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Abstract: Radar cross section (RCS) parameters of insect targets contain information related to their
morphological parameters, which are helpful for the identification of migratory insects. Several
morphological parameter estimation methods have been presented. However, most of these
estimations are performed based on polynomial fitting methods, using only one or two parameters,
which may limit the estimation accuracy. In this paper, a new insect mass estimation method is
proposed based on support vector regression (SVR). Several RCS parameters were extracted for the
estimation of insect mass. Support vector regression based on recursive feature elimination (SVRRFE)
was used to obtain the optimal feature subset. Specifically, a dataset including 367 specimens was
included to evaluate the performance of the proposed method. Fifteen features were extracted and
ranked. The optimal feature subset contained six features and the optimal mass estimation accuracy
was 78%. Additionally, traditional insect mass estimation methods were analyzed for comparison.
The results prove that the proposed method is more effective and accurate for insect mass estimation.
It needs to be emphasized that the poor number of experimental insects available may limit the
further improvement of estimation accuracy.

Keywords: insect; radar cross section; feature extraction; parameter estimation; support
vector regression

1. Introduction

Countless insects have long-distance migrations every year and the study of these large-scale
movements can contribute to our understanding of insect migration [1]. Many major agricultural
pests (such as Nilaparvata lugens [2], Mythimna separate [3] and Helicoverpa armigera [4,5]) have a
strong migration capacity, which may lead to catastrophic losses of crops and disease transmission
between continents [1,6,7]. Effective monitoring and early warning systems for migratory insects are
critically important.

Most insects are small and fly at night, making it difficult to observe their migrations [8]. The
emergence of entomological radar makes it possible to effectively monitor long-distance migrations
of insects [9]. Entomological radar transmits a beam in the form of an electromagnetic wave to a
high-flying insect migrant and the received signal can be used to extract its heading direction, velocity
and trajectory [10,11]. Entomological radar has become a superior and irreplaceable tool in the study
of insect migrations. Entomologists have conducted extensive research on migratory insects around
the world using a variety of entomological radar types, such as scanning and vertical-looking radars
(VLRs) [8,12,13]. VLRs that have proved particularly effective for observing insect migrations can
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provide information characterizing an insect target (i.e. target’s size, shape and parameters related to
wing beating) [14].

Previous research discussed the relation between the shape estimates and insect target identity
and proved that the shape and wingbeat frequency parameters were potential values for insect target
identification [15–17]. However, only broad classes, such as locusts and moths, could be identified
based on the estimated radar cross section (RCS) parameters [16]. The ability of entomological radar
to distinguish different insect targets is insufficient, which is one of the most important issues that
entomologists and pest managers are concerned about [16]. In addition, in this paper we proved that
mass was the most important feature for insect identification [18]. Therefore, precise estimation of
insect mass from radar data may contribute to research on insect target identification.

Several insect mass estimation methods have been presented based on RCS parameters retrieved
from radar signals [14,19–22]. These methods choose only one or two RCS parameters and then
adopt polynomial fitting or multiple linear regression to realize an estimation of insect mass. Only
very limited useful information is utilized for each of these methods, which may limit the estimation
accuracy of insect mass. Machine learning algorithms, which can synthetically use multiple parameter
features, should be considered.

Support vector machine (SVM), as one of the most popular pattern recognition methods, was
originally proposed by Cortes and Vapnik [23]. Support vector regression (SVR) is an important
branch of SVM, and can be applied in regression and prediction [24,25]. SVR has been applied in many
research fields, including remote sensing [26]. Many studies demonstrate that SVR is superior to other
regression methods in many cases [27,28]. In addition, SVR has the advantages of good generalization
and high performance in tackling datasets with relatively small samples [26,29]. Therefore, considering
that the experimental data that can be used for insect mass estimation is limited, SVR was chosen for
the estimation of insect mass in our research.

