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Abstract: Synthetic Aperture Radar has a unique potential for continuous forest mapping as it is
not affected by cloud cover. While longer wavelengths, such as L-band, are commonly used for
forest applications, in this paper we assess the aptitude of C-band Sentinel-1 data for this purpose,
for which there is much interest due to its high temporal resolution (five days) and “free, full,
and open” data policy. We tested its ability to distinguish forest from non-forest in six study sites,
located in Alaska, Colombia, Finland, Florida, Indonesia, and the UK. Using the time series for a full
year significantly increases the classification accuracy compared to a single scene (a mean of 85%
compared to 77% across the study sites for the best classifier). Our results show that we can further
improve the mean accuracy to 87% when only considering the annual mean and standard deviation
of co-polarized (VV) and cross-polarized (VH) backscatter. In this case, separation accuracies of up to
93% (in Finland) are possible, though in the worst case (Alaska), the highest possible accuracy using
these variables was 80%. The best overall performance was observed when using a Support Vector
Machine classifier, outperforming random forest, k-Nearest-Neighbors, and Quadratic Discriminant
Analysis. We further show that the small information content we found in the phase data is an artifact
of terrain slope orientation and has a negligible impact on classifier performance. We conclude that for
the purposes of forest mapping the smaller file size and easier to process GRD products are sufficient,
unless the SLC products are used to compute the temporal coherence which was not tested in this study.
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1. Introduction

Forests play a major role in our fragile ecosystem. When planted they act as a carbon sink,
but when cut down or burnt they act as a carbon source. In light of the universal awareness of the
reality and consequences of global climate change, significant international efforts are being undertaken
to preserve forests and reforest areas that have experienced large scale deforestation. Examples of
these undertakings include the Bonn Challenge, the New York Declaration on Forests, and the Paris
Agreement. The first step for prevention of deforestation must be accurate monitoring and mapping
of affected areas with as little delay as possible. REDD+ (which stands for “Reducing emissions
from deforestation and forest degradation and the role of conservation, sustainable management
of forests and enhancement of forest carbon stocks in developing countries”) was adopted by the
United Nations Framework Convention on Climate Change (UNFCCC) to reverse deforestation and
forest degradation, and hence their contribution to climate change. It requires developing countries
to implement Measurement, Reporting and Verification (MRV) systems as part of a National Forest
Monitoring System (NFMS). For REDD+ to succeed it is vital that monitoring systems are accurate,
scalable, trusted, and comparable. The International Panel on Climate Change (IPCC) defines quality
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standards for these measurement systems [1], and is specific that remote sensing should be used, but it
not specific about the precise technologies and methods that should be used. Similarly, all countries
require good maps of their changes in forest areas as part of their reporting on changes in all carbon
pools, related to their territory-wide reporting to the UNFCCC on carbon sinks and sources and how
these compare to their commitments under the Paris Agreement.

Due to large-scale coverage and regular revisit times, satellite remote sensing is the only viable
candidate for large-scale forest cover monitoring systems. Frequent revisits are necessary not only for
precise dating of deforestation events, but also because of rapid regrowth, which may make clearings
indistinguishable from intact forest within less than two years [2]. Data available from satellite sensors
encompass optical imagery (including derivatives such as the Normalized Difference Vegetation
Index (NDVI)), Synthetic Aperture Radar (SAR), and LiDAR data, each with different advantages
and drawbacks.

Many authors have suggested the use of satellite data for mapping forest area and forest properties
for such national monitoring purposes. For example, McRoberts and Tomppo [3] elaborate on the
potential of remote sensing data for national forest inventories. They emphasize the low cost of
measuring areal quantities such as forest area or volume compared to conventional field sampling,
placing a particular focus on k-Nearest-Neighbors (kNN) methods. However, they note limitations in
quantifying the uncertainty of forest inventories produced in this way.

