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Abstract: Two unsolved key issues in inverse synthetic aperture radar (ISAR) imaging for
non-cooperative rapidly spinning targets including high computational complexity and poor imaging
performance in the case of low signal-to-noise ratio (SNR) are addressed in this work. In the strip-map
imaging mode of SAR, it is well known that azimuth spatial invariant characteristics exist, and inspired
by this, we propose a fast ISAR imaging approach for spinning targets. Our approach involves two
steps. First, a precise analytic expression in the range-Doppler (RD) domain is produced using the
principle of stationary phase (POSP). Second, a novel interpolation kernel function is designed to
remove two-dimensional (2-D) spatial-variant phase errors, and the corresponding fast implementation
steps that only require Fourier transform and multiplications are also presented. Finally, a well-focused
ISAR image is obtained by compensating the azimuth high-order terms. Compared with current
imaging methods, our approach avoids multi-dimensional search and interpolation operations
and exploits the 2-D coherent integrated gain; the proposed method is of low computational cost
and robustness in the low SNR condition. The effectiveness of the proposed approach is confirmed
by numerically simulated experiments.

Keywords: inverse synthetic aperture radar (ISAR); spinning targets; range-Doppler domain;
principle of stationary phase (POSP); 2-D spatial-invariant characteristics

1. Introduction

The rapid developments of the aerospace industry raised the issue of space debris, which pose a
serious threat to spacecraft or satellites in orbit, with potentially disastrous consequences [1–3]. In turn,
detecting, identifying, and cleaning space debris is currently an important research topic. Among the
different methods to monitor space debris, inverse synthetic aperture radar (SAR) (ISAR) represents
a powerful tool able to produce high-resolution images of spinning targets, and it has been widely
adopted to obtain space debris images [4–6]. However, the trajectories of space debris are complex,
and besides translational motion, they are usually characterized by rapid spinning along the main
rotating axis. This makes range-Doppler (RD) [7,8] and range instantaneous Doppler (RID) algorithms
for ISAR imaging [9,10] unusable and, in turn, it makes it challenging to produce well-focused

Remote Sens. 2020, 12, 2059; doi:10.3390/rs12122059 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/2072-4292/12/12/2059?type=check_update&version=1
http://dx.doi.org/10.3390/rs12122059
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2020, 12, 2059 2 of 17

high-resolution ISAR imaging for the spinning target. One of the problems is that fast rotating targets
cause great range cell migration (RCM) and non-stationary Doppler frequency modulation (DFM).
Moreover, the RCM and DFM exhibit the two-dimensional (2-D) spatial-variant features [11–18],
which are correlated to fast and slow times dynamics, and with the positions of scattering centers.
If the 2-D spatial-variant dependent phases are not properly corrected, the final RD-based images
would be blurred. Another issue, arising from the spinning motion of space debris and the long
imaging distance, is the strong noise, which makes the signal-to-noise ratio (SNR) of the echo signal
very low and prevents a precise estimation of the motion parameters [11,17]. The overall effect is that
the performance of the conventional ISAR imaging for spinning target is seriously degraded.

To overcome the above mentioned issues and produce images of rapidly spinning targets,
several ISAR approaches with narrowband and wideband transmitted signals have been suggested
and developed [11–21]. In [11] a single-range Doppler interferometry approach (SRDI) for spinning
targets was developed building on the properties of the Doppler spectrum in one rotation period.
SRDI detects the spinning targets by transforming the 1-D Doppler signal into a 2-D time-frequency
signal, from which the energy of spinning target may be accumulated into a sharp peak. However,
its performance is degraded from cross-terms, interferences, and resolution loss [11,12]. Moreover,
its complexity is high, due to the need for a multi-dimensional search. To overcome the shortcomings of
SRDI, a single-range matching filtering method (SRMF) was developed [13,14] to produce well-focused
an ISAR image. To this aim, a match function was designed with different rotating radii and initial
phases to compensate the transverse echo signal cell-by-cell. The clean technique was also exploited to
migrate the high sidelobes effects. In [15], the authors developed a single-range image fusion method to
produce 2-D images in the Cartesian coordinates. The polar format algorithm (PFA) [16], the modified
complex valued back-projection algorithm (BPA) [17], and the tomography algorithm [18] were also
used to obtain the images of rotating targets. However, all those techniques have high computational
complexities due to the involved integrals, and still lack fast implementation. In [19], a real-valued
generalized Radon transform (GRT) approach was presented to achieve imaging of spinning targets,
which employs the sinusoidal envelop of the echo signal for spinning targets to obtain an ISAR image
via non-coherent accumulation operation. As such, it cannot obtain satisfactory imaging performance
in low SNR conditions. In [20], an extended Hough transform (HT) was introduced to realize ISAR
imaging of rotating targets. However, the algorithm is time-consuming, due to the multi-dimensional
parameter search. Upon using the sparse property of the echo signal and the matching pursuit (MP)
algorithm, a micro-motion imaging approach was proposed in [21], which, however, has a high
computational cost and fails when Doppler ambiguity is present. In [22], well-focused ISAR images of
rapidly spinning targets were generated using the segmental pseudo Keystone transform (KT) (SPKT).
However, this technique is also time-consuming, and it suffers from accuracy loss due to the need for
an initial phase estimation stage and to the interpolation operation used for each scattering point of the
spinning target. Overall, despite all the aforementioned algorithms having their merits, a globally
effective ISAR imaging method for non-cooperative spinning targets is still lacking, especially for those
situations where the SNRs are low.