In the present study, a dataset of 367 insect specimens was collated from several sources [14,21]
and several RCS parameters related to insect mass were extracted from the backscattering signals
measured in the X band in a microwave anechoic chamber. Fifteen features were extracted from the RCS
parameters and selected as the input variables for SVR. The optimal feature subset was determined after
feature ranking and then the optimal mass estimation accuracy was achieved. The proposed method
can take full advantage of various RCS parameters to acquire a higher estimation accuracy, which may
contribute to the species identification of migratory insects based on radar measurement data.

2. Materials and Methods

2.1. Experimental Datasets

Many X band measurements of ventral-aspect RCSs of insects have been reported [20,21,30]. Most
of these measurements were made at 9.4 GHz. The measured RCS parameters of 207 specimens for
which the morphological parameters were also available were compiled and summarized in the former
research [21]. The estimated RCS parameters mainly consisted of three terms representing the target’s
radar reflectivity (a0, α2 and α4), two terms representing principal RCSs (σxx and σyy) and two terms
(d and ν) which were calculated from the scattering matrix [21]. These measured specimens were
divided into three groups (datasets D, L and M) [21]. These datasets were also included in this paper
for integrative analysis.

In addition, we also carried out many experiments for measuring RCS parameters of insect
specimens in a microwave anechoic chamber. As shown in Figure 1, the experimental rig mainly
included a vector network analyzer (VNA), a pair of dual-polarization antennas working at X band
and a horn-shaped experimental rig with absorbing materials affixed on the inside. When experiments
were performed, an insect target was glued to a short polyethylene line of 0.05 mm diameter and then
was hung at a distance of ~2 m from the antennas, which ensured that the insect target was in the
far field. Then, the echo signal of insect target was obtained by using the above experimental device.
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After processing radar data by step-frequency continuous-wave (SFCW) imaging and polarimetric
calibration [22], the scattering matrix of the insect targets was obtained. Then the RCS parameters
mentioned above were retrieved from the scattering matrix. Note that background subtraction was
performed with the SFCW range profiles of the empty scene to eliminate clutter.

Remote Sens. 2020, 12, 1903 3 of 10 

 

imaging and polarimetric calibration [22], the scattering matrix of the insect targets was obtained. 
Then the RCS parameters mentioned above were retrieved from the scattering matrix. Note that 
background subtraction was performed with the SFCW range profiles of the empty scene to eliminate 
clutter. 

(a) (b)

(c)

Insect

 
Figure 1. Laboratory equipment for the measurement of insect radar cross section (RCS) parameters 
in the microwave anechoic chamber. (a) Experimental rig; (b) experimental insect attached to a short 
polyethylene line; (c) transmitting and receiving dual-polarization antennas working in the X band. 

A total of 169 insects belonging to 22 species (denoted here by K) were measured in our 
experiment (Table 1). All insects were trapped by a light trap the night before the experiment and 
only the specimens with no physical damage were selected for our experiment. An electronic balance 
with an accuracy of 0.1 mg was used to measure the mass of each specimen. The moisture content of 
the insects changes greatly when they are dead, which has an evident effect on the measured mass 
and electromagnetic scattering characteristics. Therefore, the measurements of insect mass and RCS 
were made with specimens that were freshly dead. 

The information of the four datasets (D, L, M and K) were listed in Table 2. Four different 
datasets were combined into one dataset and then 367 specimens in total were included in our study. 
The mass of all specimens ranges from 1.83 mg to 4120 mg. It is important to note that the RCS 
parameters of dataset K were measured at multi-frequency points, so only the RCS parameters at 9.45 
GHz were used to keep consistency with other datasets. 

Table 1. Species and mass of experimental insects. 