Reiche et al. [4] published a commentary in which they note that the majority of REDD+ member
countries in the tropics are using Landsat, but no SAR data, for their respective national monitoring
systems. That is even though most of these countries are subject to persistent cloud cover throughout
the year, resulting in large data gaps for any optical sensor; a problem which demonstrably does not
affect SAR sensors at C-band or longer [5]. Scientists have already successfully demonstrated the
capabilities of SAR for deforestation monitoring [6–9]. Reiche et al. attribute this absence of SAR data
in national monitoring systems to the comparative ease of processing optical data, the larger historic
archives, and the limited availability of free SAR data and SAR processing tools (prior to the launch of
Sentinel-1A almost all satellite SAR data were available only on commercial terms). As most global
forest maps have been derived from optical imagery—requiring a mosaic over multiple time steps for
a cloud-free composite—they have limited temporal repeatability. Two notable exceptions of repeated
global forest maps are the maps by Hansen [10] and the Food and Agriculture Organization of the
United Nations (FAO) [11], though in practice it is likely that some deforestation is missed or reported
late due to cloud cover in these studies too. Moreover, while the Hansen [10] map is continuous cover,
the FAO map only samples select distributed boxes [10], meaning it provides useful regional statistics
but cannot be used to locate actual deforestation events.

Detecting changes in the forest cover using SAR data requires a statistically significant difference
in the pixel measurement of some radar parameter (e.g., backscatter, coherence, interferometric height,
or texture) that can be reliably used to distinguish forested and non-forested area. This paper assesses
empirically how well forested areas can be distinguished using dual-polarimetric C-band backscatter
data, the easiest SAR data to use. At its core this is a classification problem as we are trying to assign a
class (forest or non-forest) to each pixel given a series of measurements. As such we begin by discussing
a number of papers that have attempted to classify forest and non-forest based on SAR data.

Previous attempts at generating forest maps from SAR data include a global forest map produced
from ALOS PALSAR data (L-band SAR) [12]. Shimada et al. note that most existing forest cover
maps have either been restricted to less-than-global coverage due to focus on specific forest types
or geographic regions or been generated for a single time. While non-forest areas typically yield
lower backscatter than forest, deforestation detection is hindered by an initial increase in backscatter
following forest clearance because of remaining debris as well as the potential impact of rainfall falling
on bare soil. The detection potential was thus found to be greatest once all debris was removed
and the area had been converted into agriculture, when a significantly lower backscatter than the
original forest cover would be expected. Training and validation data for their forest/non-forest
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maps were derived from Google Earth imagery, the Degree Confluence Project (DCP), and the FAO
Global Forest Resources Assessment (FRA) [11]. The authors used a forest definition of ≥10% woody
vegetation cover throughout. Analysis of forest/non-forest histograms showed that forests followed a
normal distribution in γ0 with the co-polarized backscatter always being larger than the cross-polarized
component. The authors found that forest had larger backscatter values but lower variability compared
to non-forest areas. They used a very simple manually crafted decision tree as classifier, relying on
region-specific HV backscatter thresholds extracted from forest/non-forest histograms. The total
forest cover obtained this way was ~5% less than the FRA and Hansen results. Validation showed an
accuracy of 91.25% compared with Google Earth imagery, 94.81% compared with the FRA, and 84.86%
compared with the DCP. Discrepancies were attributed to different image acquisition dates, cloud cover
impacting the optically-derived maps, confusion of woody vegetation with herbaceous vegetation in
the optically-derived maps, as well as the SAR data potentially having too coarse a resolution to detect
small patches of low canopy cover forest in a landscape.

In another study, Quegan et al. [13] assess the potential of time series of C-band SAR images for
forest biomass mapping. They note that C-band SAR has been less popular for forestry applications
because backscatter at this relatively short wavelength saturates at biomass densities of 30–50 Mg ha−1,
whereas for P-band, SAR saturation only happens at around 150–200 Mg ha−1, making it capable of
assessing variations in a larger range of forest types. Saturation thresholds vary across species due
to differences in their dielectric properties, as well as leaf size and orientation. This makes C-band
especially ill-suited for detecting forest degradation, i.e., a reduction of biomass while maintaining
forest status, as in many parts of the world forests can exceed a biomass density of 500 Mg ha−1.
However, for the question at hand here—forest/non-forest discrimination—such a low saturation
point should be sufficient.