In this paper, exploiting the azimuth spatial invariance of strip-map SAR imaging mode [23,24],
an effective imaging approach for rapidly spinning targets is suggested, which works also with a low
SNR environment. To this aim, we first formulate the RCM and time-varying DFM caused by the
target’s spinning motion in terms of range and azimuth, i.e., a 2-D structure. Then, using the principle
of stationary phase (POSP) [25,26], a precise analytic expression in RD domain is obtained, where the
scatters located in one range cell with different azimuth positions are assigned to the same range
migration trajectory to effectively eliminate the azimuth spatial variance of the initial phase. Third,
a novel interpolation kernel function is designed to remove the range variance of the RCM and DFM,
and an interpolation-free mapping algorithm is suggested to further reduce the computational burden.
Finally, by compensating the azimuth high-order terms, a high resolution ISAR image for rapidly
spinning targets is obtained. Compared to currently available imaging methods, our technique can
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be efficiently implemented, since it only requires Fourier transform (FT) without the need of any
interpolation or multi-dimensional search operations. Furthermore, thanks to the use of a 2-D coherent
integrated gain, a satisfactory imaging performance in low SNR condition may also be obtained.
We also performed numerically simulated experiments to verify the correctness and the effectiveness
of the proposed algorithm.

The paper is organized as follows. In Section 2, the geometry and signal model for rapidly
spinning targets are provided. In Section 3, a novel efficient ISAR imaging algorithm in the RD domain
using the SAR technique is described. The fast implementation of the method and some remarks about
its practical applications are presented in Section 4. In Section 5, results from simulated experiments
are given together with their analysis. In Section 6, we discuss the computational complexity of the
method, whereas Section 7 closes the paper with some concluding remarks.

2. Imaging Model of Spinning Target and Problem Formation

The geometric configuration of ISAR imaging for spinning space debris is depicted in Figure 1,
where the origin O denotes the position of the center of the rotating target. During the imaging period,
the motion of the target may be decomposed into translation and rotation. The translational motion
is parallel to the line-of-sight (LOS) and does not contribute to the cross-range resolution. On the
other hand, rotation changes the Doppler frequency and affects the azimuth imaging. In Figure 1,
we denote by P an arbitrary scattering point that rotates around the origin O with constant rotation rate
ω. The spinning angular rate ω is the sum of the self-spinning angular velocity and a constant term
due to the time-variant LOS angle [18–22]. The distance between the spinning target center and the
radar is denoted by R0

(
R0 � rp

)
, where ϕp is the initial phase of the spinning scatterer P.
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During the rotation, shadowing of the scatterers will cause the loss of the echo signal of the spinning
target. The non-uniform rotating rate, or residual translational movement, will result in defocused
ISAR images. However, the current paper is focused on designing an efficient imaging algorithm based
on the presented imaging model. Here we assume that translational motion compensation (TMC) has
been implemented by the available TMC algorithm [27,28] and focus on the effects of target rotation.
According to Figure 1, the instantaneous slant range r

(
ta; rp

)
between the radar phase center and the

scatterer in P is given by
r
(
ta; rp

)
= R0 + rp sin

(
ωta + ϕp

)
(1)
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where ta represents the azimuth slow-time variable. Assuming that the radar transmits a linear
frequency-modulated (LFM) signal, the received baseband echo signal of the point target after
demodulation is

S
(
tr; ta; rp

)
= σpωr

ta −
2r

(
ta; rp

)
c

exp

 j2π fc

tr −
2r

(
ta; rp

)
c


×ωa(ta)exp

 jπγ

tr −
2r

(
ta; rp

)
c


2 (2)

where σp is the reflection coefficient of the scatterer in P, tr is the range fast-time variable, and ωr(·)

and ωa(·) represent the envelope in the range and azimuth direction, respectively. c, fc, and γ denote
the speed of light, the carrier frequency of radar signal, and the chirp rate, respectively.

