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Abstract: The most recent forest-type map of the Korean Peninsula was produced in 1910. That of
South Korea alone was produced since 1972; however, the forest type information of North Korea,
which is an inaccessible region, is not known due to the separation after the Korean War. In this
study, we developed a model to classify the five dominant tree species in North Korea (Korean red
pine, Korean pine, Japanese larch, needle fir, and Oak) using satellite data and machine-learning
techniques. The model was applied to the Gwangneung Forest area in South Korea; the Mt. Baekdu
area of China, which borders North Korea; and to Goseong-gun, at the border of South Korea and
North Korea, to evaluate the model’s applicability to North Korea. Eighty-three percent accuracy was
achieved in the classification of the Gwangneung Forest area. In classifying forest types in the Mt.
Baekdu area and Goseong-gun, even higher accuracies of 91% and 90% were achieved, respectively.
These results confirm the model’s regional applicability. To expand the model for application to
North Korea, a new model was developed by integrating training data from the three study areas.
The integrated model’s classification of forest types in Goseong-gun (South Korea) was relatively
accurate (80%); thus, the model was utilized to produce a map of the predicted dominant tree species
in Goseong-gun (North Korea).

Keywords: random forest; remote sensing texture; tree growth; spectroscopy; Sentinel-2; GeoEye-1;
WorldView-3; Shuttle Radar Topography Mission

1. Introduction

Forest-type maps show the distribution of features within forested areas. They contain information
on various forest attributes, such as forest type, physiognomy, plant species, diameter of breast height
(DBH) class, age class, crown density, and stand height. Additionally, they are a source of data for
national-scale topographic, soil, and geological maps [1].

Forest-type maps of South Korea were produced at a scale of 1:25,000 from 1972 to 2012 and
have been produced at a scale of 1:5000 since 2012. The scale of South Korean forest-type maps is
quite detailed compared to those of Japan (1:5000, national forests only), Canada (1:20,000, managed
forests only), France (1:25,000), and Sweden (1:10,000). However, no forest maps or forest-type maps
have covered the entire Korean Peninsula since the first Korean forest-distribution map was produced
in 1910 [2].

Information on the composition and distribution of species in forests is essential for the sustainable
management of large forest areas [3,4]. Additionally, this information promotes the accurate assessment
of forest resources, such as growing stock and biomass; the establishment of a national forest
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management plan, and the calculation of basic forest statistics. Such information is also essential for
monitoring the status of forest ecosystems, such as biodiversity and forest health.

South Korea began producing forest-type maps in 1972, and species were classified based on aerial
photographs and field surveys. Species classification based on the interpretation of existing aerial
images is costly due to its high human resources requirements [5], and the quality of interpretations
is limited by the skill levels of individual scientists. Furthermore, satellite images are necessary to
assess inaccessible areas where aerial photography is not possible, such as the demilitarized zone
(DMZ) and North Korea, and the presence of buried land mines in some regions makes local surveys
challenging. A forest-type map of the DMZ was produced using satellite images; however, it was
based on an interpretative method rather than classification [6]. As it is difficult to perform local
verifications, the development of species classification techniques based on spectral information from
satellite images has advanced slowly [7]. Therefore, satellite-based species classification methods must
still be developed for inaccessible areas.

In South Korea, only limited research has been performed regarding remote sensing-based species
classification [7]. One major case study on tree species classification employed Quickbird and achieved
a 70% accuracy [8]. Another key study compared the accuracy achieved when using hyperspectral
or multispectral images to classify conifers [7]. No significant difference was found as a result of
classifying tree species using seasonal Sentinel-2A images and aerial hyperspectral images (73.3% vs.
71.7%) [7]. However, an error of up to 30% was found for some classification techniques, indicating that
while both spatial and spectroscopic resolutions are important, the selection of an optimal classification
technique for the employed images is more important [9].

In a previous study [10], we classified two coniferous species, Korean pine and Japanese larch,
using machine-learning techniques in the Gwangneung Forest and Mt. Baekdu area with the objective
of developing a method utilizing Sentinel-2A for species classification in North Korea. Based on a
comparison with a South Korean forest-type map, this classification method was found to be more
than 98% accurate for the two investigated coniferous species. However, our analyses were limited to
two conifers. In this study, the target species were expanded to include five dominant tree species
in North Korea. Additionally, considering information on crown texture, tree growth environment
as well as crown reflectance spectra, we developed a tree species classification model to predict the
distribution of tree species in inaccessible regions. There are differences, such as crown roughness
and shape, between coniferous and broad leaves. Additionally, different tree species have different
preferences for environmental characteristics, such as elevation, slope, and aspect. Thus, it was
assumed that information on crown texture and growth environment could enhance classification
accuracy as previously reported [10].

2. Materials and Methods

2.1. Study Areas

The classification experiments were performed using five tree species that are dominant in
North Korea, i.e., the Korean red pine (Pinus densiflora Siebold and Zucc.), the Korean pine (Pinus
koraiensis Siebold and Zucc.), the Japanese larch (Larix kaempferi (Lamb.) Carrière), the needle fir (Abies
holophylla Maxim.), and the oak (Quercus sp.). This study was conducted in the Gwangneung Forest,
which is located close to the National Arboretum in Goseong-gun, South Korea, and in Ando County
(Mt. Changbai in Mandarin/Mt. Baekdu in Korean) in the Jilin Province of China, which is a border
region between North Korea and China. The Gwangneung Forest was designated a United Nations
Educational, Scientific, and Cultural Organization (UNESCO) Biosphere Reserve on 2 June 2010 and
has a total area of 24,465 ha [11]. Gwangneung Forest has been preserved as a natural forest for
540 years; the forest experienced no fires even during the Japanese colonial period and the Korean War,
and its total tree density is 307 m3/ha [11].
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The Gwangneung Forest is regarded as a center for research on forest species [11]. The main
species distributed in the forest are the broad-leaved, loose-flower hornbeam (Carpinus laxiflora (Siebold
and Zucc.) Blume); heart-leaf hornbeam (Carpinus cordata Blume); Jolcham oak (Quercus serrata Murray);
needle fir (Abies holophylla Maxim.); Korean pine (Pinus koraiensis Siebold and Zucc.); Japanese larch
(Larix kaempferi (Lamb.) Carrière); and Korean red pine (Pinus densiflora Siebold and Zucc.) [11].
The basic structure of our species classification model was established by comparing the spectral
separation, textural information, and growth environment of each species over the entire Gwangneung
Forest. The model’s potential applicability to North Korea was then evaluated by applying the
established model structure to North and South Goseong-gun and the Mt. Baekdu area (Figure 1).
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Figure 1. Maps of the study areas: (a) Mt. Baekdu area (Ando County); (b) North and South
Goseong-gun; (c) Gwangneung Forest area.

