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Abstract: A method for identifying hydrometeor types (rain, graupel, and wet snow) based on a
microwave link is proposed in this paper. The measured hydrometeor size distribution (HSD) data
from the winters of 2014 to 2019 in Nanjing, China, were used to carry out simulation experiments
to verify the performance of the model. Single-, dual-, and tri-frequency models (combinations
of 15 GHz, 18 GHz, 25 GHz, 38 GHz, 50 GHz, 60 GHz, 70 GHz, and 80 GHz) were established
with the extreme learning machine (ELM) algorithm. The results showed that the performance of
the tri-frequency models was overall better than that of the dual-frequency models, for which the
performance was better than that of the single-frequency models. The mean (maximum) test set
accuracies of the single-frequency, dual-frequency, and tri-frequency models reached 75.8%, 80.7%,
and 83.2% (83.0%, 84.4%, and 85.6%), respectively. For the dual-frequency and tri-frequency models,
it was found that the accuracy increased with the overall frequency or the frequency difference.
In addition, the influences of different noise levels on the model performance were also analyzed.
Finally, the effects of position and length of link relative to precipitation cell were analyzed and are
also discussed.
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1. Introduction

Precipitation is an important research area in many fields of natural science [1–3]. In the
water cycle, precipitation is the main way that water is transferred from the atmosphere to the
ground [4]. Precipitation changes the salinity and temperature distribution of the upper ocean,
further affecting the buoyancy of the ocean [5]. The erosion caused by precipitation is closely
related to the evolution of landforms [6]. Therefore, the question of how to accurately monitor
precipitation has always been a research focus. In recent years, researchers have been working on
the improvement of precipitation-detection technology and have made considerable progress, e.g.,
the optical disdrometer [7–9], dual-polarized radar [10,11], spaceborne dual-frequency radar [12], etc.
However, due to the complexity of and variability within the precipitation phenomenon itself, there
are still obstacles to the accurate measurement of precipitation. Almost all the existing instruments
and methods can only be said to have a good detection capability for certain types of hydrometeors,
and it is difficult to fully consider the complexity of precipitation. To further improve the ability of
precipitation monitoring under the condition of existing technologies, a feasible method is to identify
hydrometeor types before making quantitative precipitation estimates. In addition, the identification
of hydrometeor type is also of great significance for microwave communication. For example, when
there is a melting layer in the air or melting snow near the ground, microwave signals will be seriously
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attenuated [13]. At such times, communication devices with an automatic transmission power control
(ATPC) function will increase the transmission power to ensure normal communication.

A considerable amount of literature has been published on hydrometeor classification. There are
two main ways to do this. One way is by in situ measurement. For example, Yuter et al. [14] separated
the hydrometeors with the coexistence of rain and snow according to the velocity–size relationship
measured by a Parsivel disdrometer. Praz et al. [15] developed an algorithm based on the geometric
and texture features of hydrometeor images to identify six hydrometeor types and evaluated the
degree of riming by multi-angle snowflake camera (MASC). The second way is microwave remote
sensing. According to the polarization and attenuation characteristics under backscatter, polarimetric
parameters (such as the reflectivity (ZH), differential reflectivity (ZDR), specific differential phase (KDP),
linear depolarization ratio (LDR), and copolar correlation coefficient (ρHV)) of dual-polarized radar are
used to identify hydrometeor types [16,17]. Hassan et al. [18] proposed a new fuzzy logic hydrometeor
classification scheme applied to the French X-, C-, and S-Band polarimetric radars. Marzano et al. [19]
estimated the type of hydrometeor from C-band dual-polarized radar by a Bayesian approach. Such
methods can detect a wide range of precipitation, but the temporal and spatial resolution is limited, and
it is difficult to represent near-surface precipitation due to the existence of radar elevation. Therefore, it
is still a tremendous challenge to obtain information relating to hydrometeor types near the ground
with a high spatial and temporal resolution.

In recent years, due to the low cost, wide distribution, representation of the real surface conditions,
and other factors, the observation of precipitation via a terrestrial microwave link has gradually become
an attractive research direction [3]. The basic principle is to retrieve the precipitation information
according to the microwave attenuation caused by precipitation. The inversion of precipitation
intensity [20] and the reconstruction of precipitation field [21] are the main areas that have been studied.
In addition, this technique can be used as a supplement to weather radar measurements [22,23].
Furthermore, a few studies have begun to focus on dual-frequency [24] or dual-polarization [25]
to inverse the hydrometeor size distribution (HSD). In fact, the attenuation of a multi-frequency
dual-polarization microwave link also contains the information of hydrometeor type, which can be
used to distinguish hydrometeor type. However, there have been few studies on the classification
of hydrometeor based on microwave link. Holt et al. [26] studied the variations in the differential
phase and attenuation of several precipitation processes at 12.8 GHz and 17.6 GHz, and indicated the
potential of the differential phase for use in the recognition of snow and sleet. Cherkassky et al. [27]
proposed a method to distinguish pure rain and sleet based on physical characteristics by using the
receiving signal level of a commercial microwave link, which was tested with three links (18.36 GHz
(vertical polarization), 19.37 GHz (horizontal and vertical polarization)). However, it only considered
three hydrometeor types, pure rain, snow, and a mixture, and the data volume was small.

Unlike weather radar with several fixed frequencies (such as, S-, C-, or X-band), microwave links
have multiple frequencies, ranging from several GHz to dozens of GHz. With the development of
communication technology, even W-band (92–114.5 GHz) and D-band (141–174.8 GHz) microwave
backhaul links may be used in the future, which will greatly stimulate the potential of microwave-link
precipitation measurement. Compared with the classification of hydrometeor type based on
dual-polarized radar that is widely used, the classification of hydrometeor type based on microwave
link has the following advantages:

1. The detection object reflects the real precipitation situation near the ground;
2. Higher spatial and temporal resolution;
3. It can be widely distributed in remote mountainous areas;
4. It is low-cost, being based on commercial microwave communication equipment.

