irrigation area had much higher
ETa than the northern area because of the high vegetation coverage of the former. Due to the effects of
changes in the cultivated land area and the river inflow from the Amu Darya River, the accumulated
ETa in the growing seasons decreased from 1990 to 2010 and increased from 2010 to 2018. The seasonal
ETa in the Nukus irrigation area ranged from 900 mm to 1200 mm during the past 30 years. In wet
years, irrigation water can replenish the groundwater and thus indirectly feed the southern Aral Sea;
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in dry years, groundwater meets the needs of crop evaporation, but even upstream groundwater
needs to recharge. In 2000, 2005 and 2010, the groundwater supply quantities to the southern Aral
Sea from the Nukus irrigation area were 6.74× 109 m3, 1.56× 109 m3 and 8.40× 108 m3, respectively,
and these supplies have declined in recent years. In addition, there is a significant positive correlation
between the groundwater level and southern Aral Sea area with a two-year lag. The SEBAL modeled
ET product in this study can provide scientific data for estimating regional crop water consumption,
and combined with the crop classifications based on remote sensing, irrigation water requirement at
different scales with higher accuracy can be obtained. These should be the basis for irrigation water
allocation. Moreover, based on the results of water balance analysis, a surface water and groundwater
joint regulation strategy to minimize the irrigation water resources waste can be developed.
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