Species number Species Quantity Mass (mg) 
1 Helicoverpa armigera (Hübner) 31 67.8–199.2 
2 Loxostege sticticalis (Linnaeus) 19 26–101.5 
3 Mythimna separata（Walker) 15 103.7–234.8 
4 Ascotis selenaria (Schiffermuller et Denis) 13 40.9–172.3 
5 Agrotis ypsilon (Rottemberg) 13 134.8–401.3 
6 Psilogramma menephron（Gramer) 11 314.6–964 
7 Conogethes punctiferalis (Guenée) 11 26.5–47.3 

Figure 1. Laboratory equipment for the measurement of insect radar cross section (RCS) parameters
in the microwave anechoic chamber. (a) Experimental rig; (b) experimental insect attached to a short
polyethylene line; (c) transmitting and receiving dual-polarization antennas working in the X band.

A total of 169 insects belonging to 22 species (denoted here by K) were measured in our experiment
(Table 1). All insects were trapped by a light trap the night before the experiment and only the
specimens with no physical damage were selected for our experiment. An electronic balance with
an accuracy of 0.1 mg was used to measure the mass of each specimen. The moisture content of the
insects changes greatly when they are dead, which has an evident effect on the measured mass and
electromagnetic scattering characteristics. Therefore, the measurements of insect mass and RCS were
made with specimens that were freshly dead.

The information of the four datasets (D, L, M and K) were listed in Table 2. Four different datasets
were combined into one dataset and then 367 specimens in total were included in our study. The mass
of all specimens ranges from 1.83 mg to 4120 mg. It is important to note that the RCS parameters of
dataset K were measured at multi-frequency points, so only the RCS parameters at 9.45 GHz were
used to keep consistency with other datasets.
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Table 1. Species and mass of experimental insects.

Species Number Species Quantity Mass (mg)

1 Helicoverpa armigera (Hübner) 31 67.8–199.2
2 Loxostege sticticalis (Linnaeus) 19 26–101.5
3 Mythimna separata (Walker) 15 103.7–234.8
4 Ascotis selenaria (Schiffermuller et Denis) 13 40.9–172.3
5 Agrotis ypsilon (Rottemberg) 13 134.8–401.3
6 Psilogramma menephron (Gramer) 11 314.6–964
7 Conogethes punctiferalis (Guenée) 11 26.5–47.3
8 Holotrichia convexopyga (Moser) 9 301.3–735.4
9 Diaphania quadrimaculalis (Bremer et Grey) 7 25.6–80.1
10 Agrotis putris (Linnaeus) 6 40.1–102.8
11 Semiothisa cinerearia (Bremer et Grey) 5 77.3–96.4
12 Theretra japonica (Orza) 4 294.9–387.7
13 Deilephila elpenor (Linnaeus) 4 456.1–722.6
14 Macdunnoughia crassisigna (Warren) 4 60.6–85
15 Diaphania indica (Saunders) 4 30.8–52
16 Percnia luridaria nominoneura (Prout) 3 57.5–116
17 Reticulitermes chinensis (Snyder) 3 35.5–44.7
18 Emmelia trabealis (Scopoli) 2 25.8–34.7
19 Stilprotia salicis (Linnaeus) 2 131.9–298.5
20 Melicleptria scutosa (Schiffermüller) 2 57.6–94
21 Ostrinia nubilalis (Hübner) 1 37.8

Table 2. Experimental datasets included in this research 1.

Dataset Quantity Mass (mg) Measurement Range (GHz)

D 156 9–4120 9.4 or 10
L 39 1.83–80.1 9.4
M 12 33–1094.1 10
K 169 25.6–964 8.25–11.75

1 See Section 2.1. for details of sources of datasets (D, L, M and K).

2.2. Support Vector Regression

SVR is one of the most common application forms of SVM and can obtain the global optimum
solution based on limited samples by minimizing the generalization error bound [24,29]. Given a
dataset including N vectors

{
xi, yi

}
, (i = 1, 2, . . . , N), xi ∈ Rd. Each vector xi contains d-dimensional

features and yi represents the target value. The linear function f (xi) can be represented as [29]:

f (xi) = (w·xi) + b (1)

where w represents the weight and b represents the bias parameters, which can be determined by the
training set.