In order to explore the method of hydrometeor classification based on microwave links and
make constructive suggestions for its practical application in the next step, this paper proposes a new
method of hydrometeor-type identification via multiple-frequency microwave links. According to the
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frequency band of the typical microwave link, the identification results of hydrometeor types using
microwave links with different frequency bands under different rain-cell conditions were investigated
via numerical simulation. The major contributions of this paper are as follows: (1) A method to
distinguish hydrometeor types based on the dual-polarization information of microwave links is
proposed, and simulation experiments were carried out at single-frequency, dual-frequency and
tri-frequency; (2) some criteria for frequency selection are suggested for future actual experimentation.

This paper is organized as follows: the next section analyzes the differences in the microphysical
characteristics and the attenuation value distribution for different types of hydrometeors. Section 3
details the hydrometeor classification method and the microwave-link simulation experiment, while
the performance of the various classification models and the influence of relative position and relative
length of precipitation cell on it are analyzed in Section 4. In addition, several key issues are discussed
in Section 5. Finally, the conclusion and summary are stated.

2. Microphysical Characteristics and Microwave Attenuations of Different Hydrometeors

2.1. Data Acquisition for Different Hydrometeors and the Properties of Hydrometeors

Due to their differences in physical characteristics, the V-D (velocity–diameter) relationships
between different hydrometeors are obviously different [28]. Therefore, distinguishing hydrometeor
types using the V-D relationship of hydrometeors obtained by statistics is a potential method that has
been applied in certain studies [7,14]. Similarly, in this study, the V-D relationships observed by a
Parsivel disdrometer (manufactured by OTT Messtechnik, Germany) were used to obtain samples of
different types of hydrometeors. The data were from the winters of 2014 to 2019 in Nanjing, China,
with a temporal resolution of 1 minute. In addition, the criterial V-D formula (see Table A1 in the
Appendix A) for matching came from Locatelli et al. [29] and Atlas et al. [30], where the V-D empirical
relationships of 14 solid hydrometeors and raindrops were fitted, respectively. The matching of
hydrometeor type was based on the least square method:

argmin
type

32∑
i=1

32∑
j=1

n(i, j)[V(Di) −Vtype(Di)]
2 (1)

where type represents the 15 hydrometeor types, Vtype refers to the V-D empirical formula of the
type-type hydrometeor (for example, for hexagonal graupel, Vtype(D) = 1.10D0.57), V refers to the V-D
empirical formula fitted with the disdrometer data, and n(i,j) refers to the number of hydrometeors
recorded by the disdrometer for 1 minute at the ith size bin and the jth velocity bin (both size and
velocity have 32 bins for Parsivel disdrometer). Furthermore, the 15 hydrometeor subclasses were
further classified into three types: rain, graupel, and snow. Because of its distinct dielectric properties,
snow was subdivided into dry snow and wet snow. The method used in this study was based on the
temperature data observed on the ground: if the surface temperature at the time of obtaining the snow
sample was greater than 0 ◦C, it was considered a wet snow sample; otherwise, it was considered a dry
snow sample.

Through the above method, a total of 11,196 rain samples, 7521 graupel samples, 2014 dry
snow samples and 545 wet snow samples were obtained. It is worth noting that the number of wet
snow samples was too small. To balance the number of hydrometeor samples of different types, wet
snow samples were oversampled using the SMOTE (Synthetic Minority Over-sampling Technique)
method [31].

Raindrops, graupel particles, dry snow particles, and wet snow particles have different physical
properties and dielectric properties due to their different formation mechanisms [28]. Raindrops are
caused when droplets undergo the collision–coalescence process in clouds or when solid hydrometeors
melt completely before falling to the ground [32]. The equivalent diameter of raindrops observed in
nature is less than 8 mm [8]. When the equivalent diameter is less than 1 mm, the raindrop is considered
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to be a sphere, and when it is greater than 6 mm, it is considered to be an ellipsoid with an axial ratio
of 0.7; between these shapes, the axial ratio of raindrop varies linearly from 1 to 0.7 with increasing
equivalent diameter [33]. The relative dielectric constant of raindrops can be approximated as the
complex dielectric constant of pure water εw = ε′w − iε′′w. When the electromagnetic wave frequency
range is 1 Hz to 3000 GHz, ε′w and ε′′w can be expressed as [34]

ε′w = (ε0 − 5.48)/[1 + ( f / fp)
2] + 1.97/[1 + ( f / fp)

2] + 3.52
ε′′w = (ε0 − 5.48)( f / fp)/[1 + ( f / fp)

2] + 1.97( f / fp)/[1 + ( f / fp)
2]

(2)

where ε0 = 77.66 + 103.3(1 − t), fp = 20.20 + 146(1 − t) + (1 − t)2, fs = 39.8 × fp, t = 300/T, and T is the
Kelvin temperature.

Graupel particles are nearly-spheroidal ice particles formed when supercooled water droplets
come into contact with snow crystals and freeze on their surfaces. When the equivalent diameters are
less than 1 mm, 1–4 mm, and 4–9 mm, the corresponding axial ratios are approximatively 1, 0.5, and
0.75, respectively [35]. The complex dielectric constant of ice εi = ε′i − iε′′i can be calculated using the
following formulas [36].