2.2. Data

The data used for this study were drawn from satellite images and geographic information
system (GIS) data. Sentinel-2 and very high-resolution satellite (VHRS) images from GeoEye-1 and
WorldView-3 were employed. Sentinel-2 images were used to acquire spectral information on target
species, and VHRS images were used to acquire crown characteristics and textural information (Table 1).
Regarding GIS data, the Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) was
used to acquire topographic information on the growth environment of the target species. Additionally,
1:5000-scale forest-type maps produced by Korea Forest Service were used to generate training data
for species classification and validation. We also generated training and validation data for the Mt.
Baekdu area and validated the accuracy of tree-species classification accuracy in this area.
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Table 1. Characteristics of satellite data.

Classification Satellite Type Gwangneung
Forest Area Mt. Baekdu Area Goseong-Gun

Area

Multispectral
(13 bands, 10 m) Sentinel-2

28 April 2018
23 May 2018
2 June 2018
7 July 2018

1 August 2018
25 September 2018

30 October 2018
8 April 2019

10 May 2019
~10 June 2019
1 October 2019

~30 November 2019

23 May 2019
25 October 2018

Very
high-resolution
satellite imagery
(4 bands, 0.5 m)

GeoEye-1
WorldView-3

11 April 2016
6 June 22016

2.3. Methodology

In this study, to develop a tree species classification model, not only information on leaf reflectance
spectra but also crown texture and the tree growth environment were used. Even though each species
showed a different spectral reflection value, the differences were not numerically large [10]. Thus,
information on growth and texture were used to provide additional information on reflectance spectra
to advance the classification model.

The Gwangneung Forest was investigated to establish the basic structure of the species classification
model. Sentinel-2 images were preprocessed to assess the spectral characteristics of each species.
Top of atmosphere (TOA) reflection values were drawn from Sentinel-2 Level 1C images. Thus,
atmospheric corrections were performed to calculate the surface reflection value of several species
using Sen2Cor [12], a Sentinel-2 atmospheric correction algorithm provided by the European Space
Agency (ESA). The spectral separation between tree species was evaluated using the Jeffries–Matusita
(JM) distance algorithm to select the optimal time for species classification among Sentinel-2 images
over multiple periods. JM distances range from 0 (i.e., no separation) to 1.414 (i.e., absolute separation),
and this method is commonly used to quantify the degree of separation [13,14]. Next, the elevation,
slope, and aspect maps were calculated from DEM data and utilized to analyze the typical growth
environments of different species.

Textural information was generated from Sentinel-2 and VHRS images using the gray-level
co-occurrence matrix (GLCM) technique to reflect the crown textural characteristics of different species
(e.g., coniferous and broad-leafed trees). To select the optimal window size when creating the GLCM,
15 window sizes ranging from 3 × 3 (30 m × 30 m) to 59 × 59 (590 m × 590 m) were selected; then,
the variance was compared, and the optimal window size was selected. Additionally, the GLCM was
refined based on a comparison of the classification accuracies of the Sentinel-2 and VHRS image-based
textural information. The model’s applicability to North Korea was evaluated through application of
the model to the Mt. Baekdu area and Goseong-gun. An integrated model was also developed using the
combined training data generated from the Gwangneung Forest, Mt. Baekdu area, and Goseong-gun.
Based on the integrated model, a map of predicted tree species in Goseong-gun (North Korea) was
produced (Figure 2).

2.3.1. Analysis of Spectral Characteristics and Separability

To evaluate the spectral characteristics of the target species, spectral information from April to
October, when leaves began to grow and fall, respectively, was analyzed. To acquire this information,
random points were generated based on the forest-type map, and surface reflectance spectra were
extracted from Sentinel-2 images after atmospheric correction. The mean values and standard
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deviations for each species were calculated and compared, and the spectral separation between species
was evaluated based on the JM distance algorithm to select the best time for species classification [13].Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 22 
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2.3.2. Analysis of Crown Textural Information

Currently, forest-type maps of South Korea are produced by interpreting digital aerial photographs
and confirming the distribution and attributes of forest types through fieldwork. This method
relies heavily on the crown characteristics of each species, such as texture, color tone, and pattern,
to differentiate species. The crown of the Korean red pine is umbrella-shaped and has a star shape, with
branches spreading in all directions and a low density of leaves attached to each branch. The Korean
pine’s crown is umbrella-shaped, similar to that of the Korean red pine, but it has a white, droplet-like
ridge at the end of each branch, which resembles snowflakes. It also has a less saturated silvery teal
color than most other coniferous species. The crown shape of the Japanese larch is conical, with
branches converging toward the center like a rose and extending skyward. The higher the tree’s age
class, the more widely its branches will spread on all sides.

The crown shapes of the Korean fir (Abies koreana Wilson) and Khingan fir (Abies nephrolepis (Trautv.
ex Maxim.) Maxim.), which are classified as needle firs in the current forest-type map, are conical;
in the case of the Korean fir, the top of the tree is centered. It has a white apex and the branches are
densely layered like a pinwheel. In the case of the Khingan fir, the branches gather around the top of
the tree, and most are dense, forming a stable horn shape [15]. The crown shape of the oak is irregular,
and the texture is uniform. It exhibits a lighter color than conifers, but it is somewhat darker than other
broad-leafed trees. The crown is also dense, and exhibits the same color over a large area [16].
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Textural information can help improve the accuracy of species classifications [10,17]. In this study,
the GLCM technique, which is widely used in the remote sensing field, was used to numerically
reflect qualitatively expressed crown-shape characteristics in the stereoscopic interpretation of aerial
photographs [15] to produce distribution maps of tree species [10,18–26]. The GLCM represents the
distance and angular relationship between sub-regions of an image of a specified size. Texture is
quantified based on the frequency at which a pair of grayscale pixel brightness values in a user-defined
mobile kernel occurs. In this study, angular second moment (ASM), contrast (CON), dissimilarity (DIS),
entropy (ENT), homogeneity (HOM), mean (MEAN), and variance (VARIANCE) were considered.
A series of GLCM texture parameters were calculated according to the following equations [14]:

ASM =

quantk∑
i=0

quantk∑
j=0

hc(i, j)2; (1)