The main incentive for using multi-temporal SAR data, as opposed to individual time steps
alone, is that at individual time steps the backscatter can often look identical for forest and non-forest
vegetation types, due to radar speckle and a lack of contrast during some seasons or after rain
events. However, when combining multiple scenes the impact of speckle reduces greatly, and the
discrimination ability may increase because scenes from times of year with a high contrast between
the two classes will be included [13]. Further, Quegan et al. note a relationship between forest stand
age and backscatter: the attenuation of the soil contribution increases with growing age, resulting in a
reduction of the overall backscatter. Following the initial decrease in backscatter for a growing forest,
there is a slower increase leading up to the eventual saturation at the biomass limit. Because denser
forest exposes less of the soil, the backscatter is less dependent on soil moisture and roughness and
hence was found to exhibit less temporal variability than sparser vegetation or bare soil. Other stable
land cover includes grassland and urban areas, but these are stable at lower and higher backscatter
values, respectively. As most non-forest areas exhibit greatly varying backscatter values over the year,
they occasionally look similar to forest. For these reasons, the authors propose temporal backscatter
stability as the most promising feature for forest mapping using C-band SAR data. Quegan et al.
identified two types of land cover that would yield classification errors: non-forest areas of low
backscatter variability (e.g., built-up areas or grassland), and forest areas of high backscatter variability.
The classification accuracies for three test sites in the UK (11 images), Finland (15 images), and
Poland (two images) were 90.7%, 94.1%, and 77.4%, respectively. The authors conclude that temporal
backscatter stability is in fact the best predictor for forest cover derived from C-band SAR for forest of
more than 30 Mg ha−1.

In this paper, we build on these findings by analyzing study sites from a larger range of forest
types, using longer time series and the full dual-polarimetric information available in Sentinel-1
Single Look Complex (SLC) data. As opposed to Ground Range Detected (GRD) data, SLC products
contain phase information in addition to the backscatter amplitude, which we therefore test to see if it
has any useful information content. Given the dual-polarimetric nature of Sentinel-1 data, the only
contribution of the phase after preprocessing is the cross-polarized phase difference (detailed in
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Section 2.2). In contrast to the co-polarized phase difference, which is not available for dual-polarized
data, the cross-polarized phase difference is generally regarded as lacking physical importance ([14],
p. 297). If this is in fact the case and there is little information in the phase difference alone, then the
simpler GRD data should be used due to its simpler processing and smaller file sizes (typically < 1 GB
for GRD and > 4 GB for SLC), unless more complex features derived from the phase are to be used,
for example coherence or interferometric height estimation. Both of these are beyond the scope of this
study given our focus on computationally simple and easy to scale methods.

2. Methods

2.1. Study Sites

We have selected six study sites across a broad range of forest biomes: Alaska, Florida, Finland,
UK, Indonesia, and Colombia. The locations of the study sites are shown in Figure 1 and in more detail
in Figure 2. The reference maps for each study site were constructed from the GlobalForestWatch
data set [10] as well as a country-specific land cover map for the corresponding year. It is assumed
that both data sets contain inaccuracies for different reasons: The Hansen data set is derived from
a Machine Learning approach and hence may not take into account local expert knowledge about
differences between biomes. The country specific landcover maps, on the other hand, are released less
frequently and only provide a snapshot at a certain time. They, therefore, do not capture land cover
change during the study period. For these reasons, only pixels where both data sets agree were used
as reference throughout the study.

Alaska

Colombia

Florida

Indonesia

UK

Finland

Figure 1. This figure shows all six areas that were chosen for the separability study on a single map.
The exact locations are marked with red polygons, with annotations to help locate them visually.
The map was created using Cartopy [15] with map tiles by Stamen Design (http://stamen.com/),
under CC BY 3.0 (http://creativecommons.org/licenses/by/3.0).