ε′i = 3.15
ε′′i = α(T)/ f + β(T) f + γ f 3 (3)

where α = (50.4 + 62θ) × 10−4e−22.1θ, β = (0.502 − 0.131θ)/(1 + θ) × 10−4 + 0.564 × 10−6(1 + θ)2/(0.0073 +

θ)2, and θ = 300/T − 1.
Snow particles are the result of the deposition of vapor on the surface of ice crystals and of the

aggregation between snowflakes and ice crystals [32]. Snow particles can be up to 15 mm in diameter
and have complex shapes [37]. However, for snow particles less than 10 mm in diameter, the axial
ratio is approximately 1. Meanwhile, for snow particles with a diameter greater than 10 mm, the axial
ratio is approximately 0.9 [38]. The dielectric properties of snow particles are related to their water
content. The complex dielectric constant of snow particles can be expressed as a function of the volume
proportion of water W and form number u [39].

εs = (1 + uF)/(1− F)
F = W(εw − 1)/(εw + u) + 1.09(

√
W −W)(εi − 1)/(εi + u)

(4)

Typically, for dry snow, W = 0.05%, and u = 2; for wet snow, W = 3%, and u = 20.

2.2. Size Distribution of Hydrometeors

The hydrometeor size distribution (HSD) is commonly described by the gamma function [40];

N(D) = N0Dµ exp(−ΛD) (5)

where D (mm) is the equivalent diameter of the hydrometeor, N0 (mm−1 m−3) refers to the intercept
parameter, µ (dimensionless) refers to the shape parameter, and Λ (mm−1) refers to the slope parameter.
Nw (mm−1 m−3, normalized intercept parameter) and Dm (mm, mass-weighted mean diameter) reflect
the overall concentration and size of hydrometeors, which can be calculated as

Nw = 128/3 ·M3
5/M4

4 (6)

Dm = M4/M3 (7)

where Mn =
∫ Dmax

0 N(D)DndD is the nth moment. In addition, µ can be expressed as

µ = (11G− 8 +
√

G(G + 8))/2(1−G) (8)
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where G = M4
3/(M6 M3

2). The liquid water equivalent precipitation rate in mm h−1 is equal to [41]

S = 3.6
∫ Dmax

0
V(D)M(D)N(D)dD (9)

where V(D) (m s−1) and M(D) (g) are the fall speed and mass of the hydrometeor, respectively.
Figure 1 shows the distributions in the number concentrations of different types of hydrometeors

relative to the diameter. As shown in this figure, the three kinds of non-liquid hydrometeors (graupel,
wet snow, and dry snow) achieved a significantly larger size than raindrops did. At the same
concentration, the diameter of dry snow was greater than that of wet snow, graupel, and rain (when
N(D) < 1 mm−1 m−3). In addition, the HSDs of dry snow and wet snow were very similar except that,
for the same diameter, the number concentration of wet snow was slightly lower than that of dry snow.
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Figure 1. Mean hydrometeor size distributions (HSDs) of rain (black), graupel (cyan), wet snow (red),
and dry snow (blue).

The probability distributions of log10Nw and Dm for the four types of hydrometeors are shown
in Figure 2. The figure illustrates that the log10Nw values of rain and graupel (the mean values are
3.41 mm−1 m−3 and 3.30 mm−1 m−3, respectively) were larger than those of wet snow and dry snow
(the mean values were 2.95 mm−1 m−3 and 2.99 mm−1 m−3, respectively) overall. The Dm values of dry
snow, wet snow, and graupel (the mean values were 3.49 mm, 3.17 mm, and 2.58 mm, respectively)
were obviously more inclined towards large values than rain was (the mean value for rain was 0.99 mm).
This indicates that dry snow and wet snow have fewer particles but a larger size, whereas rain is the
opposite, and graupel is somewhere in between. In addition, the mean values and standard deviations
of the three parameters of HSD and precipitation rate are shown in Table 1.

Table 1. The mean (standard deviation) of the four parameters of rain, graupel, wet snow, and dry snow.

Parameter Rain Graupel Wet Snow Dry Snow

Precipitation rate S (mm/h) 0.73 (2.55) 2.07 (2.93) 0.16 (0.20) 0.27 (0.40)
Shape parameter µ 7.58 (6.35) 2.90 (4.98) 4.79 (4.49) 4.10 (5.38)

Normalized intercept parameter log10Nw
(mm−1 m−3) 3.41 (0.53) 3.30 (0.53) 2.95 (0.49) 2.99 (0.63)

Mass-weighted mean diameter Dm (mm) 0.99 (0.53) 2.58 (1.25) 3.17 (1.78) 3.49 (2.00)
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Figure 2. The probability histograms of the normalized intercept parameters log10Nw (mm−1m−3)
(a,c,e,g) and mass-weighted mean diameters Dm (mm) (b,d,f,h) for rain, graupel, wet snow, and dry
snow, respectively.

2.3. Microwave Attenuations of Hydrometeors

The attenuation rate γhydro H,V (dB/km) induced by hydrometeors can be expressed as [42]

γhydro H,V = 8.686× 105ImKH,V (10)

KH,V = π f /15 + 30/ f
∫ Dmax

0
fH,V(D)N(D)dD (11)

where f (GHz) is the electromagnetic frequency, and fH,V refers to the forward scattering amplitude
at horizontal or vertical polarization. fH,V is calculated according to the T-matrix method [43], which
is related to the shape and dielectric properties of the hydrometeor. Figure 3 shows the cumulative
distribution function (CDF) of the attenuation values of the four types of hydrometeors at horizontal
polarization for eight frequencies (common microwave link frequencies were selected in this study:
15 GHz, 18 GHz, 25 GHz, 38 GHz, 50 GHz, 60 GHz, 70 GHz, and 80 GHz) (the result was similar
for vertical polarization, so it is not drawn here). As shown in this figure, the distribution range of
graupel attenuation values was greater than that of wet snow, then greater than that of rain, and finally
greater than that of dry snow for all frequencies. With the increase in frequency, the distribution
difference of the attenuation values for different types of hydrometeors became increasingly obvious.
This observation implies that the selection of precipitation attenuation at the highest possible frequency
as a feature may lead to a better performance of the classification model. The above analysis indicated
that the attenuation distribution characteristics of different types of hydrometeors exhibit diversity,
and this diversity varies with the change in frequency, which verifies the potential of hydrometeor
identification based on multiple-frequency microwave links.