When the deviation between the predicted value f (xi) and original target value yi is smaller than
ε for every sample, the SVR model can be obtained by solving the following convex optimization
problem [24,26]:

minimize
1
2
‖w‖2 + C

N∑
i=1

(
ξi + ξ∗i

)
subject to


yi − (w·xi) − b ≤ ε+ ξi
(w·xi) + b− yi ≤ ε+ ξi

ξi, ξ∗i ≥ 0
(2)

where C is a constant and determines the trade-off between the flatness of the model and the model
toleration of deviations larger than ε. ξi, ξ∗i represent the slack variables [24].



Remote Sens. 2020, 12, 1903 5 of 11

In general, most regression problems are nonlinear and the kernel functions should be introduced
to solve the problem by mapping the input space into a high-dimensional feature space. The radial
basis function (RBF) kernel is the most popular and was used in this study [31,32].

For an SVR model, the input features are critically important for the regression result. Therefore,
feature importance assessment is an important and necessary step. The support vector regression based
on recursive feature elimination (SVMRFE) is a popular wrapper feature selection method developed
from SVM [33] and has been widely used in research [31,34]. SVRRFE obtains a ranking of features
using backward feature elimination. Specifically, the feature selection algorithm starts with all the
features and then the feature with the smallest weight is removed recursively at a time until only one
feature remains [34].

2.3. Feature Extraction

Insect RCS polarization dependence measured by a monostatic radar can be represented as:

σ =
∣∣∣hTSh

∣∣∣ (3)

where h =

(
cosφ
sinφ

)
represents the normalized effective length for transmission and reception. φ

represents the direction of linear polarization.
The scattering of insect target is linear, so the scatter matrix is symmetrical and can be represented

as [19]:

S = eiγ
[ √

σxx
√
σxyeiα

√
σxyeiα √

σyyeiβ

]
(4)

where α, β and γ are phase factors. γ has no correlation with the RCS and is usually ignored.
Therefore, the RCS versus polarization angle can be rearranged as [15]:

σ(φ) = a0 + a2 cos 2(φ− θ0) + a4 cos 4(φ− θ0) (5)

where a0 represents polarization-averaged RCS, a2 and a4 represent non-negative coefficients and can
be determined by the radar scattering matrix S and θ0 represents either the orientation of the insect or
the perpendicular to its orientation.

Two principal RCS terms (the parallel values σxx and transverse values σyy) of the target can be
obtained [19]:

σxx = a0 + a2 + a4 = a0(1 + α2 + α4) (6)

σyy = a0 − a2 + a4 = a0(1− α2 + α4) (7)

where α2, α4 represent dimensionless parameters.
Values of the parameters a0, α2, α4, σxx and σyy have all been utilized for the estimation of insect

mass in former research [14,19,20]. In addition, the invariant target parameters d and ν calculated from
the Graves power matrix were also explored to improve the estimation accuracy [21]. d represents
the scattering matrix’s determinant and ν represents the RCS when the polarization direction is
perpendicular to the insect’s body axis. Please refer to [21] for the calculation of parameters d and ν.
The selection of features is crucial to obtain a good result. Therefore, the parameters that have proven
effective in mass estimation were also selected as features in this research. The parameters a0, σxx,
σyy, d and ν are often expressed logarithmically [21], therefore the logarithm-transformed parameters
are also used in our research. Traditional research also demonstrates that if a third-order polynomial
is employed to describe the relation between mass and RCS parameters, better fitting results can be
obtained [21]; consequently, the square and cube values of RCS parameters are also selected as features.
Based on the traditional insect mass estimation method, 15 variables are selected as inputs, as listed in
Table 3.
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Table 3. Extracted features for insect mass estimation based on support vector regression (SVR). Note:
the features were ranked based on the feature importance in estimating insect mass.