CON =

quantk∑
i=0

quantk∑
j=0

(i− j)2hc(i, j); (2)

DIS =

quantk∑
i=0

quantk∑
j=0

hc(i, j)
∣∣∣i− j

∣∣∣; (3)

ENT =

quantk∑
i=0

quantk∑
j=0

hc(i, j)log[hc(i, j)]; (4)

HOM =

quantk∑
i=0

quantk∑
j=0

1

1 + (i− j)2 ·hc(i, j); (5)

MEAN =

quantk∑
i=0

quantk∑
j=0

ihc(i, j); (6)

VARIANCE =

quantk∑
i=0

quantk∑
j=0

(i− µ)2hc(i, j), (7)

where quantk is the quantization level of band k (e.g., 28 = 0 to 255) and hc(i,j) is the (i,j)th entry in a
spatially dependent angular brightness matrix. Textural feature analysis was performed using the
‘glcm’ package in R v. 3.6.1 [27]. Texture features of the growth period (May) and the non-growth
period (October) were generated. The classification accuracy can vary depending upon the window
size set when generating textural information [28–30]. Thus, the optimal window size was selected as
described in Section 3.2.

2.3.3. Analysis of Growth Environment

Preferred growth environments differ between species, and various factors shape each growth
environment. This study first investigated the elevation, slope, and aspect of various species’ growth
environments. Korean red pine usually grows below 1300 m in mountainous regions, except for in the
northern highlands and high mountain peaks [31]. Korean pine grows mainly on the ridges of high
mountain areas north of Mt. Jiri, which have elevations > 1000 m [31]. Needle fir naturally grows on
the high mountain ridges or in valleys in the north-central part of the study area above 1000 m [31].
Oak is distributed nationwide below 1800 m [31]. However, pure forests of Mongolian oak (Quercus
mongolica Fisch. ex Ledeb.) exist in the mountains at high elevations [31–33]. Using the locality
information within the training data extracted from the 1:5000-scale forest-type map, the elevation,
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slope, and aspect information of the corresponding points were extracted from the DEM, and the
means and standard deviations of each species were calculated and compared.

2.3.4. Development of Species Classification Algorithm

A random forest (RF) model was used for the tree classification algorithm. The RF model
was developed by Breiman and Cutler [34], and we confirmed the suitability of the RF model as
a machine-learning technique for species classification in a previous study in which we classified
Korean pine and Japanese larch with an accuracy of 98% [10]. To define the classification value of
a pixel, a RF generates multiple decision trees using attribute values, such as spectral information,
elevation, slope, and aspect, related to a pixel. Each decision tree assigns the corresponding pixel to
a specific classification value and, finally, votes to classify the pixel according to its most common
classification value [14,34–37]. Simultaneously, ~70% of the training data were extracted and used to
train the model, and the remaining 30% was treated as “out-of-bag” (OOB) data and used to evaluate
the model. The model was evaluated by dividing the number of misclassifications by the total number
of observations; this approach can be used to select the optimal model [38–40]. Random forests can also
be used to determine significant variables and to calculate their significance based on their Gini index
values [35,41]. The Sentinel-2 spectral bands, elevation, aspect, slope, and texture features (GLCM)
were used as input data for the RF.

3. Results

3.1. Spectral Characteristics and Separability

The mean spectral characteristics of the target species within the April–October period as well as
their standard deviations are illustrated in Figure 3. Overall, the target species showed no significant
difference in separation within the April–October period. However, in May, the degree of separation
observed was relatively high; thus, images corresponding to this period were used for the classification.
However, it was confirmed that the spectral separation between the species was not significant,
indicating the need for the inclusion of information on growth and textural information, in addition to
spectral information (Figure 4).
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the month in which separability was the highest. Abbreviations: JM, Jeffries–Matusita.

3.2. Crown Texture

To select texture factors with low redundancy, the separability was evaluated using the JM distance.
The results of our analyses show that all the factors were highly separable; thus, they were all used
for the classification. The three most significant texture feature-related factors (mean, variance, and
homogeneity), which increased classification accuracy, were compared. The mean was high when the
number of pairs of pixels with significant differences in contrast was high. The variance was high when
the difference in the brightness of the pairs of pixels was significant. Finally, homogeneity was found
to be associated with both regional uniformity as well as the uniformity of each pixel in the matrix,
and it was higher when the number of GLCM elements located on a diagonal line was higher [42].

The variance of textural information between 15 different window sizes was compared to select
the optimal window size. As the window size increased, the distributions of the mean, variance, and
homogeneity in the same species gradually decreased (Figure 5). In other words, as the window size
increased, the intra-species textural characteristics achieved increased homogeneity. However, this
did not mean that the largest window size, 59 × 59, was optimal. Window sizes of less than 51 × 51
are generally used in remote sensing applications [26]. If the window size is similar to the area of the
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target forest, textural information of the forest cannot be adequately extracted [26]. The smallest stand
size of a target species was 23.5 ha (less than a 50 × 50 window size) in the Gwangneung Forest. Thus,
a window size smaller than this area was selected. Further, the non-growth-related variance of the
five species was homogeneous, indicating regional uniformity in the GLCM; convergence occurred at
a window size of 31 × 31 (Figure 5). Overall, the textural information of the five species displayed
relatively low variance, and textural information of a similar quality was generated among the species.
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Figure 5. Comparison of variance between species by texture variable. GLCM mean (G) and GLCM
mean (NG) show variability between 15 different window sizes of GLCM mean respectively in growing
and non-growing season. GLCM variance (G) and GLCM variance (NG) show variability between 15
different window sizes of GLCM variance respectively in growing and non-growing season. GLCM
homogeneity (G) and GLCM homogeneity (NG) show variability between 15 different window sizes
of GLCM homogeneity respectively in growing and non-growing season. Abbreviations: G, growth;
NG, non-growth.



Remote Sens. 2020, 12, 2049 10 of 21

The standard deviation of the variance among species was lowest at a window size of 31 × 31
(Figure 6). The results of the GLCM separability evaluation among species using the JM distance
show that overall separability decreased as the window size increased (Figure 7). In particular,
the separability between Korean pine and oak increased until a window size of 31 × 31 was reached.
Therefore, a window size of 31 × 31, which generated textural information of a uniform quality between
species and at which the separability between species was relatively high, was ultimately selected for
the analysis.
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Figure 7. Non-growth period GLCM separability between species.