Figure 4 shows the cumulative density function of attenuation rates induced by dry snow at
the horizontal polarization of eight frequencies. It is worth noting that the horizontal polarization
attenuation rates of over 95% dry snow samples were less than 0.1 dB/km for all frequencies (even
for 15 GHz, almost all of them were less than 0.01 dB/km). In addition, the microwave link also had
quantization and random errors, which almost submerged the attenuation of dry snow. Therefore,
it was almost impossible to identify dry snow by microwave attenuation (especially in regions with
generally weak snowfall, such as eastern China), which was consistent with the measured results from
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Holt et al. [42]. In the following discussion, the objects of classification are the three types other than
dry snow: rain, graupel, and wet snow.
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3. Method of Hydrometeor Identification

3.1. Microwave Link Simulation

The purpose of this study was to optimize the frequency combination through simulation to
provide a reference for future link design and experimentation. It was assumed that, for terrestrial
link with horizontal path, the microwave receiver can receive microwave signals in the directions of
horizontal and vertical polarizations. The total attenuation of the microwave over the terrestrial link
with horizontal path is [3]

Atotal =

∫ L

0
γ(l)dl = γL (12)

where γ (dB/km) is the average attenuation rate generated by the medium over the link at horizontal or
vertical polarization and L (km) is the link length. The total microwave attenuation in the atmosphere
is mainly composed of the following parts [44]:

Atotal H,V = Aair + Avapor + Ahydro H,V + Anoise (13)

where Aair is the dry air attenuation, Avapor is the vapor attenuation, Ahydro H,V is the hydrometeor
attenuation at horizontal or vertical polarization, and Anoise is the attenuation associated with noise
(due to the simulated experiment, the attenuation of a wet antenna was not considered). Aair and
Avapor were calculated based on the ITU-R P.676-10 recommendation (taking into account data from
winter and the general conditions in the Nanjing area, a temperature of 0 ◦C and an absolute humidity
of 5.0 g m−3 were adopted). Suppose that Anoise = a × Gauss (Gauss represents the normal Gaussian
distribution, and a stands for the noise coefficient) and a = 0.1 dB are set first (different noise levels are
discussed later in Section 4) [45].

According to the observed HSDs corresponding to the different types of hydrometeors, the total
attenuation value of each type of hydrometeor measured by the receiver can be obtained through
Equation (13) (assuming that the level resolution of the receiver is 0.1 dB and the time resolution is
1 min). Hydrometeor attenuation can be calculated by removing the baseline value.

A′hydro H,V = Atotal H,V −Abaseline H,V (14)

where the baseline value Abaseline H,V is the minimum value recorded by the receiver in the last
15 min [46]:

Abaseline H,V = min
{
AH,V(t1), AH,V(t2), . . . , AH,V(tend)

}
(15)

For the sake of simplicity, L was taken as 1 km in this study, and the average hydrometeor
attenuation rate was γhydro H,V = A′hydro H,V.

3.2. Classification Method

Due to the differences in the axial ratio model and dielectric characteristics of different
hydrometeors [28], the attenuation characteristics of microwaves at different polarization directions
and frequencies are unique [45]. Therefore, the microwave attenuation information associated with a
hydrometeor at different frequencies and polarization modes contains information of the hydrometeor
type, which makes it possible to determine the hydrometeor type through microwave-link analysis.
In this study, the attenuation values caused by a hydrometeor at the horizontal and vertical polarizations
of a single frequency or multiple frequencies were extracted as the characteristic variable used to
identify the hydrometeor type. The appropriate machine learning classification algorithm was then
adopted for training (the ratio of test set samples to training set samples was 1:4), and the hydrometeor
type recognition model was established and tested.

The classification algorithm used in this study was the extreme learning machine (ELM) (there
may be some controversy about naming). ELM is an improved single-hidden-layer feedforward
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neural network, which has been widely used in regression and pattern recognition [47]. Compared
with traditional algorithms (e.g., support vector machine (SVM) or single-layer perceptron), it has the
advantages of a fast training speed and strong generalization ability. Assuming that the number of
neurons in the input layer, hidden layer, and output layer is n (equal to the number of features), b,
and m (equal to the number of types), the number of samples is N, and (xi, yi) is the ith sample (xi =

[xi1, xi2, . . . , xin]T, yi = [yi1, yi2, . . . , yim]T). The process of model training is to make the output of the
network as close as possible to the label

b∑
j=1

‖o j − y j‖ → 0 (16)

where oj=
b∑

i=1
βig(wix j + bi); βi and gi are the weight vector and activation function of the ith hidden-layer

neuron, respectively; and bi and wi are the bias and weight vector of the ith neuron connecting the
input layer and the hidden layer, respectively. The key to model determination is to solve the following
equation:

Hβ = Y (17)

where H is the hidden-layer output matrix, β = [β1
T, β2

T, . . . , βb
T]T, and Y = [y1

T, y2
T, . . . ,yN

T]T. H is
a function of wi and bi, and is uniquely determined with random values of wi and bi. The training
process of the ELM can then be simplified to the linear solution of β to determine the classification
model. In addition, in order to show the superiority of the algorithm, the results based on decision
tree (DT) [48] and probabilistic neural network (PNN) [49] classification algorithms are also shown in
Section 4 for comparison.

4. Experimental Results

Combinations of one, two, or three of the frequencies 15 GHz, 18 GHz, 25 GHz, 38 GHz,
50 GHz, 60 GHz, 70 GHz, and 80 GHz were used, and the horizontal and vertically polarized
hydrometeor attenuation rates of each frequency were used as feature variables. Figure 5 shows the
scatter distributions of horizontal- and vertical-polarization attenuation rates for different types of
hydrometeors at each frequency. As seen from the figure, compared with other types of hydrometeors,
the attenuation difference between horizontal and vertical polarizations of graupel was more obvious.
In addition, as the frequency increased, the dispersion of points became wider.