No. Feature No. Feature No. Feature

1 log10 d 6
(
log10 a0

)2 11
(
log10 d

)2

2 log10 ν 7 α4 12
(
log10 ν

)3

3 α2 8 log10

(
σxx/σyy

)
13

(
log10 σyy

)2

4 log10 a0 9
(
log10 a0

)3 14
(
log10 d

)3

5 log10 σyy 10
(
log10 ν

)2 15
(
log10 σyy

)3

3. Results

3.1. Mass Estimation Based on SVR

We studied the estimation of insect mass based on the measured RCS parameters of 367 insects.
We selected 250 insect specimens as training samples and the rest were regarded as test samples. Based
on the selected features listed in Table 3, a 15-dimensional dataset was constructed and was input
into the SVR model for training. Then, the test data were imported into the trained model and the
predicted result was obtained. In this study, the SVR algorithm was implemented based on a toolbox
Lib-SVM in the MATLAB programming language [35].

The mean relative error of estimated insect mass was 22.41%. However, it should be noted that
this result may not be optimal. For a small sample, with the increase of the number of features, the
generalization ability of the trained model is relatively poor, which may result in an imprecise result.
SVRRFE model can export the score of variable importance, which can be used to evaluate the influence
of each variable on the dependent variable. The optimal subset can be constructed based on SVRRFE.
Table 3 demonstrates the ranking of feature importance. We can learn that the most useful three

features are log10 d, log10 ν and α2 and the least important feature is
(
log10 σyy

)3
.

Based on the ranking results, we deleted the features that ranked last in the importance ranking
one by one and then trained and tested the new model in turn. The relation between estimation
accuracy and feature number is shown in Figure 2. With the removal of unimportant features in turn,
the estimation accuracy of insect mass was gradually increasing as a whole and the main reason was
that the elimination of irrelevant features and redundant features improved the performance of the
model. When the estimation accuracy reached the highest value of 78%, it began to show a downward
trend, because the useful features were eliminated, which brought down the performance of the model.
Therefore, to achieve the optimal estimation accuracy, the first six features listed in Table 3 should
be selected.

Remote Sens. 2020, 12, 1903 6 of 10 

 

3. Results 

3.1. Mass Estimation Based on SVR 

We studied the estimation of insect mass based on the measured RCS parameters of 367 insects. 
We selected 250 insect specimens as training samples and the rest were regarded as test samples. 
Based on the selected features listed in Table 3, a 15-dimensional dataset was constructed and was 
input into the SVR model for training. Then, the test data were imported into the trained model and 
the predicted result was obtained. In this study, the SVR algorithm was implemented based on a 
toolbox Lib-SVM in the MATLAB programming language [35]. 

The mean relative error of estimated insect mass was 22.41%. However, it should be noted that 
this result may not be optimal. For a small sample, with the increase of the number of features, the 
generalization ability of the trained model is relatively poor, which may result in an imprecise result. 
SVRRFE model can export the score of variable importance, which can be used to evaluate the 
influence of each variable on the dependent variable. The optimal subset can be constructed based 
on SVRRFE. Table 3 demonstrates the ranking of feature importance. We can learn that the most 
useful three features are logଵ଴ 𝑑, logଵ଴ 𝜈 and 𝛼ଶ and the least important feature is ൫logଵ଴ 𝜎௬௬൯ଷ. 

Based on the ranking results, we deleted the features that ranked last in the importance ranking 
one by one and then trained and tested the new model in turn. The relation between estimation 
accuracy and feature number is shown in Figure 2. With the removal of unimportant features in turn, 
the estimation accuracy of insect mass was gradually increasing as a whole and the main reason was 
that the elimination of irrelevant features and redundant features improved the performance of the 
model. When the estimation accuracy reached the highest value of 78%, it began to show a downward 
trend, because the useful features were eliminated, which brought down the performance of the model. 
Therefore, to achieve the optimal estimation accuracy, the first six features listed in Table 3 should be 
selected. 

 

Figure 2. Relation between insect mass estimation accuracy and the number of features. Note: the 
number of features was selected based on the importance ranking. 