Korean red pine showed the highest mean of non-growth period at 0.136 ± 0.011, followed
by Korean pine (0.132 ± 0.014), needle fir (0.128 ± 0.011), Japanese larch (0.125 ± 0.013), and oak
(0.123 ± 0.016) (Figure 8). Regarding variance of non-growth, Korean red pine again had the highest
value (18.6 ± 2.9), followed by Korean pine (17.6 ± 3.6), needle fir (16.7 ± 2.8), Japanese larch (15.8 ± 3.2),
and oak (15.5 ± 3.8) (Figure 8). Regarding non-growth homogeneity, oaks showed the highest mean
value (0.832 ± 0.038), followed by Japanese larches (0.814 ± 0.032), Korean pines (0.801 ± 0.030), needle
firs (0.800 ± 0.029), and Korean red pines (0.786 ± 0.025) (Figure 8).

The mean growing-season crown texture values ranked as follows: oak (0.243 ± 0.021), Japanese
larch (0.218 ± 0.020), Korean red pine (0.218 ± 0.020), Korean pine (0.216 ± 0.019), and needle fir
(0.208 ± 0.019) (Figure 8). The mean variance values throughout the growing season were highest
for oak (58.4 ± 9.4), followed by Japanese larch (47.7 ± 8.7), Korean red pine (47.6 ± 8.3), Korean
pine (46.8 ± 7.9), and needle fir (43.5 ± 7.8) (Figure 8). These results present similar patterns to
those of the spectral reflectance in the NIR region during the growing season; the highest reflectance



Remote Sens. 2020, 12, 2049 11 of 21

was measured for oak, followed by Japanese larch, Korean pine, Korean red pine, and needle fir.
The mean growing-season homogeneity was calculated as follows: oak (0.746 ± 0.037), Japanese larch
(0.737± 0.034), Korean pine (0.730± 0.036), Korean red pine (0.724± 0.028), and needle fir (0.716± 0.038)
(Figure 8).Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 22 
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Figure 8. Comparison of textural information between growing and non-growing periods. GLCM
mean G and GLCM mean NG show mean growing and non-growing season crown texture, respectively.
GLCM variance G and GLCM variance NG show variance growing and non-growing season crown
texture, respectively. GLCM homogeneity G and GLCM homogeneity NG show homogeneity growing
and non-growing season crown texture, respectively. Abbreviations: G, growth; NG, non-growth.

3.3. Comparison of Growth Environments

The mean elevation of the area over which Korean red pine was distributed in the study area was
185 ± 71 m; for Korean pine, it was 192 ± 76 m, while for Japanese larch, it was 196 ± 69 m, for needle
fir, 145 ± 58 m, and for oak, 211 ± 82 m. Needle firs were found to be distributed at the lowest elevation
and oak at the highest (Table 2, Figure 9). Previous studies indicated that Korean pines and needle firs
were distributed in high mountains, but they were distributed in areas below 270 m in the study area.
Based on the attributes presented in the examined forest-type map, both the Korean pine and needle fir
areas at the study site were identified as artificial forests.

Table 2. Mean elevation and slope by species.

Korean Red Pine Korean Pine Japanese Larch Needle Fir Oak

Elevation (m) 185 ± 71 192 ± 76 196 ± 69 145 ± 58 211 ± 82
Slope (º) 14.8 ± 5.9 15.1 ± 6.3 15.1 ± 5.9 12.0 ± 6.0 16.6 ± 6.8
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According to a survey of the relevant literature, the Korean red pine is relatively environmentally
selective. It is mainly distributed on south-facing slopes, as these are relatively dry and barren
compared to north-facing slopes [43]. Korean pines appear most commonly on southern–westerly
aspects, but they are considered to grow well on all slopes. Moreover, the Korean pine is well-adapted
to non-eroded mountainous areas with smooth drainage and tends to avoid dry and windy ridges [44].
Japanese larches—the most selective tree—grow most vigorously in sunny areas, so north-facing slopes
should be avoided during afforestation [45]. Khingan and Korean firs (needle firs) are distributed over
a more substantial portion of northern slopes, where moisture conditions are more suitable than on
southern slopes [46]. Oak is normally an intolerant tree and is thought to prefer moderately to slightly
humid areas. Southern slopes offer favorable light conditions, but the relatively dry soil on such slopes
has a negative effect on oaks’ growth. In contrast, northern slopes provide favorable environments in
terms of humidity and nutrient conditions, though light conditions are less advantageous [47].
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In the study area, Korean red pine was mainly distributed on southeasterly slopes (25%), showing
a similar pattern to that described in the literature. Korean pine was distributed evenly on all slopes but
was present in the highest proportion on the east slope (21%) due to the relatively favorable moisture
conditions (Figure 9). Japanese larch was mainly distributed on the eastern slope (19%), likely due
to the high availability sunlight. Needle firs were mainly distributed on the southern slope (21%),
unlike the distribution described in the literature—this discrepancy may be attributable to mistaken
locality selection during afforestation or to competition from other species after afforestation. Oak
was distributed on all slopes, but was most abundant on the western slope (17%). The mean slope of
the area over which Korean red pine was distributed was determined to be 14.8◦ ± 5.9◦; for Korean
pine, it was 15.1◦ ± 6.3◦, while for Japanese larch it was 15.1◦ ± 5.9◦, for needle fir, 12.0◦ ± 6.0◦, and for
oak, 16.6◦ ± 6.8◦ (Table 2, Figure 9). Needle firs were distributed over areas with the lowest slope; the
distribution area of oak had the highest slope. It was assumed that Korean pine, Japanese larch, and
needle fir were planted at relatively low altitudes and slopes.

3.4. Tree Species Classification

3.4.1. Gwangneung Forest Area

Using the proposed model, the overall accuracy of species classification was 83%, and the
kappa index (0.83) also showed a relatively high accuracy (Table 3). The results for Korean red pine
show a producer accuracy of 81% and a user accuracy of 86%; the model was determined to have
underestimated the abundance of Korean red pine. Korean pine was overestimated, with 79% producer
accuracy and 67% user accuracy. Japanese larch was underestimated, with 78% producer accuracies
and 81% user accuracies. The highest accuracy was achieved for needle fir, with a 92% producer
accuracy and 94% user accuracy. Oak was underestimated, with 84% producer accuracy and 85%
user accuracy.