It was simply assumed that the length of all links was 1 km to facilitate the comparison of the
effects of different frequencies on the performance of the classification model. However, in order to be
closer to an actual situation, longer links were also simulated, and the differences in the relative length
and relative position between them and the precipitation cell were also taken into account.

The accuracy was used to evaluate the performance of model. Assume that XY is the number of
samples of hydrometeor type X that is classified as hydrometeor type Y, and rain, graupel, and wet
snow are represented by A, B and C, respectively. The definition of accuracy was

accuracy =
AA + BB + CC

AA + AB + AC + BA + BB + BC + CA + CB + CC
(18)

The numbers of rain, graupel, and wet snow samples were 11,102, 7489, and 5984, respectively.
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4.1. Single-Frequency Models

Figure 6a shows the test set accuracy of eight single-frequency models, and the model numbers are
shown in Table 2. It can be seen that, for ELM, the accuracy of the model increased with the frequency,
for which a possible reason is that low-frequency signals tend to be drowned out by noise. The model
accuracies for frequencies of 50 GHz, 60 GHz, 70 GHz, and 80 GHz were all over 80% (80.2%, 81.2%,
82.6%, and 83.0%, respectively) and the mean test set accuracy of the single-frequency models was
75.8% for ELM. It is worth noting that the accuracy of the single-frequency model at high frequencies
(especially at 80 GHz) could reach the same performance as the dual-frequency and tri-frequency
models (as shown in Sections 4.2 and 4.3). Therefore, if only a single-frequency microwave link is
actually available, then the highest possible frequency should be selected. In addition, the results
showed that the variation trend of different algorithms with model number was basically the same,
but ELM was better than DT and then PNN on the whole (the difference in accuracy between the
three algorithms was about 5–15% for the same model number). This indicated that the influence of
different frequency combinations (model number) on the accuracy of classification results was relatively
stable rather than random, and the overall performance can be improved through the improvement
of algorithms (this was true not only for single-frequency models, but also for dual-frequency and
tri-frequency models, as shown in Figure 6b,c. To avoid misunderstanding, all performance analyses
in the following article refer to the ELM algorithm by default.
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Table 2. Model numbers of single-frequency models.

Frequency (GHz) Model Number Frequency (GHz) Model Number

15 1 50 5
18 2 60 6
25 3 70 7
38 4 80 8

4.2. Dual-Frequency Models

Figure 6b presents the test set accuracies obtained from dual-frequency models. There were a total of
28 dual-frequency models, which were obtained by pairing the eight frequencies. The correspondence
between frequency combinations and model numbers is shown in Table 3. Overall, for ELM,
the accuracies of the dual-frequency models were higher than those of the single-frequency models
(the mean and maximum accuracies of dual-frequency models were 80.7% and 84.4%, respectively).
More than two-thirds of the models had an accuracy that was than 80% for ELM. In addition, the
accuracy fluctuated obviously with the change in the model number. It is interesting to note that
when one frequency was fixed while the other frequency was increasing, the accuracy of the model
was constantly improved (e.g., from Model 1 to Model 7, Model 8 to Model 13, Model 14 to Model
18, and Model 19 to Model 22). Furthermore, the accuracy of the test set increased with the overall
frequency (for example, the overall accuracy of Models 19–22 was higher than that of Models 14–18,
which was higher than that of Models 8–13, which was finally higher than that of Models 1–7). This
trend indicates that when a dual-frequency microwave link is used for hydrometeor type identification,
the two frequencies should be selected with as much difference as possible or with as high an overall
value as possible.

Table 3. Model numbers of dual-frequency models.

Frequency (GHz) Model Number Frequency (GHz) Model Number

15, 18 1 25, 50 15
15, 25 2 25, 60 16
15, 38 3 25, 70 17
15, 50 4 25, 80 18
15, 60 5 38, 50 19
15, 70 6 38, 60 20
15, 80 7 38, 70 21
18, 25 8 38, 80 22
18, 38 9 50, 60 23
18, 50 10 50, 70 24
18, 60 11 50, 80 25
18, 70 12 60, 70 26
18, 80 13 60, 80 27
25, 38 14 70, 80 28
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4.3. Tri-Frequency Models

It was found above that the performance of the dual-frequency models was improved compared
with that of the single-frequency models. Therefore, this section discusses whether the accuracy of the
tri-frequency models can be further improved. The test set accuracies of 56 tri-frequency models are
shown in Figure 6c, and the corresponding frequency combinations are shown in Table 4. As shown in
the figure, except for Models 1, 2, 7, and 22, the accuracies of the test sets of most models were above
80%, and the mean accuracy of all tri-frequency models was 83.2% for ELM. The accuracy reached a
maximum of 85.6% at Model 52 for ELM. Similar to the dual-frequency models, the accuracies of the
tri-frequency models fluctuate with the model number. However, compared with the dual-frequency
models, the fluctuation range is relatively small. Except for a few irregular cases, the accuracy still
increases with the overall frequency or frequency difference.

Table 4. Model numbers of tri-frequency models.