3.2. Comparison with Traditional Methods 

In this section, we compare the SVR model with traditional insect mass estimation methods. 
Traditional insect mass estimation methods are mostly realized based on polynomial fittings. In this 
paper, five traditional methods that have been proved to have relatively good results were selected 
for comparative analysis. The fitting results are shown in Figure 3 and the estimation results based 
on traditional methods are listed in Table 4. Third-order polynomials were adopted for characterizing 
the relation between the logarithm of mass and the logarithm of a certain feature (namely 𝑎଴, 𝜎௬௬, 𝑣, 
or 𝑑). The refitted empirical formulas were also calculated (see Equation (8)−(12) for details). As to 
traditional methods, the estimation based on parameters 𝑎଴ and 𝛼ଶ achieved the best result, while 

Figure 2. Relation between insect mass estimation accuracy and the number of features. Note: the
number of features was selected based on the importance ranking.



Remote Sens. 2020, 12, 1903 7 of 11

3.2. Comparison with Traditional Methods

In this section, we compare the SVR model with traditional insect mass estimation methods.
Traditional insect mass estimation methods are mostly realized based on polynomial fittings. In this
paper, five traditional methods that have been proved to have relatively good results were selected for
comparative analysis. The fitting results are shown in Figure 3 and the estimation results based on
traditional methods are listed in Table 4. Third-order polynomials were adopted for characterizing
the relation between the logarithm of mass and the logarithm of a certain feature (namely a0, σyy, v,
or d). The refitted empirical formulas were also calculated (see Equations (8)–(12) for details). As to
traditional methods, the estimation based on parameters a0 and α2 achieved the best result, while
estimation only based on parameter a0 produced a relatively poor result. Compared with the traditional
methods, SVR method achieved a better estimation result, which proved that the model constructed by
SVR can actually be employed for insect mass estimation.

Remote Sens. 2020, 12, 1903 7 of 10 

 

estimation only based on parameter 𝑎0  produced a relatively poor result. Compared with the 

traditional methods, SVR method achieved a better estimation result, which proved that the model 

constructed by SVR can actually be employed for insect mass estimation. 

(a) (b)

(c) (d)

(e)
 

Figure 3. The fitting relation of RCS parameters and mass: (a) logarithm of 𝑎0 versus mass; (b) 

logarithm of 𝜎𝑦𝑦 versus mass; (c) logarithm of 𝜈 versus mass; (d) logarithm of 𝑑 versus mass; (e) 

logarithm of 𝑎0 and 𝛼2 versus mass. Note: For (a–d), □ represents dataset D; ◁ represents dataset 

L; ❉ represents dataset L; and ○ represents dataset K. 

Table 4. Comparison of mean relative error (MRE) between traditional methods and SVR in 

estimating insect mass. 

Method MRE 

Aldhous et al. (1989) log10𝜎𝑦𝑦 29.03% 

Chapman et al. (2002) log10a0 33.91% 

Drake et al. (2017) log10a0 & 𝛼2 24.50% 

Hu et al. (2019) 
log10𝜈 27.24% 

log10𝑑 27.43% 

SVR 22.00% 

• log10𝜎𝑦𝑦 method (Aldhous et al. (1989), [19]). 

Figure 3. The fitting relation of RCS parameters and mass: (a) logarithm of a0 versus mass; (b) logarithm
of σyy versus mass; (c) logarithm of ν versus mass; (d) logarithm of d versus mass; (e) logarithm of
a0 and α2 versus mass. Note: For (a–d), � represents dataset D; � represents dataset L; S represents
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Table 4. Comparison of mean relative error (MRE) between traditional methods and SVR in estimating
insect mass.