Performing FT with respect to the range fast-time variable tr and removing the range
frequency-modulated term, the received echo signal becomes

S
(

fr; ta; rp
)
= σpωa(ta) ωr( fr)exp

[
− j 4π( fr+ fc)R0

λ

]
exp

[
− j 4π fr

λ rp sin
(
ωta + ϕp

)]
×exp

[
− j 4π

λ rp sin
(
ωta + ϕp

)] (3)

where λ denotes the carrier wavelength, and fr is the range frequency variable with respect to tr.
In Equation (3), the phase consists of three terms. The first is the linear part corresponding to

the range direction position, the second term is the RCM, and the third one is due to the azimuth
time-varying DFM. As a matter of fact, the RCM and DFM terms contain a 2-D spatial dependence,
which is due to rotation of the target and makes it difficult to obtain an effective imaging scheme for
spinning targets. Indeed, unless the second and third terms are satisfactorily compensated, the final
ISAR image will be blurred. Notice that the 2-D spatially dependent phase terms are different for
each scatterer, and therefore, the compensation should be performed pixel by pixel. In order to face
this problem while utilizing the sinusoidal envelope of the spinning targets in the range slow-time
domain, existing GRT methods correct the phase via multi-dimensional searching operation along
the rotating radius rp and initial phase ϕp for all scatterers in the spinning target [19]. Performance is,
however, poor due to the non-coherent accumulation. In the SPKT method, the initial phase estimation
and the interpolation operation are required for each scatterer in the spinning target [22], thus leading
to a great computational burden and a low imaging quality in the environment, inducing a low SNR.
Here, by exploiting the inherent azimuth invariance of SAR, a fast ISAR imaging method in the case of
spinning targets is developed to produce a well-focused ISAR image for spinning targets.

The instantaneous Doppler frequency fr is calculated by taking the derivative of the phase term in
(3) with respect to ta as

fd(ta) =
1

2π
d[φ(ta)]

dta
= −

2ωrp cos
(
ωta + ϕp

)
λ

(4)

From the Nyquist sampling theorem, the pulse repetition frequency (PRF) must satisfy
PRF ≥ 2 fdmax. Thus, the maximum of Doppler frequency is fdmax = 2ωrpmax/λ, where rpmax is
the longest rotation radius of the targets. The Doppler bandwidth of scatterers is then

Bd =
4ωrp

λ
(5)

3. Proposed Imaging Approach Description

In this section, we focus on the 2-D spatial-variant RCM and DFM fast correction under low SNR
conditions. A fast imaging approach for non-cooperative spinning targets is developed. Before going
into the details of the imaging algorithm, let us summarize the principles of azimuth invariant SAR
strip-map imaging mode. A schematic representation is given in Figure 2; panel 2(a) shows the
geometric model of multiple targets located in different range and azimuth cells at a given time,
whereas panels 2(b) and 2(c) show the situation after range compression. For targets located in the
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same range cell at different azimuth times, the migration trajectories are overlapped in the RD domain,
and this is the well-known azimuth invariance of SAR strip-map imaging mode [23–26].
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In our proposed method, in the Doppler domain and based on the above-mentioned invariance,
echo signals of the same distance are only processed once, thus reducing the computational complexity.

3.1. Analytical Expression Derivation in RD Domain

Scatterers with the same rotating radius have overlapped trajectories in the range Doppler domain,
and thus the RCM correction located in same range gate with different azimuth time instant can be
realized just once, thus improving imaging efficiency. In order to obtain an expression in the range
Doppler domain after range compression, let us perform FT of the slow-time variable ta in Equation (2),
thus arriving at

S
(
r; fa; rp

)
=

∫
σpωa(ta)sinc

[
2πBr

c

(
r− r

(
ta; rp

))]
exp

[
− j

4πr(ta;rp)
λ

]
×exp(− j2π fata) dta

(6)

where Br is the transmitted LFM signal bandwidth, and sinc denotes the range envelope. The integral in
(6) cannot be evaluated analytically due to the sin function term in the slant range formula r