Frequency (GHz) Model Number Frequency (GHz) Model Number

15, 18, 25 1 18, 38, 70 29
15, 18, 38 2 18, 38, 80 30
15, 18, 50 3 18, 50, 60 31
15, 18, 60 4 18, 50, 70 32
15, 18, 70 5 18, 50, 80 33
15, 18, 80 6 18, 60, 70 34
15, 25, 38 7 18, 60, 80 35
15, 25, 50 8 18, 70, 80 36
15, 25, 60 9 25, 38, 50 37
15, 25, 70 10 25, 38, 60 38
15, 25, 80 11 25, 38, 70 39
15, 38, 50 12 25, 38, 80 40
15, 38, 60 13 25, 50, 60 41
15, 38, 70 14 25, 50, 70 42
15, 38, 80 15 25, 50, 80 43
15, 50, 60 16 25, 60, 70 44
15, 50, 70 17 25, 60, 80 45
15, 50, 80 18 25, 70, 80 46
15, 60, 70 19 38, 50, 60 47
15, 60, 80 20 38, 50, 70 48
15, 70, 80 21 38, 50, 80 49
18, 25, 38 22 38, 60, 70 50
18, 25, 50 23 38, 60, 80 51
18, 25, 60 24 38, 70, 80 52
18, 25, 70 25 50, 60, 70 53
18, 25, 80 26 50, 60, 80 54
18, 38, 50 27 50, 70, 80 55
18, 38, 60 28 60, 70, 80 56

4.4. Precipitation Cell

Although in many cases we assumed that the precipitation field was evenly distributed within
the detection range, this assumption obviously introduced great uncertainty relative to the scale of the
microwave link. The typical size of a precipitation cell is 5–10 km [50]. For high-frequency links (for
E-band, the link length may be less than 1 km, about 1/10 of the size), the length of precipitation cells
may need less consideration. For the low-frequency links (where the link length may be more than ten
kilometers or even twenty kilometers long), it is necessary to discuss the precipitation cell length.

A well-known precipitation cell model is the EXCELL model [51], which assumes an exponential
precipitation rate profile. Similarly, assuming an exponential distribution of surface precipitation rates,

S(x) = S1 exp(−c|x− xcell|) (19)
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where S1 (mm h−1) is the peak precipitation rate, x (km) is the position relative to the origin, xcell
(km) is the peak position of precipitation cell, and c is the parameter associated with the effective
scope of the cell. For the sake of discussion, the coordinate system shown in Figure 7 was defined. In
order to control variables, the length of the precipitation cell was assumed to be 10 km, and only the
influence of the location of the link relative to the precipitation cell and the length of the link on the
classification model are analyzed below. Here, c was set to 0.5 (precipitation rate from the center of the
cell to the boundary will be reduced to about 10%). Precipitation intensity S0 calculated from HSD
data (according to Equation (9)) was used to determine the value of S1. Assuming that S0 represents
the average precipitation rate of cell,

xcell∫
0

S(x)dx = xcell · S0 (20)
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Figure 7. The schematic diagram of the precipitation cell model and link distribution under three cases.

Thus, the value of S1 can be obtained:

S1 =
xcell

4[1− exp(−0.25xcell)]
(21)

for xcell = 10 km, S1 = 2.72 mm h−1. In addition, we used the HSD data obtained by disdrometer to fit
the relationship between the Gamma parameters of different types of precipitation and the precipitation
rate (see Table A2 in the Appendix A). Thus, according to an HSD sample, the HSD distribution of a
precipitation cell can be obtained. Further, the locations of the link relative to the precipitation cell
in three cases are shown in Figure 7. For Case 1 (0 < xt < xr < xcell, xt and xr represent the locations
of the link transmitter and receiver, respectively), the link was completely within the coverage of the
precipitation cell. For Case 2 (0 < xt < xcell < xr), one end of the link was outside the precipitation
cell and the other was inside. For Case 3 (xt <0 < xcell < xr), both ends of the link were outside the
precipitation cell. For each case, specific locations and lengths of different links were simulated and
similar classification models ware established as above.

For Case 1, we assumed that the length of the link was 6 km, and the four location conditions
relative to the precipitation cell were simulated ((xt, xr) was equal to (0, 6), (1, 7), (2, 8) and (3, 9),
respectively, corresponding to getting closer and closer to the center of the precipitation cell) (as shown
in Figure 8a–c. In general, due to the longer link length, the accuracies of the classification model were
significantly improved (compared with those provided Section 4), no matter whether the model being
used was a single-frequency, dual-frequency, or tri-frequency model (there are many combinations
with accuracy greater than 95% in the dual-frequency and tri-frequency models). The increase of link
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length reduced the error, which corresponded to the analysis conclusion of Section 5.2. In addition,
the trend of accuracy changing with the model number was basically unchanged (this was true not only
for Case 1, but also for Cases 2 and 3, as shown in Figure 8d–i. Further, as the link came closer to the
center of the precipitation cell (from 0–6 km to 1–7 km and then to 3–9 km), the accuracy of the model
increased as a whole, but it decreased slightly as a whole when it was away from the precipitation cell
(from 2–8 km to 3–9 km).Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 21 
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For Case 2, the length of the link was set to 10 km, and the four location conditions ((xt, xr) was
equal to (2, 12), (4, 14), (6, 16), and (8, 18), respectively) were simulated, corresponding to getting farther
and farther away from the precipitation cell) (as shown in Figure 8d–f). As the link was far away from
the precipitation cell, the accuracy decreased on the whole, especially for 8–18 km, where only one
fifth of the link was covered by precipitation cell. However, even in this case, the accuracies of some
single-frequency models were still as high as 80%, and those of the dual-frequency and tri-frequency
models were above 90%. As precipitation existed in only part of the links, the attenuation rate
caused by precipitation as a feature variable was obviously reduced, but it still worked well, probably
because the polarization information was introduced into the model. The potential relationships



Remote Sens. 2020, 12, 2158 15 of 22

between precipitation-induced attenuation rates under horizontal and vertical polarization at different
frequencies may be key to ensuring that the model can still maintain a good effect.

For Case 3, the precipitation cell waas completely contained within the link range, and the four
location conditions ((xt, xr) was equal to (–1, 11), (–2, 12), (–3, 13), and (–4, 14), respectively) were
simulated (as shown in Figure 8g–i). The results showed that the increase of link length had little effect
on the accuracies of the models.