Method MRE

Aldhous et al. (1989) log10 σyy 29.03%
Chapman et al. (2002) log10 a0 33.91%

Drake et al. (2017) log10 a0 & α2 24.50%

Hu et al. (2019) log10 ν 27.24%
log10 d 27.43%

SVR 22.00%

• log10 σyy method (Aldhous et al. (1989), [19]).

log10[Mass(mg)] = 2.6658 + 0.734
(
log10 σyy

)
+ 0.151

(
log10 σyy

)2
+ 0.0264

(
log10 σyy

)3
(8)

• log10 a0 method (Chapman et al. (2002), [13]).

log10[Mass(mg)] = 2.287 + 0.881
(
log10 a0

)
+ 0.312

(
log10 a0

)2
+ 0.0638

(
log10 a0

)3
(9)

• log10 a0 & α2 method (Drake et al. (2017), [14]).

log10[Mass(mg)] = 2.6561 + 0.5303− 0.4466
(
log10 α2

)
+ 0.0046

(
log10 a0

)2
(10)

• log10 ν and log10d method (Hu et al. (2019), [21]).

log10[Mass(mg)] = 2.5922 + 0.5796
(
log10 ν

)
+ 0.066

(
log10 ν

)2
+ 0.0132

(
log10 ν

)3
(11)

log10[Mass(mg)] = 2.3974 + 0.8241
(
log10 d

)
+ 0.2435

(
log10 d

)2
+ 0.0485

(
log10 d

)3
(12)

4. Discussion

For decades, entomologists have paid close attention to the movement of migrant insect, especially
the quantification and identification of migratory insects [8,16]. Great progress has been made based on
current radar technology. However, reliable identification of radar targets is still a key problem for the
research of insect migrations. In terms of species identification of migratory insects based on radar, the
main parameters that can be used at present are wingbeat frequency, mass and size of the insect, among
which the measurement of the wingbeat frequency can be realized [36], but there are still obvious
deficiencies in the measurement of insect mass. In this paper, we study the estimation of insect mass
by using a variety of RCS parameters and their deformations based on the SVR algorithms. The good
performance of the proposed method can provide insights for the research of species identification of
migratory insects.

It should be emphasized that the number of insect specimens used in this paper is relatively
small. In particular, the number of experimental insects greater than 1000 mg is very limited. For
machine learning methods such as SVR, the accuracy of the training model will be improved with the
increase of specimens. Therefore, measurement of the RCS parameters of more insects will be done in
future studies, especially for insects greater than 1000 mg. In addition, if there are enough samples of
experimental insects, more features should be considered and the estimation accuracy of insect mass
will be further improved accordingly.

RCS parameters proved to have the potential to improve the estimation accuracy of insect mass.
Mass and other shape parameters of insects are important characteristics to recognize their identity.
Therefore, the features used for mass estimation can also be applied to the study of species identification
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of insects. However, in this study, most species only have less than 20 samples, which limits our further
study of species identification based on RCS parameters. If there are a large number of samples of the
concerned species, we can do the research of insect species identification based on machine learning
methods. More specimens for each species should be included in our future experiments.

In addition, it was proved that the feature parameters extracted from a multi-frequency scattering
curve could also be used to estimate insect mass [22]. The scatterings of almost all insects at Ku band
are generally in the resonance region [22], where the variation of scattering with frequency is very
complex and is difficult to be described by a mathematical formula for various insects. Therefore, it is
challenging to extract more useful information from Ku band for insect mass estimation. Machine
learning methods may be optional and effective for overcoming the difficulty. However, not enough
multi-frequency scattering data of insects have been published, which is insufficient for building a
complicated and ideal machine learning model. Therefore, if enough multi-frequency RCS data are
accumulated in the future, the estimation of insect mass based on multi-frequency information can
be considered.

5. Conclusions

In this paper, a method based on SVR is proposed for the estimation of insect mass. Fifteen features
were extracted and evaluated. For insect mass estimation, the most important three features were
log10 d, log10 ν and α2. The optimal estimation model was also determined when the most important
six features were utilized. The best estimation accuracy of insect mass was 78%. In conclusion, the
proposed method can accurately measure insect mass, which provides effective support for species
identification in entomological radar. It can be predicted that, in the future, multi-frequency and
full-polarization scattering information will be used comprehensively to achieve optimal insect species
identification performance. In addition, if more experimental insects are available, the estimation
accuracy of insect mass may be further improved accordingly.
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