(
ta; rp

)
, and to

obtain an analytic expression we resort to POSP as in the following. The phase expression in (6) is

Φ(ta) =
4πrp sin

(
ωta + ϕp

)
λ

− 2π fata (7)

According to the POSP, the value in (7) is calculated by the stationary point, that is,

dΦ(ta)

dta
=

4π
[
ωrp cos

(
ωta + ϕp

)]
λ

− 2π fa = 0 (8)

By solving the Equation (8), one obtains the stationary point

t∗a =


1
ωarc cos

(
−

faλ
2rpω

)
−
ϕp
ω ,ωta + ϕp ∈ [0,π]

−
1
ωarc cos

(
−

faλ
2rpω

)
−
ϕp
ω ,ωta + ϕp ∈ [−π, 0]

(9)
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which is then substituted in Equation (1), leading to the instantaneous slant distance expression in the
RD domain

r( fa) =


rp sin

[
arc cos

(
−

faλ
2rpω

)]
,ωta + ϕp ∈ [0,π]

rp sin
[
−arc cos

(
−

faλ
2rpω

)]
,ωta + ϕp ∈ [−π, 0]

(10)

S
(
r; fa; rp

)
=



σpωa( fa)sin c
[

2πγTp
c (r− r( fa))

]
exp

(
− j2π fa 1

ωarc cos
(
−

faλ
2rpω

))
, exp

(
j2π fa

ϕp
ω

)
exp

[
− j 4πr( fa)

λ

]
,ωta + ϕp ∈ [0,π]

σpωa( fa)sin c
[

2πγTp
c (r− r( fa))

]
exp

(
j2π fa 1

ωarc cos
(
−

faλ
2rpω

))
exp

(
j2π fa

ϕp
ω

)
exp

[
− j 4πr( fa)

λ

]
,ωta + ϕp ∈ [−π, 0]

(11)

Equation (10) reveals that r( fa) includes a trigonometric function sin, which is generated by
the fast rotation of the targets. Finally, the expressions of the echo signal in the range-Doppler in
Equation (11) is obtained, where the second exponential term contains the initial phase ϕp, and the
first and the third exponentials represent high order phase terms.

3.2. The Proposed ISAR Imaging Method

In Equation (11), in the high order phase term or the sin c envelop, the initial phase ϕp is absent.
The range sin c envelop is, in turn, only related to the rotating radius, showing that scatterers in the
same range cell and different azimuth instantaneous times have the same trajectories in the RD domain.
Let us now describe in some detail the steps needed to derive the proposed ISAR imaging method.

In Equation (11), the range envelope term sin c[·] depends on the radial range r( fa) and the
azimuth frequency fa, which cause the RCM. Because of the RCM, the energy of the same target is
scattered in different range cells in the original (r− fa) plane. In order to efficiently remove the RCM,
we introduce a novel interpolation kernel function [29,30], given by

∆r( fa) =


rp sin

[
arc cos

(
−

faλ
2rpω

)]
− rp,ωta + ϕp ∈ [0,π]

rp sin
[
−arc cos

(
−

faλ
2rpω

)]
− rp,ωta + ϕp ∈ [−π, 0]

(12)

After applying the interpolation, the signal in the RD domain is given in (13), where RCM has
been removed. The phenomenon is illustrated in Figure 3. The original discrete signal in the (r− fa)
plane is shown in Figure 3a, where the sample points of the Doppler frequency are equally spaced.
The signal after traditional KT in the (r− fa) plane is illustrated in Figure 3b, where Doppler frequency
intervals are varied with range sampling points, but the intervals between range sampling points
are identical. The signal of the proposed method in the (r− fa) plane is demonstrated in Figure 3c,
where different Doppler frequencies have different range sampling intervals.

SRCM
(
r; fa; rp

)
=



σpωa( fa)sin c
[

2πγTp
c

(
r− rp

)]
exp

(
− j2π fa 1

ωarc cos
(
−

faλ
2rpω

))
exp

(
j2π fa

ϕp
ω

)
exp

[
− j 4πr( fa)

λ

]
,ωta + ϕp ∈ [0,π]

σpωa( fa)sin c
[

2πγTp
c

(
r− rp

)]
exp

(
j2π fa 1

ωarc cos
(
−

faλ
2rpω

))
exp

(
j2π fa

ϕp
ω

)
exp

[
− j 4πr( fa)

λ

]
,ωta + ϕp ∈ [−π, 0]

(13)
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Upon comparison of the original RD domain expression in (11) to the RD domain expression
after transformation in (13), we see that along the sin c trajectory, the energies of the scatterers are
transformed into one range cell rp, with the sin c[·] term depending only on the rotating radius rp.
The azimuth frequency fa has been removed from the range envelope, which means that the RCM has
been properly corrected (i.e., compensated).