Overall, the model’s classifications were similar to those of the forest-type map (Figure 10).
However, the error was relatively high for the small-sized oak stand in the lower left of the figure,
and an undetected portion was also identified along the upper right boundary. When the textural
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information extracted from VHRS images was used to classify species, an accuracy of 76% was achieved.
When textural information extracted from Sentinel-2 images was used, the accuracy was 83%. This
may reflect the high levels of noise in the VHRS images, which can reduce classification accuracy [48].
Based on the results, we determined that the differing spatial resolutions of these images did not
strongly impact the model’s sensitivity to seasonal differences in the target species. Therefore, due to
Sentinel-2’s simplified data and lower analytical cost (large observation width and free), Sentinel-2
images were used to unify materials and classify species in the Mt. Baekdu area and Goseong-gun.

Table 3. Tree-species classification accuracy in the Gwangneung Forest area.

Species Korean Red Pine Korean Pine Japanese Larch Needle Fir Oak Total UA

Korean red pine 1792 100 50 45 104 2091 0.86
Korean pine 217 1406 274 80 117 2094 0.67

Japanese larch 81 167 1702 32 113 2095 0.81
Needle fir 28 36 37 1983 16 2100 0.94

Oak 83 75 131 18 1785 2092 0.85
Total 2201 1784 2194 2158 2135 10,472
PA 0.81 0.79 0.78 0.92 0.84

Overall accuracy 0.83 kappa statistic 0.83

Abbreviations: PA, producer accuracy; UA, user accuracy.
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Figure 10. (a) Forest-type map and (b) classification results using Sentinel-2 for five tree species in the
Gwangneung Forest area.

3.4.2. Mt. Baekdu Area

Needle firs were not present at the study site in the Mt. Baekdu area; therefore, only Korean red
pine, Korean pine, Japanese larch, and oak were classified. The overall accuracy of species classification
was 91%, and the kappa index (0.91) also indicated a relatively high accuracy (Table 4). For Korean red
pine, the producer accuracy was 93%, and the user accuracy was 96%; thus, the model underestimated
the abundance of Korean red pine. Korean pine was also underestimated, with a 94% producer accuracy
and 97% user accuracy, but the highest overall accuracy was achieved for this species. Japanese larch
was overestimated, with an 89% producer accuracy and 83% user accuracy. Oak showed an 89%
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producer accuracy and 89% user accuracy. Overall, the model’s classifications were found to be similar
to those of the forest-type map (Figure 11).

Table 4. Classification accuracy of tree species in the Mt. Baekdu area.

Species Korean Red Pine Korean Pine Japanese Larch Oak Total UA

Korean red pine 6266 112 74 42 6494 0.96
Korean pine 78 6745 75 52 6950 0.97

Japanese larch 312 191 5683 681 6867 0.83
Oak 107 94 521 6014 6736 0.89
Total 6763 7142 6353 6789 27,047
PA 0.93 0.94 0.89 0.89

Overall accuracy 0.91 kappa
statistic 0.91

Abbreviations: PA, producer accuracy; UA, user accuracy.
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3.4.3. North and South Goseong-gun

No needle firs were present in Goseong-gun, South Korea. Thus, Korean red pine, Korean
pine, Japanese larch, and oak were classified. The accuracy of species classifications in Goseong-gun
was relatively high, with a total accuracy of 90% and a kappa index of 0.90 (Table 5). The model
overestimated the amount of Korean red pine, with a producer accuracy of 88% and a user accuracy of
86%. Korean pine was underestimated, with a 90% producer accuracy and 95% user accuracy, while
Japanese larch had a 95% producer accuracy and a 96% user accuracy, the highest accuracy among
the four species. Oak, with an 88% producer accuracy and 88% user accuracy, showed a somewhat
uniform level of accuracy. Overall, the model classifications were similar to those of the forest-type
map (Figure 12). However, a specific part of the stand was not classified in the lower right area shown
in Figure 12, and the abundance of Korean pine was overestimated near the center of the image.
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Table 5. Classification accuracy of tree species in South Goseong-gun.

Species Korean Red Pine Korean Pine Japanese Larch Oak Total UA

Korean red pine 6266 112 74 42 6494 0.96
Korean pine 78 6745 75 52 6950 0.97

Japanese larch 312 191 5683 681 6867 0.83
Oak 107 94 521 6014 6736 0.89
Total 6763 7142 6353 6789 27,047
PA 0.93 0.94 0.89 0.89

Overall accuracy 0.91 kappa
statistic 0.91

Abbreviations: PA, producer accuracy; UA, user accuracy.
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Using the developed model, a map of predicted species classifications was produced for
Goseong-gun, North Korea (i.e., North Goseong-gun). As other species (black locust, black pine, East
Asian alder, East Asian ash, East Asian white birch, Korean castanea, mono maple, oriental flowering
cherry, pitch pine, poplar, sawleaf zelkova, and walnut) existed in addition to the target species, a
category labelled “other species” was included in the forest-type map. The model was then evaluated
based on the forest-type map of Goseong-gun, South Korea. The results show an overall accuracy of
77% and a kappa index of 0.77 (Table 6). Thus, the developed model was determined to be relatively
accurate in classifying tree species in North Korea, the objective of the study, when evaluated based on
the Ministry of Environment’s Land Cover Classification Guidelines in the Ministry of Environment’s
Order No. 1317 [49], which set the land-cover classification accuracy standard in North Korea at ≥ 70%.
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Table 6. Classification accuracy of tree species in North Goseong-gun.

Species Korean Red Pine Korean Pine Japanese Larch Needle Fir Oak Total UA

Korean red pine 16,513 1441 390 1008 1683 21,035 0.79
Korean pine 666 19,601 151 221 377 21,016 0.93

Japanese larch 310 216 19,980 243 195 20,944 0.95
Needle fir 1129 458 531 14,507 4337 20,962 0.69

Oak 2705 1117 661 6134 10,313 20,930 0.49
Total 21,323 22,833 21,713 22,113 16,905 104,887
PA 0.77 0.86 0.92 0.66 0.61

Overall accuracy 0.77 kappa statistic 0.77

Abbreviations: PA, producer accuracy; UA, user accuracy.

Regarding the classification of Korean red pine, the producer accuracy was 77% and the user
accuracy was 79%; thus, the model underestimated the abundance of Korean red pine. Korean pine
was also underestimated, with an 86% producer accuracy and a 93% user accuracy. Japanese larch
showed a 92% producer accuracy and 95% user accuracy, the highest classification accuracy among the
four species. Oak was underestimated, with a 66% producer accuracy and 69% user accuracy. Other
species were also underestimated, with a 61% producer accuracy and 49% user accuracy. This result
suggests that the presence of other tree species was a source of increased error in the classification of
all species; for example, the presence of other species caused classification errors for Korean red pine,
Korean pine, and Japanese larch, and the presence of other broad-leafed trees caused classification
errors for oak.