The UK site is an area in the Kielder Forest Park for the year 2015 and is largely covered by
coniferous woodland, grassland, and bog. Reference data for this site were taken from the 2015 land
cover map by the UK Centre for Ecology and Hydrology (https://www.ceh.ac.uk/services/land-
cover-map-2015).

The site in Florida is part of the Ocala National Forest for the year 2017. This site exhibits
diverse land cover including (in order of prevalence) sand pine scrub, coniferous plantations,
lacustrine, pasture, sandhills, marshes, and swamps, as well as some urban areas (including transport

http://stamen.com/
http://creativecommons.org/licenses/by/3.0
https://www.ceh.ac.uk/services/land-cover-map-2015
https://www.ceh.ac.uk/services/land-cover-map-2015
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infrastructure) and water bodies. The land cover reference is taken from the Florida Cooperative Land
Cover Map 2017 (https://myfwc.com/research/gis/applications/articles/cooperative-land-cover/).
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Figure 2. This figure shows the location of the six study areas marked in Figure 1 in more detail.

The Alaskan site is located around Lake Louise for the year 2017 and is mostly covered by spruce,
as well as some (low) shrub and freshwater bodies. The corresponding reference data set is the
Alaska Vegetation and Wetland Composite 2017 (https://accscatalog.uaa.alaska.edu/dataset/alaska-
vegetation-and-wetland-composite).

The Indonesian site is the Indragiri Hilir Regency for the year 2017. The most common land
cover classes in this area are shrub-mixed dryland farm, swamp shrub and swamp forest, bare land,
various plantations, and mangrove forest. A 2017 land cover map by the Indonesian Ministry of
Environment and Forestry is used for reference (http://data.globalforestwatch.org/datasets/land-
cover-indonesia).

The Colombian site is located near Solano, Caquetá for the year 2018 and is covered by tall
dense forest, rivers, and pasture. The reference map for this site is a national forest inventory data
set consolidated by the Colombian Institute of Hydrology, Meteorology and Environmental Studies
(IDEAM) (http://smbyc.ideam.gov.co/).

For Finland, a site just north of Lake Oulujärvi was selected for the year 2018. The majority of
this site is covered by coniferous forest, with the remaining area made up of water bodies, transitional
woodland-shrub, mixed forest, and peat bogs. Reference data were derived from the CORINE Land
Cover map 2018 (https://land.copernicus.eu/pan-european/corine-land-cover/clc2018).

Figure 3 shows the Hansen maps as well as country specific reference data for each of the sites.
The third row indicates the areas of agreement between the two. The last row shows a sample Sentinel-1
image for the beginning of the respective study period. Note that the Colombian reference data set
is the only one that provides a deforestation class, which is why the image labeled “country reference”
shows a few red patches for Colombia.

https://myfwc.com/research/gis/applications/articles/cooperative-land-cover/
https://accscatalog.uaa.alaska.edu/dataset/alaska-vegetation-and-wetland-composite
https://accscatalog.uaa.alaska.edu/dataset/alaska-vegetation-and-wetland-composite
http://data.globalforestwatch.org/datasets/land-cover-indonesia
http://data.globalforestwatch.org/datasets/land-cover-indonesia
http://smbyc.ideam.gov.co/
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
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Figure 3. This figure shows the reference data for each of the six study sites, as well as sample Sentinel-1
images. Forested areas are shown in green, non-forest in black, deforestation in red, and water in blue.
Areas of disagreement between the two references are left white in the third row. The Sentinel-1 images
show the co-polarized (VV) backscatter intensity in the red channel, cross-polarized (VH) backscatter
intensity in the green channel, and their ratio in the blue channel.

2.2. Data Processing

All data analyzed in this study are Sentinel-1 SLC products. The data were preprocessed with
ESA SNAP by applying the following processing steps.