Let us now address the azimuth processing procedure. The compensation function H(r, fa) is
designed to compensate the high order phase terms in (13) as

H(r, fa) =


exp

(
j2π fa 1

ωarc cos
(
−

faλ
2rpω

))
exp

[
j 4πr( fa)

λ

]
,ωta + ϕp ∈ [0,π]

exp
(
− j2π fa 1

ωarc cos
(
−

faλ
2rpω

))
exp

[
j 4πr( fa)

λ

]
,ωta + ϕp ∈ [−π, 0]

(14)

Multiplying (13) by (14), the signal is given by

SHC(r, fa) = σpωa( fa)sin c
[

2πγTp

c
(r− r( fa))

]
exp

(
j2π fa

ϕp

ω

)
(15)

such that the energy of a single scatterer P is still in the same range cell rp. Finally, by applying an
azimuth inverse fast Fourier transform (IFFT), the ISAR image expression becomes

S(r, ta) = σpsin c
[

2πγTp

c

(
r− rp

)]
sin c

[
πBa

ω

(
ωta + ϕp

)]
(16)

From (16), one obtains the coordinates
(
rp, ϕp

)
of the scatterer in P and, in turn, an accurate

imaging of the target.

4. A Fast Implementation of the Proposed Method and Some Remarks

4.1. Fast Implementation

In general, the novel interpolation operation in the RD domain proposed in Section 3 may increase
the computational complexity and also introduce loss of accuracy. On the other hand, the data
for non-sampling points may be obtained through a zero-padding in another domain, where the
interpolation operation is replaced by FFTs and phase multiplication [31–33]. As a consequence,
the drawback mentioned above may be eliminated. In fact, the interpolation function may be
reformulated as

∆r( fa) = rp·α fa

(
rp

)
(17)
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where the nonlinear shifting coefficient α fa

(
rp

)
is given by

α fa

(
rp

)
=


sin

[
arc cos

(
−

faλ
2rpω

)]
− 1,ωta + ϕp ∈ [0,π]

sin
[
−arc cos

(
−

faλ
2rpω

)]
− 1,ωta + ϕp ∈ [−π, 0]

(18)

In order to obtain a fast implementation of the interpolation-free mapping method, the shift length
∆r( fa) for the azimuth bin is decomposed into two terms, given by

∆r(i) =

 ni·∆r︸︷︷︸
inter−bin

+ δi·∆r︸︷︷︸
sub−bin

 (19)

where ni is an integer, δi ∈ (0, 1), and ∆r is the range cell size. Then, the interpolation operation may be
accomplished through the following steps:

(1) According to (7), one extracts the range cell data for each azimuth bin in the RD domain, i.e.,

S′r = S
(
r, f i

a

)
(20)

and calculates ni and δi according to (10) and (12);
(2) Zero-padding Si

r to S′r of length 4 to achieve

S′r =
[
0 0 Si

r 0
]

(21)

and indexing
Ii = [i− 2 i− 1 i i + 1 ] − ni (22)

circularly in [1, · · · , N], where N is original data length;
(3) FFT of S′r to obtain S′fr ;

(4) Phase multiplication
S′′fr = S′fr ·exp

{
− jδi∆r· f ′r

}
(23)

where f ′r is the new range frequency;
(5) IFFT of S′′fr to complete the sub-bin shift of S′′r ;

(6) Coherent summation
F[Ii]

= F[Ii]
+ S′′r (24)

where F is the interpolation mapped data;
(7) Iterating step (1) to step (6) for all bins to achieve interpolation-free mapping of the full image.

The interpolation-free mapping method replaces the RD domain interpolation operation through
zero-padding in the wavenumber domain, which reduces the computational complexity and ISAR
image errors. The flowchart of the algorithm and its fast implementation is shown in Figure 4.
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4.2. Some Remarks about the Practical Application of the Proposed Method

(1) Range and Azimuth Resolution Analysis:
The range resolution ρr of ISAR imaging is determined by the transmitted signal bandwidth Br

ρr =
c

2Br
(25)

whereas the azimuth resolution ρa depends on the azimuth Doppler frequency resolution

ρa =
λ∆ fd

2ω
(26)

where ∆ fd is Doppler bandwidth, i.e., the inverse of the coherent imaging accumulation time ∆ fd = 1/T.
The azimuth resolution may be thus rewritten as

ρa =
λ

2ωT
=

λ
2∆θ

(27)

where ∆θ is the rotation angle of the spinning target relative to the radar platform during the coherent
accumulation time. In summary, the range resolution of ISAR is determined by the radar transmitting
signal bandwidth, whereas the azimuth resolution is obtained by the target’s rotation angle relative to
the radar’s line of sight during the coherent imaging accumulation.