In a previous study, we confirmed that a model integrating training data from the Gwangneung
Forest and Mt. Baekdu areas achieved adequate accuracy in both areas [10]. Therefore, in this study,
a new model was constructed by integrating training data from Gwangneung Forest, the Mt. Baekdu
area, and South Goseong-gun. The model trained with integrated data showed an overall classification
accuracy of 80% and a kappa index of 0.80 when applied in North Goseong-gun, a 2% increase in
accuracy over the non-integrated model (Table 7).

Table 7. Classification accuracy of tree species in North Goseong-gun using the integrated model.

Species Korean Red Pine Korean Pine Japanese Larch Needle Fir Oak Total UA

Korean red pine 24,606 1615 533 1169 1629 29,552 0.83
Korean pine 973 27,726 505 383 369 29,956 0.93

Japanese larch 782 554 27,324 1069 204 29,933 0.91
Needle fir 1341 697 1244 22,253 4230 29,765 0.75

Oak 2710 1068 669 6204 10,279 20,930 0.49
Total 30,412 31,660 30,275 31,078 16,711 140,136
PA 0.81 0.88 0.90 0.72 0.62

Overall accuracy 0.80 kappa statistic 0.80

Abbreviations: PA, producer accuracy; UA, user accuracy.

For Korean red pine, the producer classification accuracy increased from 77% to 81%, and user
accuracy increased from 79% to 83%. For Korean pine, producer accuracy increased from 86% to
88%, and user accuracy was maintained at 93%. However, for Japanese larch, the original producer
accuracy of 92% and user accuracy of 95% were reduced to 90% and 91%, respectively. For oak, the 66%
producer accuracy and 69% user accuracy rose to 72% and 75%, respectively. Regarding other species,
the 61% producer accuracy and 49% user accuracy changed little (to 62% and 49%, respectively). Thus,
it was confirmed that a model could be constructed using training data for as many species as possible
along the border of South and North Korea to classify species in North Korea with reasonable accuracy.

4. Discussion

The analysis of the spectral characteristics of the target species showed that within the
April–October period, the reflection value of oak in the near-infrared (NIR) region was higher
than those of the other species (Figure 3). This trend was similar to those observed in previous studies.
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Lee and Lee [50] acquired spectral reflectance data on Galcham oak (Quercus aliena Blume) and pitch
pine (Pinus rigida Mill.) at Gyeyangsan, Incheon, using an ASD FieldSpec (Malvern Panalytical, UK).
Their data showed that the reflection values of oak trees in the NIR region were higher than those of
pine trees. Additionally, in Sweden, Persson, Lindberg and Reese [4] extracted the spectral reflection
values of Norway spruce (Picea abies), Scots pine (Pinus silvestris), hybrid larch (Larix x marschlinsii),
birch (Betula sp.), and pedunculate oak (Quercus robur) within the April–October period using Sentinel-2
images, and their data also showed that compared with the other species, the reflectance of oak in the
NIR region was higher.

In April, the intensity of reflection of oaks in the NIR region was the highest, followed by that of
Korean red pine, Japanese larch, Korean pines, and needle fir. Within the May–July period, that of
Japanese larches was higher than that of Korean red pines. From the beginning of August, the reflection
values of Japanese larches began to decrease, and in September and October, they were lower than
those of Korean red pine and Korean pine. Even though Japanese larches are coniferous, they showed
reflection characteristics that were similar to those of broad-leafed trees, a finding that agrees well with
previously reported results [4,10,51].

From August to September, the values of the spectral reflection curves of all species showed
a relatively large decrease. Reportedly [4,52], similar phenomena have been attributed to a sharp
decrease in the elevation angle of the sun [52]. The Korean red pine and the Korean pine, which
are of the same genus, displayed relatively minor spectral differences. Needle firs presented the
lowest reflection values over all periods, a finding that is consistent with those reported in previous
studies [4,51].

In the crown texture analysis, non-growth mean and variance represent the mean and variance
of each pixel value, and they are proportional to the brightness of the pixel. In this study, textural
information was calculated using the NIR band. In the non-growth images, the opening rates of
Japanese larches and oaks were lower than those of Korean red pines, Korean pines, and needle firs;
thus, the means and variances were relatively low owing to the reflection of non-growth characteristics
(Figure 8).

The homogeneities of Japanese larches and oaks were similar, as were those of Korean red pines,
Korean pines, and needle firs. This is because the former feature crowns with non-growing branches,
while the latter have leaves on their crowns and exhibit similar textures. Therefore, the results of the
homogeneity could be attributed to the reflection of non-growth characteristics.

Unlike in the non-growing period, all five species showed similar reflectance values within the
growing period, and this could be attributed to the fact that all the five species had lush leaves on
their crowns. Based on these results, it was observed that the characteristics of the crowns of Japanese
larches and oak crowns were higher in contrast, saturation, and uniformity than those of the crowns of
Korean red pines, Korean pines, and needle firs owing to the leaf opening period within the non-growth
period. As all species presented lush leaves during the growing season, some differences in contrast
and saturation were noted among the crowns; however, these differences were not significant enough
to impact uniformity.

Based on the map of predicted species, the most widely distributed of the five considered tree
species in Goseong-gun, North Korea, was the “other” group, distributed over 49,786 ha, followed
by oak (42,143 ha), Korean red pine (19,063 ha), Korean pine (4544 ha), and Japanese larch (3019 ha)
(Figure 13). These results suggest that additional training data must be constructed to allow for the
better classification of species in the “other” category. Thus, a high-quality library of training materials
is needed for each target species, as species classification results are significantly influenced by model
training data. Moreover, because regional classification models reflect specific regional characteristics,
it is essential to build a high-quality training data library that reflects biogeographic patterns on the
Korean Peninsula.
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South Korea is currently conducting a national forest inventory and implementing forest-type
mapping based on > 4000 ground observations over five years. This will provide a great deal of field
data, but the quality of these data is not guaranteed, as it depends on the skills of each surveyor.
This approach is also disadvantaged by its high cost and low efficiency. A better alternative may be
to select standard points that can be surveyed within a year to reflect in situ biogeographic patterns.
This would allow the production of a polygonal electronic field book employing drone images captured
during field surveys.

Finally, model training materials must be developed based on the border areas between North
Korea and China through cooperative research efforts between the two countries. Since it is presently
impossible to collect training data within North Korea, surveying should be conducted at points that
are biogeographically similar to North Korea to generate training data.