Apply Orbit File All products were geocoded using Precise Orbit Determination (POD) files with
polynomial degree 3.
Radiometric Calibration The products were radiometrically calibrated to σ0, preserving complex
output [16].
Debursting In this step, the individual bursts within each subswath were assembled.
Polarimetric Speckle Filter For speckle reduction, a Refined Lee Filter with window size 7× 7 was
applied [14,17].
Terrain Correction The products were processed to 14.07 m resolution using Range Doppler Terrain
Correction with bilinear resampling [18]. This is the native azimuth resolution of Sentinel-1
in Interferometric Wide swath (IW) mode and the resulting resolution of square pixels without
multilooking. The terrain correction was done using the Shuttle Radar Topography Mission (SRTM) 1
arc-second Digital Elevation Model (DEM). As the Alaskan site is north of 60◦N it is not covered by
the SRTM and a separate DEM was used, in this case the Alaska 2 Arc-second Digital Elevation Model
provided by the United States Geological Survey (USGS). The products were projected to the following
map projections: Alaska: EPSG:3338, Colombia: EPSG:3116, Finland: EPSG:3035, Florida: EPSG:3086,
Indonesia: EPSG:4326, UK: EPSG:27700

Figure 3. This figure shows the reference data for each of the six study sites, as well as sample Sentinel-1
images. Forested areas are shown in green, non-forest in black, deforestation in red, and water in blue.
Areas of disagreement between the two references are left white in the third row. The Sentinel-1 images
show the co-polarized (VV) backscatter intensity in the red channel, cross-polarized (VH) backscatter
intensity in the green channel, and their ratio in the blue channel.

2.2. Data Processing

All data analyzed in this study are Sentinel-1 SLC products. The data were preprocessed with
ESA SNAP by applying the following processing steps.

Apply Orbit File All products were geocoded using Precise Orbit Determination (POD) files with
polynomial degree 3.
Radiometric Calibration The products were radiometrically calibrated to σ0, preserving complex
output [16].
Debursting In this step, the individual bursts within each subswath were assembled.
Polarimetric Speckle Filter For speckle reduction, a Refined Lee Filter with window size 7× 7 was
applied [14,17].
Terrain Correction The products were processed to 14.07 m resolution using Range Doppler Terrain
Correction with bilinear resampling [18]. This is the native azimuth resolution of Sentinel-1
in Interferometric Wide swath (IW) mode and the resulting resolution of square pixels without
multilooking. The terrain correction was done using the Shuttle Radar Topography Mission (SRTM) 1
arc-second Digital Elevation Model (DEM). As the Alaskan site is north of 60◦N it is not covered by
the SRTM and a separate DEM was used, in this case the Alaska 2 Arc-second Digital Elevation Model
provided by the United States Geological Survey (USGS). The products were projected to the following
map projections: Alaska: EPSG:3338, Colombia: EPSG:3116, Finland: EPSG:3035, Florida: EPSG:3086,
Indonesia: EPSG:4326, UK: EPSG:27700
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Because we are working with time series data there is scope for temporal smoothing.
Multilooking was therefore not deemed necessary, allowing us to preserve spatial resolution. While the
unprocessed SLC data can be represented by a complex scattering vector s containing the amplitude
and phase of the co-polarized (VV) and cross-polarized (VH) backscatter

s =

[
SVV
SVH

]
=

[
AVVeiϕVV

AVHeiϕVH

]
, (1)

we used the C2 representation of the data, which is the standard output of the preprocessing chain and
the basis for any polarimetric applications:

C = ssH =

[
A2

VV AVV AVHei∆ϕ

AVV AVHe−i∆ϕ A2
VH

]
(2)

where (·)H denotes the Hermitian transpose: (AH)ij = (Aji)
∗, and ∆ϕ = ϕVV − ϕVH .

As a consequence of this representation, the absolute (random) phase is no longer available. As the
dependency on the absolute phase has been removed, we cannot reconstruct the scattering vector
from the covariance matrix. This leaves three independent variables: C11 (the intensity in VV), C22

(the intensity in VH), as well as ∆ϕ (the VV-VH phase difference). In the case of fully polarimetric data,
the covariance matrix would contain additional terms that include the co-polarized phase difference
(VV-HH). While the co-polarized phase difference is related to the number of bounces, and as such is
often useful for land cover classification, the cross-polarized phase difference is generally regarded
as noise [14]. For the dual-polarized Sentinel-1 data, the HH component and thus the co-polarized
phase difference is not available. In this study we compare the ability of these three available variables,
individually and together, to distinguish between forest and non-forest. As part of this analysis we test
the assertion that the cross-polarized phase difference contains no useful information.