(2) Effects of Estimation of ω on ISAR Images:
As mentioned before, the proposed method is based on the knowledge of the angular velocity ω.

In practice, however, the estimation of the angular velocity may not completely accurate. In order to
assess the effects of this uncertainty on the final ISAR images, let us remember that the imaging results
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are obtained by coherent accumulation through the FT, which means the final phase error ∆ψ should
be restricted in

∣∣∣∆ψ∣∣∣ < π
2 . Assuming that the uncertainty of ω is δω, the phase error of the spinning

target during the coherent time ∆t(0 < ∆t < π/ω) may be expressed by

∆ψ∆t ≈
4π
λ rmax

{
cos

[
(ω+ δω)∆t + ϕp

]
− cos

(
ω∆t + ϕp

)}
= −Sπ

λ rmax sin
(
δω∆t

2

)
sin

(
ω∆t + ϕp +

δω∆t
2

) (28)

where rmax is maximum rotating radius for the spinning target. Assuming δω∆t/2 � 1, we obtain
sin(δω∆t/2) ≈ δω∆t/2 and sin

(
ω∆t + ϕp + δω∆t/2

)
≤ 1. The constrained condition in (28) can be

written as ∣∣∣∣∣ δωω π

∣∣∣∣∣ < λ
2rmax

(29)

Equation (29) provides a sufficient and unnecessary condition for obtaining well-focused ISAR
images for the spinning target and should be taken into account in selecting the system parameters.

(3) Removing the effects of the sidelobes:
It may happen that the sidelobes of a strong target hide the mainlobe of a weak target. Therefore,

clean technology [34] is employed to suppress the sidelobes. The process of clean method proceeds
as follows:

(a) Estimate the initial phase ϕp and rotation radius rp of all scatterers. The foregoing imaging
algorithm may have already estimated these parameters.

(b) According to the estimated initial phase ϕp and rotation radius rp, a point spread function (PSF)

is designed. Assuming that the coordinate of the maximum peak is
(
rpξ,ϕpξ

)
, the PSF is given by

X(r,ψ) = sin c
[

2πγTp

c

(
r− rpξ

)]
sin c

[
2πBa

(
ψ−ϕpξ

)]
(30)

(c) Using a minimum norm criterion, the scattering coefficient at
(
rpξ,ϕpξ

)
is estimated by

min
σ̂

[I(σ̂)] = min
σ̂
‖s− σ̂X‖ = min

σ̂

∑
r,ψ

∣∣∣s(r,ψ) − σ̂X(r,ψ)
∣∣∣2 (31)

where σ̂ is the estimated value of the scattering coefficient. Performing the derivative of I(σ̂) with
respect to σ̂ leads to

∂I(σ̂)
∂ σ̂

= –2
∑
r,ψ

[s(r,ψ) − σ̂X(r,ψ)]X∗(r,ψ) (32)

where X∗(r,ψ) represents the conjugate function of X(r,ψ). When ∂I/∂σ = 0, the reflection
coefficient of scatterer in coordinate

(
rpξ,ϕpξ

)
is obtained. Under this condition, the estimated

value of the scattering coefficient is

σ̂ =

∑
s(r,ψ)X∗(r,ψ)∑∣∣∣X(r,ψ)

∣∣∣2 (33)

(d) Steps (a) to (c) may be biased because of the effects of sidelobes, which could affect the usage of
the clean approach. The coordinate estimation in Step (c) initializes the following fine search.

min
σ,rpξ, ϕpξ

I(σ̂) = min
σ,rpξ, ϕpξ

‖s(r,ψ) − σ̂X(r,ψ)‖

= min
σ,rpξ,ϕpξ

∑
r,ϕ

∣∣∣∣s(r,ψ) − σ̂X
(
rpξ, ϕpξ,ψ

)∣∣∣∣2 (34)
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Using this technique, the resulting rpξ, ϕpξ, σ̂ are accurate estimates of the coordinates and the
reflection coefficient. Subtract the contribution of scatterer

(
rpξ, ϕpξ

)
from the original signal,

thus arriving at
sclean(r,ψ) = s− σ̂X (35)

(e) Use sclean(r,ψ) as the new input to step (a), and repeat until convergence.