5. Discussion

5.1. Noise Levels

The previous analysis was based on a case where the noise coefficient a = 0.1 dB. However, the
noise of an actual microwave link may be higher than this value, so it is necessary to discuss the noise
level. Figure 9 shows the test set accuracies of the single-frequency, dual-frequency, and tri-frequency
models with noise coefficients of 0.3 dB, 0.5 dB, and 1.0 dB. Whether using the single-frequency,
dual-frequency, or tri-frequency model, the test set accuracy decreased with the increase in the noise
coefficient. In addition, whether a = 0.1 dB, 0.3 dB, 0.5 dB, or 1.0 dB, the accuracy trends of the
single-frequency, dual-frequency, and tri-frequency models’ changing with the model number were
basically the same. When a = 0.3 dB, the mean accuracies of the single-frequency, dual-frequency, and
triple-frequency models were 73.4%, 78.2%, 80.7%, and the maximum values were 80.8% (Model 8),
82.1% (Model 25), and 83.6% (Model 43). When a = 0.5 dB, regardless of whether the single-frequency,
dual-frequency, or tri-frequency model was being used, there were still models with an accuracy
greater than or equal to 80%. Even when a = 1.0 dB, models with an accuracy greater than 75% were
still common, especially for tri-frequency models. In general, although the increase in noise level
reduced the performance of classification models, effective models were still possible within the limited
noise range.Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 21 
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5.2. Link Length and Link Data Processing

The actual length of commercial microwave links is not the same. Actually, it is related to carrier
frequency. The atmosphere has a weak attenuation effect on low-frequency links, so the link length
can be set very large (even up to tens of kilometers [52]). In contrast, a strong attenuation may
occur on high-frequency links, so the link is generally set up short (even reaching the sub-kilometer
level for the E-band [53]). The length of the link has its advantages and disadvantages. The actual
value used for precipitation inversion is the attenuation rate caused by precipitation, which can be
obtained by dividing the total attenuation caused by precipitation by the link length. Sufficient link
length can reduce the error caused by instrument resolution. In addition, long links are relatively
insensitive to the wet-antenna attenuation effect [53]. In contrast, short links are subject to baseline
determination, wet-antenna attenuation, and receiving antenna resolution, especially for light rain.
However, a short link length can make the spatial resolution of inversion results higher [53]. The link
length of all frequencies was assumed in this study to be 1 km, which is less than the length of most
actual microwave links. Therefore, better results can be expected for actual links.

The method used to process link data also has some influence on the inversion results. Firstly,
if a rain gauge or disdrometer is not available, separation of dry and wet periods needs to be
performed [54,55]. In addition, the water film covering the antenna surface can result in overestimation
of the precipitation attenuation, and ice and snow in winter may also attach to it and cause similar
effects [52]. Therefore, in the actual process, the appropriate wet-antenna calibration method is
necessary. Unfortunately, although some studies have focused on wet-antenna correction during
rainfall [56,57], due to its complexity, there are no generally accepted methods and conclusions, let alone
for non-liquid precipitation.

5.3. Choice of Frequency

As shown in Section 4, different frequency combinations have a great impact on the accuracy
of classification (the difference can be up to about 20%). For commercial microwave links, available
frequency points are abundant but their distribution is uncertain. Therefore, it is necessary to select
the optimal frequency combination for the existing hardware in the practical application process.
Generally speaking, the more frequency combinations are selected, the more information they contain
and the more favorable they may be for improving classification performance. However, considering
the effect of actual link distribution density and noise, this may be impractical, especially for remote
areas. If only one frequency can be obtained, the higher the frequency, the better the classification
is likely to be. For dual-frequency models, as long as the combination contains 70 GHz or 80 GHz,
the accuracies were basically stable at about 83%. Similarly, for the tri-frequency model, as long as
the combination also contained 70 GHz or 80 GHz, the accuracies were basically stable at around
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85%. In addition, the accuracies of single-frequency models at 70 GHz and 80 GHz were about 82%.
This shows that for high-frequency links, the combination of multiple frequencies has little influence
on them, and both single- and multi-frequency models can achieve ideal results. The performance
improvement of multi-frequency combination is mainly reflected in low-frequency links. For example,
the accuracy of a single-frequency model at 15 GHz was only 62.1%, but with the combination of
15 GHz and 18 GHz, the accuracy was increased to 68.6%, and the combination of 15 GHz, 18 GHz,
and 25 GHz made it further increase to 75.3%. Coincidentally, most commercial microwave links
currently operate at frequencies below 40 GHz, so it is expected that multi-frequency combinations
for precipitation type differentiation will be meaningful. For the eight frequency points involved in
this study, it is economical to select only a 70 GHz or 80 GHz single link if there is one. However, if a
high frequency does not exist, a combination of several low-frequency links (such as 15 GHz, 18 GHz,
25 GHz, or 38 GHz) is beneficial, and the higher the overall frequency, the better the classification effect
will be.

5.4. Hydrometeor Property

The properties of the assumed non-liquid hydrometeor were relatively ideal typical values, but in
practice, these values are relatively volatile. For example, although the hypothesis of spherical snow
particles can be applied to the scattering calculation [38], the shape of actual snow particles may be
columnar, plate-like, needle-like, etc., which will inevitably introduce errors. In addition, in terms
of dielectric property calculations, hydrometeors may not be uniform media; for example, wet snow
particles may be surrounded externally by a layer of water. The differences in the description of particle
microphysical characteristics and dielectric properties will cause errors in the calculation of scattering
characteristics, which will have some influence on the simulation results. Of course, a more accurate
description of hydrometeor properties depends on advances in observational techniques, such as the
snowflake video imager (SVI)’s ability to record images of individual snowflakes [58], which will help
to describe hydrometeor properties. However, SVI cannot measure falling speeds.