5. Conclusions

In this study, we developed a model to classify the five dominant species of trees in North Korea,
including Korean red pine, Korean pine, Japanese larch, needle fir, and oak, as a follow-up to our
previous study in which we developed a classification model for Korean pine and Japanese larch.
In the Gwangneung Forest area, the proposed model achieved an overall accuracy of 83% and kappa
index of 0.83 (i.e., the classification was relatively accurate). However, since the differences in spectral
characteristics between species of the same genus are minimal, spectra-based methods are associated
with a certain degree of error; thus, factors that can more clearly reflect the differences between
species of the same genus should be considered. Here, only topographical factors associated with
species growth areas were considered. However, in future studies, the spatial range of the target area
should be expanded to adequately address the growth environments of natural forests and plantations.
Additionally, the consideration of climate data related to species growth characteristics could help to
delineate differences between species of the same genus more accurately.
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The final objective of this study was to develop a species classification model applicable to North
Korea. Therefore, the proposed model’s applicability to North Korea was evaluated through application
of the model to (Mt. Baekdu) Ando County, China, a border region between North Korea and China,
and Goseong-gun, a border region between South Korea and North Korea. Needle firs were not present
in all these areas; therefore, only Korean red pine, Korean pine, Japanese larch, and oak were classified.
The results show high classification accuracies of 91% and 90%, respectively, supporting the model’s
potential applicability throughout the Korean Peninsula and the broader region.

To predict the distribution of tree species in North Korea, target species (Korean red pine, Korean
pine, Japanese larch, oak) and other species were investigated. The model achieved a moderate
classification accuracy of 77% in North Goseong-gun. However, as shown in our previous study,
the developed model could only be successfully applied to an area in which its training data were
constructed. Therefore, to promote broader applicability, an integrated model was developed by
combining training data from the Gwangneung Forest, Mt. Baekdu, and South Goseong-gun areas.
This integrated model yielded improved accuracy when reapplied to North Goseong-gun (80%). Thus,
the integrated model was utilized to produce a map of predicted species distributions in Goseong-gun,
North Korea.

In the future, the model could be further improved through the generation of more training data
in areas bordering North Korea, potentially allowing it to be applied throughout the entire Korean
Peninsula. Additionally, we intended to build a standard library of spectral characteristics for each
targeted species that will connect laboratory, in situ, and satellite images, thereby promoting research
that reveals the relationships between the structural and chemical characteristics of each species and
their spectral features.

Author Contributions: Conceptualization, J.L. and K.-M.K.; methodology, J.L. and K.-M.K.; software, K.-M.K.;
validation, J.L., K.-M.K., E.-H.K. and R.J.; formal analysis, J.L.; investigation, J.L.; resources, K.-M.K., E.-H.K. and
R.J.; data curation, J.L.; writing—original draft preparation, J.L.; writing—review and editing, J.L., K.-M.K., E.-H.K.
and R.J.; visualization, J.L.; supervision, K.-M.K.; project administration, K.-M.K. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kim, K.M.; Lee, S.H. Distribution of Major Species in Korea (based on 1:5000 forest type map); National Institute of
Forest Science: Seoul, Korea, 2013; p. 15. ISBN 978-89-8176-963-5.

2. Joseon Government-General. Joseonimyabunpodo (The Korean Peninsula Forest Distribution Map); Joseon
Government-General: Seoul, Korea, 1910.

3. Sobhan, I. Species Discrimination from a Hyperspectral Perspective. Ph.D. Thesis, Wageningen University,
Wageningen, The Netherlands, 2007.

4. Persson, M.; Lindberg, E.; Reese, H. Tree Species Classification with Multi-Temporal Sentinel-2 Data. Remote
Sens. 2018, 10, 1794. [CrossRef]

5. Kent, M.; Coker, P. Vegetation Description and Analysis: A Practical Approach; British Library: London, UK,
1992; ISBN 0471948101.

6. Korea Forestry Promotion Institute. Borderline Forest Type Map Production Guide; Korea Forestry Promotion
Institute: Seoul, Korea, 2013.

7. Cho, H.; Lee, K.S. Comparison between Hyperspectral and Multispectral Images for the Classification of
Coniferous Species. Korean J. Remote Sens. 2014, 30, 25–36. [CrossRef]

8. Chung, S.Y.; Yim, J.S.; Shin, M.Y. A Comparison of Pixel- and Segment-based Classification for Tree Species
Classification using QuickBird Imagery. J. Korean. Soc. 2011, 100, 540–547.

9. Jang, S.S. Classification of Tree Species using Sentinel-2 Satellite Image. Master’s Thesis, University of Seoul,
Seoul, Korea, 2018.

10. Lim, J.; Kim, K.M.; Jin, R. Tree Species Classification Using Hyperion and Sentinel-2 Data with Machine
Learning in South Korea and China. ISPRS Int. J. Geo-Inf. 2019, 8, 150. [CrossRef]

http://dx.doi.org/10.3390/rs10111794
http://dx.doi.org/10.7780/kjrs.2014.30.1.3
http://dx.doi.org/10.3390/ijgi8030150


Remote Sens. 2020, 12, 2049 20 of 21

11. Korea National Arboretum. Introduction: Korea National Arboretum. Available online: https://www.forest.
go.kr/newkfsweb/html/HtmlPage.do?pg=/intro/intro_05010202.html&mn=KFS_15_06_01&orgId=kna
(accessed on 11 December 2018). (In Korean)

12. Louis, J.; Debaecker, V.; Pflug, B.; Main-Korn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F.
Sentinel-2 Sen2Cor: L2A Processor for Users. In Proceedings of the Living Planet Symposium, Prague, Czech
Republic, 9–13 May 2016; p. 91.

13. George, R.; Padalia, H.; Kushwaha, S.P.S. Forest tree species discrimination in western Himalaya using EO-1
Hyperion. Int. J. Appl. Earth Obs. Geoinform. 2014, 28, 140–149. [CrossRef]

14. Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 4th ed.; Pearson Education:
Glenview, IL, USA, 2016; ISBN 013405816X.

15. Lee, J.S.; Kim, E.S.; Park, G.E.; Lim, J.H. Aerial Photograph Three-dimensional Interpretation Manual for Producing
Forest Species Distribution Map; National Institute of Forest Science: Seoul, Korea, 2017; Volume 716, ISBN
979-11-6019-132-5.