5. Simulation Results and Discussion

In this section, results from numerically simulated experiments are provided to confirm the
effectiveness and the robustness of the proposed ISAR imaging algorithm for rapidly spinning targets.
The simulation settings are given in Table 1.

Table 1. Parameters for simulated ISAR Imaging.

Parameter Value

Carrier frequency 8 GHz
Sample frequency 6 GHz

Transmit bandwidth 4 GHz
Pulse width 1 us

Pulse repetition frequency 2400 Hz
Rotating angle velocity 6.28 rad/s

5.1. Imaging Results for a Single Scatterer Target

Results for the case of a single scatterer are shown in Figure 4. The rotation radius of the target
was 3 m, and the initial phase was 0 rad. The distance between the rotating center and the antenna
phase center was set to 20 km.

Figure 5a shows the scatterer distribution in Cartesian coordinates. Figure 5b provides the 2-D
echo signal data. The profile after range compressed for echo signal is shown in Figure 5c, where a
trigonometric function may be clearly recognized. The envelop of signal in the RD domain is shown
in Figure 5d. Obviously, the energy of a single spinning target in the RD domain spanned multiple
range cells. We now separated the energies in the RD domain into ψ ∈ [0,π] and ψ ∈ [−π, 0] parts
and performed an interpolation-free mapping operation according to (12) for each part. The results
are depicted in Figures 5e and 5f, respectively. It can be seen that the main energy of a single
target was concentrated into one range cell, which shows that the RCM was well corrected using
the proposed algorithm. The ISAR image after high order phase compensation and combining the
ψ ∈ [0,π] and ψ ∈ [−π, 0] parts of energy are presented in Figure 5g. The imaging result after clean
post-processing is shown in Figure 5h. Finally, the interpolation-free mapping is shown in Figure 5i.
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Figure 5. Results of numerically simulated reconstruction of a single target by our proposed method.
(a) 2-D distribution of scatterers. (b) 2-D echo signal. (c) The profile of echo signal after range
compression. (d) The signal envelope in the RD domain. (e) Interpolation forψ ∈ [0,π]. (f) Interpolation
for ψ ∈ [−π, 0]. (g) 2-D imaging result. (h) Imaging result after clean processing. (i) Imaging result
with interpolation-free mapping after clean processing.

5.2. Imaging Results for Surface Targets

The simulation results for a set of targets on a surface are depicted in Figure 6. The surface was
composed of eight scatterers, whose rotation radii were 2m, 2m, 2m, 2m, 3m, 3m, 3m, 3m, respectively,
and the initial phases were 0, π/2,−π/2,π, π/4,−π/4, 3π/4,−3π/4, respectively. The reflection
coefficients were set to one, and the distance between the antenna phase center and the rotating center
was set to 20 km.

Figure 6a illustrates the scatterer distribution under the Cartesian coordinates. The profile after
compressing range for echo signal is shown in Figure 6b, which resembles a set of trigonometric
functions with all the trajectories for the scattering points intersecting with each other. In the GRT
algorithm, the energy of the target is accumulated along the profile, as shown in Figure 6b. Thus,
searching different initial phases and rotating radii was needed here. The ISAR image after high
order phase compensation is shown in Figure 6c, and after clean processing in Figure 6e. Meanwhile,
to demonstrate the effectiveness of the proposed algorithm, the comparisons with the GRT imaging
result and GRT- clean imaging result are presented in Figures 6d and 6f, respectively.
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As it is apparent from the figures, both of the images obtained after clean processing may be used
to reconstruct the structure of the surface target. However, the proposed method is computationally
efficient since the 2-D search is not needed here.
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without clean. (d) Result after GRT. (e) Result of the proposed method with clean. (f) Result of
GRT- clean.

5.3. Imaging Results under Different SNRs Condition

To further show the robustness of different methods, Gaussian white noise was added. Figure 7
shows the imaging results obtained by using the GRT method of [19], the SPKT method of [22], and our
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proposed method for two values of the SNR: 0 dB and –35 dB, respectively. All the GRT, SPKT, and the
proposed method have coherent integration in the range direction.
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Figure 7. Results of numerically simulated reconstruction with different SNRs. (a) GRT with SNR= 0
dB. (b) SPKT with SNR = 0 dB. (c) The proposed method with SNR= 0 dB. (d) GRT with SNR= –35 dB.
(e) SPKT with SNR = –35 dB. (f) The proposed method with SNR = –35 dB.