5.5. Classification Method

In this study, the data for different types of precipitation were obtained by matching the V-D
relationships measured by Parsivel disdrometer with the empirical V-D relationships. On the one hand,
the Parsivel disdrometer has errors in measuring V-D relationships. Although the radar reflectivity
factor of snow measured by Parsivel disdrometer has good consistency with that measured by rain
C-band radar [59], a Parsivel disdrometer is mainly used to measure the raindrop size distribution.
The built-in algorithm assumes that the particles are spheres or ellipsoids, for which the equivalent
diameter can be obtained by measuring the power weakened by the laser due to shielding, and the
falling speed can be determined by the time the laser is shielded [60]. For non-liquid hydrometeors, such
an algorithm is obviously not completely suitable. On the other hand, the empirical V-D relationships
may not necessarily correspond to the actual local situations as encountered in different climatic zones.
In addition, the falling velocity is also affected by real-time vertical airflow [28]. More advanced
measuring instruments and classification methods are needed. For example, the types of hydrometeor
can be determined using images taken by a multi-angle snowflake camera (MASC) [61]. Unfortunately,
this device is still in the development stage, and its automated processing poses some challenges.

6. Conclusions and Prospects

In this paper, using HSD data measured by a Parsivel disdrometer, microwave link simulation
experiments were carried out under different frequencies (15 GHz, 18 GHz, 25 GHz, 38 GHz, 50 GHz,
60 GHz, 70 GHz, and 80 GHz) and polarization modes (horizontal or vertical). The attenuation rates
caused by rain, graupel, wet snow, and dry snow were calculated and used as feature variables to
establish single-frequency, dual-frequency, and tri-frequency hydrometeor type identification models
based on the ELM algorithm.
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As the attenuation signal of dry snow was too weak, only rain, graupel, and wet snow
were considered in the classification model. The classification results showed that, on the whole,
the performance of the tri-frequency model was better than those of the dual-frequency model and the
single-frequency model (the mean accuracies of the test sets were 83.2%, 80.7%, and 75.8%, and the
highest accuracies are 85.6%, 84.4%, and 83.0%, respectively). For the dual-frequency and tri-frequency
models, the accuracies were found to increase with the overall frequency or frequency difference.
In addition, the performance of the model decreased with increases in noise level. When the noise
coefficient was 0.5 dB, models with an accuracy greater than 80% still existed. When the noise
factor was increased to 1.0 dB, there were still many models with an accuracy greater than 75%.
Furthermore, the classification model achieved good performance under different precipitation cell
and link combinations.

In addition to quantitative precipitation estimation, the identification of hydrometeor types using
microwave links has become a hot research area. In this paper, a preliminary attempt was made to
identify the hydrometeor type by using multi-frequency microwave links. In the future, measured link
data will be collected to verify the simulations. However, there are still certain problems. For example,
the problem of detecting dry snow remains difficult to solve using only attenuation information.
However, it has been reported that the differential phase may be a good indicator for detecting dry
snow [26], which is our next step. In addition, this study showed that the model classification effect
obtained using high-frequency microwave links (60 GHz, 70 GHz, 80 GHz) was better than those
obtained using low-frequency links, and these frequencies belong only to the frequency range of
E-band commercial microwave links, which is a necessary part of the new generation of 5G networks.
With further study of the E-band microwave link network, its potential in the field of hydrometeor
type identification may be further explored in the future.
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Appendix A

Table A1. Empirical relationships of velocity (m/s)–diameter (mm) (V–D) and mass (mg)–diameter
(mm) (M–D) for different types of precipitation. The empirical relationships of graupel and snow are
derived from Locatelli and Hobbs [29]. The empirical relationships of rain are derived from Atlas
et al. [30].

Categories Precipitation Type V–D M–D

Rain Rain V = 9.65 −
10.3exp(−0.6D) M = π/6D3.0

Graupel

Lump graupel 1 V = 1.16D0.46 M = 0.042D3.0

Lump graupel 2 V = 1.30D0.66 M = 0.078D2.8

Lump graupel 3 V = 1.50D0.37 M = 0.140D2.7

Conical graupel V = 1.20D0.65 M = 0.073D2.6

Hexagonal graupel V = 1.10D0.57 M = 0.044D2.9



Remote Sens. 2020, 12, 2158 19 of 22

Table A1. Cont.

Categories Precipitation Type V–D M–D

Snow

Graupellike snow of lump type V = 1.10D0.28 M = 0.059D2.1

Graupellike snow of hexagonal type V = 0.86D0.25 M = 0.021D2.4

Densely rimed dendrites V = 0.62D0.33 M = 0.015D2.3

Densely rimed radiating assemblages V = 1.10D0.12 M = 0.039D2.1

Unrimed side planes V = 0.81D0.99 –
Aggregates of unrimed radiating assemblages V = 0.80D0.16 M = 0.073D1.4

Aggregates of densely rimed radiating
assemblages of dendrites or dendrites V = 0.79D0.27 M = 0.037D1.9

Aggregates of unrimed radiating assemblages of
plates, side planes, bullets, and columns V = 0.69D0.41 M = 0.037D1.9

Aggregates of unrimed side planes V = 0.82D0.12 M = 0.040D1.4

Table A2. The fitting relationship between the Gamma parameters (N0, u, Λ) and the precipitation
rate S.

Categories N0 = algS + b u = aSb Λ = aSb

a b a b a b

Rain 150,882 −3.89 4.42 −0.28 7.31 −0.36

Graupel 3279 −0.65 1.21 −0.53 2.09 −0.37

Wet snow 38 −1.59 1.40 −0.38 0.85 −0.46

Dry snow 965 −0.256 1.02 −0.43 1.11 −0.34
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