16. Ryu, J.H.; Kim, S.H.; Shim, W.B.; Kim, J.C.; Seo, S.A.; Yu, B.O. 5th Forest Type Map (1:25,000) Production Manual
using Ortho-aerial Photograph; National Institute of Forest Science: Seoul, Korea, 2010; Volume 385, p. 64.
ISBN 978-89-8176-721-1.

17. Dian, Y.; Li, Z.; Pang, Y. Spectral and Texture Features Combined for Forest Tree species Classification with
Airborne Hyperspectral Imagery. J. Indian Soc. Remote Sens. 2015, 43, 101–107. [CrossRef]

18. Schowengerdt, R.A. Remote Sensing: Models and Methods for Image Processing, 3rd ed.; Academic Press: San
Diego, CA, USA, 2007; ISBN 0-12-369407-8.

19. Peña-Barragán, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-based crop identification using multiple vegetation
indices, textural features and crop phenology. Remote Sens. Environ. 2011, 115, 1301–1316. [CrossRef]

20. Culbert, P.D.; Radeloff, V.C.; St-Louis, V.; Flather, C.H.; Rittenhouse, C.D.; Albright, T.P.; Pidgeon, A.M.
Modeling broad-scale patterns of avian species richness across the Midwestern United States with measures
of satellite image texture. Remote Sens. Environ. 2012, 118, 140–150. [CrossRef]

21. Warner, T. Kernel-Based Texture in Remote Sensing Image Classification. Geogr. Compass 2011, 5, 781–798.
[CrossRef]

22. Luo, L.; Mountrakis, G. Integrating intermediate inputs from partially classified images within a hybrid
classification framework: An impervious surface estimation example. Remote Sens. Environ. 2010, 114,
1220–1229. [CrossRef]

23. Wang, L.; Zhang, S. Incorporation of texture information in a SVM method for classifying salt cedar in
western China. Remote Sens. Lett. 2014, 5, 501–510. [CrossRef]

24. Jensen, J.R.; Im, J.; Hardin, P.; Jensen, R.R. Chapter 19: Image classification. In The SAGE Handbook of Remote
Sensing; Warner, T.A., Nellis, M.D., Foody, G.M., Eds.; Sage Publications: London, UK, 2009; pp. 269–281.

25. Maillard, P. Comparing texture analysis methods through classification. Photogramm. Eng. Remote Sens. 2003,
69, 357–367. [CrossRef]

26. Hall-Beyer, M. GLCM Texture: A Tutorial v. 3.0 March 2017. Available online: https://prism.ucalgary.ca/

handle/1880/51900 (accessed on 11 December 2018).
27. Zvoleff, A. Package ‘glcm’. Available online: https://cran.r-project.org/web/packages/glcm/index.html

(accessed on 11 March 2020).
28. Ferro, C.J.S.; Warner, T.A. Scale and Texture in Digital Image Classification. Photogramm. Eng. Remote Sens.

2002, 68, 51–63.
29. Lan, Z.; Liu, Y. Study on Multi-Scale Window Determination for GLCM Texture Description in High-Resolution

Remote Sensing Image Geo-Analysis Supported by GIS and Domain Knowledge. ISPRS Int. J. Geo-Inf. 2018,
7, 175. [CrossRef]

30. Kim, G.M.; Choi, J.W. Detection of Cropland in Reservoir Area by Using Supervised Classification of UAV
Imagery Based on GLCM. J. Korean Soc. Surv. Geodesy Photogramm. Catogr. 2018, 36, 433–442. [CrossRef]

31. Korea National Arboretum. Korea Biodiversity Information System. Available online: http://www.nature.go.
kr/ekbi/SubIndex.do (accessed on 3 October 2019).

32. Kim, J.S.; Kim, T.Y. Korean Trees: All of the Trees in Our Land; Dolbaegae: Seoul, Korea, 2013; p. 688.
33. Choung, Y.; Lee, K. Ecology of Common Plant Species in Central Korean Forests; Nature & Ecology: Seoul, Korea,

2019; p. 312.

https://www.forest.go.kr/newkfsweb/html/HtmlPage.do?pg=/intro/intro_05010202.html&mn=KFS_15_06_01&orgId=kna
https://www.forest.go.kr/newkfsweb/html/HtmlPage.do?pg=/intro/intro_05010202.html&mn=KFS_15_06_01&orgId=kna
http://dx.doi.org/10.1016/j.jag.2013.11.011
http://dx.doi.org/10.1007/s12524-014-0392-6
http://dx.doi.org/10.1016/j.rse.2011.01.009
http://dx.doi.org/10.1016/j.rse.2011.11.004
http://dx.doi.org/10.1111/j.1749-8198.2011.00451.x
http://dx.doi.org/10.1016/j.rse.2010.01.008
http://dx.doi.org/10.1080/2150704X.2014.928422
http://dx.doi.org/10.14358/PERS.69.4.357
https://prism.ucalgary.ca/handle/1880/51900
https://prism.ucalgary.ca/handle/1880/51900
https://cran.r-project.org/web/packages/glcm/index.html
http://dx.doi.org/10.3390/ijgi7050175
http://dx.doi.org/10.7848/KSGPC.2018.36.6.433
http://www.nature.go.kr/ekbi/SubIndex.do
http://www.nature.go.kr/ekbi/SubIndex.do


Remote Sens. 2020, 12, 2049 21 of 21

34. Breiman, L.; Cutler, A. Random Forests. Available online: https://www.stat.berkeley.edu/~{}breiman/

RandomForests/cc_home.htm (accessed on 11 December 2018).
35. Breiman, L. Random forests. Mach. Lean. 2001, 45, 5–32. [CrossRef]
36. Naidoo, L.; Cho, M.A.; Mathieu, R.; Asner, G. Classification of savanna tree species, in the Greater Kruger

National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining
environment. ISPRS J. Photogramm. Remote Sens. 2012, 69, 167–179. [CrossRef]

37. Hayes, M.M.; Miller, S.N.; Murphy, M.A. High-resolution landcover classification using Random Forest.
Remote Sens. Lett. 2014, 5, 112–121. [CrossRef]

38. Chan, J.C.-W.; Paelinckx, D. Evaluation of Random Forest and Adaboost tree-based ensemble classification
and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens. Environ.
2008, 112, 2999–3011. [CrossRef]

39. Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the
effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens.
2012, 67, 93–104. [CrossRef]

40. Feng, Q.; Liu, J.; Gong, J. UAV Remote Sensing for Urban Vegetation Mapping Using Random Forest and
Texture Analysis. Remote Sens. 2015, 7, 1074–1094. [CrossRef]
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