However, thanks to the coherent integration in the azimuth direction, our method and the SPKT
showed a higher SNR gain than the GRT method due to the incoherent integration in the azimuth
direction. The imaging results under different SNRs were consistent with the output SNR gain analysis,
which verifies the correctness and effectiveness of the proposed method. However, compared with the
SPKT method [22], our proposed method has great advantages in computational cost, since it avoids
the initial phase estimation and interpolation operation used for each scatterer of the spinning target.

5.4. Computational Complexity

The running times of GRT, SPKT, and the proposed algorithm are plotted versus imaging scene
sizes. The results are illustrated in Figure 8, where MATLAB running on an Intel quad-core processor,
CPU clocked frequency at 3.2 GHz, memory 8 GB, and Windows 10 were used. As it is apparent
from Figure 8, our method was faster than GRT and SPKT methods. Moreover, as the size increased,
the difference became more striking.Remote Sens. 2020, 05, x FOR PEER REVIEW 15 of 18 
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6. Discussion

In this section, we compare our method with the existing GRT [19] and SPKT [22] methods in
terms of their computational complexity and denote by Nr and Na the number of samples in the range
and the azimuth dimension, respectively. In GRT, the computational complexity of range compression
consisting of Na-times Nr-point FT and complex multiplications is O

(
NaNr log2(Nr) + NaNr

)
. Let Q

and M denote, respectively, the search numbers for rotating radius and initial phase. The computational
complexity of energy accumulation is O(MQNa). Therefore, the overall computation complexity of
GRT is

CGRT = O
(
Na Nr log2(Nr) + Na Nr + MQNa

)
(36)

The SPKT method is based on the segmental pseudo Keystone transform, which is designed to
realize migration through resolution cell correction. The whole data is divided into P segments (P ≥ 1,
and Na/P is integer) and the number of scatterers is H. By ignoring the low computational cost of a
few steps, the computational cost of the SPKT method is approximately given by

CSPKT = O
(

NrH
(

N2
a

P2 −
Na

P
log2 P +

(
1 +

1
P

)
Na log2 Na

))
(37)

In our proposed algorithm, implementation mainly includes range compression, Nr-times azimuth
FFT, NaNr point interpolation operation, complex multiplication, and azimuth IFFT. Among them,
the range compression step consists of a range FFT with complexity O

(
NaNr log2(Nr)

)
, a complex

multiplication with complexity O(NaNr), and a range IFFT with complexity O
(
NaNr log2(Nr)

)
,

then followed by Nr-times azimuth FFT with a computational complexity of O
(
NrNa log2(Na)

)
.

The computational complexity of the interpolation operation is 2(2Nker − 1)NaNr, where Nker
is the length of the interpolation kernel. This step could be time consuming, and therefore,
the interpolation-free mapping method is considered here. The interpolation-free mapping method
involves zero-padding, FFT, phase multiplication, and IFFT. Since only a few zeros are added to the
data, the total computational cost of this step is O

(
2NaNr log2(Nr) + NaNr

)
. After this, the high order

phase is compensated through a complex multiplication with complexity O(NaNr). Finally, Nr-times
azimuth IFFT with complexity O

(
NrNa log2(Na)

)
is conducted to obtain the ISAR image. Therefore,

the overall computation complexity of the proposed method is

Cproposed = O
(
4NaNr log2(Nr) + 2NrNa log2(Na) + 3NaNr

)
(38)

The above analysis confirms that, in general, our proposed algorithm is convenient in terms of
computational complexity. In addition, compared to GRT and SPKT methods, the proposed algorithm
does not need to estimate the initial phase.

7. Conclusions

Rapidly spinning space debris generates echo signals with great RCM during a short coherent
processing interval. Upon exploiting the inherent azimuth invariance of SAR, we suggested
and discussed in detail an efficient ISAR imaging algorithm. At first, a precise analytic expression
in the RD domain was developed based on the POSP principle. Then, a novel interpolation kernel
function was designed to remove 2-D space dependent phase errors. At the same time, an efficient
interpolation-free mapping algorithm was exploited to reduce the computational complexity, and the
energy spanning multiple range cells were transformed into one range cell. Finally, a well-focused ISAR
image was produced by compensating the azimuth high-order modulating terms. Simulation results
prove that the proposed ISAR imaging algorithm is robust, effective, and time efficient compared to
GRT and SPKT methods.
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