Due to the way the satellites orbit the Earth, roughly half of the data are acquired while the satellite
is moving from south to north (this is called ascending orbit) and the other half when it is moving from
north to south (descending orbit). This results in different look angles which have a particular impact on
the appearance of terrain with topography. This effect can be partially accounted for using a processing
step called terrain flattening. However, we do not apply this step as it does not preserve the phase
information. Instead, throughout this study, we treat the measurements in both orbits as separate
variables. Aggregating over them would artificially increase the variability over pixels affected by
topography which would reduce the separation between forest and non-forest distributions.

2.3. Distribution Separability

To assess the separability of forest and non-forest pixels with Sentinel-1 data, we first looked
at the distribution of backscatter values within each class. In order to quantify the aptitude of each
feature for separating between forest and non-forest, we can compute the Overlap Coefficient (OVL)
of the forest and non-forest distributions for each variable. Given two probability density functions
(PDFs) f (x) and g(x), the OVL is defined as

OVL( f , g) =
∫
Rn

min ( f (x), g(x)) dx (3)

which can be approximated for the discrete case as

OVL( f , g) =
N

∑
i=0

min ( fi, gi) (4)
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where fi and gi are the values of f (x) and g(x) known only at discrete positions xi for i = 0, . . . , N
normalized such that ∑i fi = ∑i gi = 1. An OVL of 1 indicates equality of the distribution, whereas an
OVL of 0 means zero overlap and therefore perfect separability.

To see how the theoretical separability holds up in practice, a number of classifiers were trained
on the labeled data and their results and scores are compared. The training data comprised a random
selection of 10,000 data points per class to discriminate between forest and non-forest. The points were
selected at random out of those pixels where both reference data sets are in agreement. All validation
was equally performed with respect to the areas of agreement between both references only; areas of
disagreement were excluded for both training and validation. There are three available variables: C11,
C22, and ∆ϕ. From these variables five different feature sets were generated:

1. Each variable measured once in ascending orbit and once in descending orbit (six features
in total).

2. Each variable measured at every time step (3 × [number of time steps] features in total).
3. The mean and standard deviation of each variable, split between ascending and descending orbit

(a) for all three variables (six features in total).

(b) for C11 and C22 only (four features in total).

(c) for ∆ϕ only (two features in total).

The classifiers tested were k-Nearest-Neighbors (kNN), random forest [19],
Quadratic Discriminant Analysis (QDA), and Support Vector Machine (SVM) [20] to cover the
most common classifiers in the remote sensing community. QDA is not generally used on a
pixel-by-pixel basis as a classifier, but was added as a simple baseline model for comparison. Prior to
classification, the features were standardized by subtracting the mean and scaling to unit variance.
The scaling is of particular importance for the kNN and to some extent the SVM classifier.

Each classification outcome was rated using the balanced accuracy score as well as Cohen’s Kappa
score. The balanced accuracy score is an adaptation of the standard accuracy score which accounts for
class imbalances, i.e., the case where the available classes have different numbers of members [21]. It is
defined as

BACC =
1
2

(
TP

TP+FP
+

TN
TN+FN

)
(5)

with TP, FP, TN, and FN being the number of true positive, false positive, true negative, and false negative
observations, respectively.

Cohen’s Kappa is a measure of how much better a classifier performs compared with random
guessing [22]. It is defined as

κ =
p0 − pe

1− pe
(6)

where p0 is the standard accuracy and pe is the probability of agreement by chance which can be
computed as

pe =
1

N2 ∑
k

nkn′k (7)

for N observations and k classes, with nk being the true number of members of class k and n′k the
predicted number of members of class k. A score of 0 indicates no improvement over random
guessing. Just like the standard and balanced accuracy scores, the maximum score of 1 is reserved for
perfect agreement. The Kappa score allows for negative scores, indicating performance worse than
random guessing.
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3. Results

3.1. Data Distribution

Figure 4 shows the distribution of the annual mean and standard deviation of backscatter intensity
in VV and VH as well as the phase difference ∆ϕ split between ascending and descending orbits for
each of the study sites, per class (forest and non-forest). We chose to show the distributions of temporal
mean and standard deviation rather than the unaggregated data to yield more pronounced differences
between sites and land cover classes as well as mitigate the underlying variability in the backscatter
values either due to noise, seasonality, or other effects.

As a general observation, both VV and VH backscatter are larger for forested areas than for
non-forested areas, on average. However, the individual distributions appear very different across
different study sites. For Alaska, the distributions are nearly identical, whereas for Finland and the UK,
the distributions separate very well. An interesting observation can be made about the phase difference.
Overall, it seems that there is essentially no information contained in the phase difference when it
comes to distinguishing forest from non-forest. The exception is the UK study site in descending
orbit, and to some extent Finland, where there is a clear shift between the distributions for the two
classes. Less apparent differences are also visible for Alaska and Colombia. Contrary to what has
been found by Quegan et al. [13], the histograms of the temporal standard deviation of VV and VH
backscatter seem to suggest that forested areas have a larger rather than smaller temporal variability
compared to non-forested areas. This is in particular true for regions with pronounced seasonality such
as the UK, Alaska, and also Florida, but also holds true to a lesser extent for Colombia and Indonesia.
The standard deviation of the phase difference shows no difference between the two classes.

In addition to the univariate distributions, Figure 5 shows two-dimensional Kernel Density
Estimation (KDE) plots for pairs of variables. Each subfigure shows the distribution of C11 and C22

split between forest (in orange) and non-forest (in blue). The first two rows show the annual mean (µ),
whereas the last two rows show the standard deviation (σ), each for ascending and descending orbits.
The shade represents the observation density, with darker shades indicating higher density.

These plots highlight the separation of forest and non-forest in a higher-dimensional feature
space. Just like for the one-dimensional plots, it is clear that some sites such as Finland separate very
well, whereas other sites like Colombia have more ambiguous distributions. Overall, there is a high
correlation between C11 and C22 both in mean and standard deviation. This correlation is apparent
from the strongly elongated distributions, especially for the mean in the UK, Finland, and Colombia.
The distributions of the standard deviation show a bigger spread and separate less well, in general.
In sites with very little seasonality (Colombia and Indonesia), the standard deviation appears very
similar between forest and non-forest, indicating that the difference in backscatter variability is largely
due to seasonal variations.

There were very few images available for the ascending orbit and the chosen year over the Florida
site, so the two subfigures depicting mean and standard deviation for this orbit direction may be
misleading and should be ignored.
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Figure 4. This figure shows the distribution of the annual mean and standard deviation of VV and VH
backscatter as well as the phase difference per land cover class (forest, non-forest) according to the
reference data. Forest distributions are shown in orange, non-forest in blue. Each row shows either
mean or standard deviation for one of the variables, for one orbit direction. The columns represent the
distributions for the different study sites.

Figure 4. This figure shows the distribution of the annual mean and standard deviation of VV and VH
backscatter as well as the phase difference per land cover class (forest, non-forest) according to the
reference data. Forest distributions are shown in orange, non-forest in blue. Each row shows either
mean or standard deviation for one of the variables, for one orbit direction. The columns represent the
distributions for the different study sites.
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Figure 5. The subplots in this figure show the pairwise distributions of the annual mean and standard
deviation of C11 and C22, for ascending and descending orbits. The distributions of forest pixels are
shown in orange, non-forest in blue. Darker shades indicate a higher observation density.

Figure 6 depicts a more detailed analysis of the bivariate data distributions for the example of the
Finnish site. Each subfigure marks one combination of two of the eight features (excluding the phase),
where the diagonal subfigures show the corresponding one-dimensional distributions already seen
in Figure 4. This plot unveils a strong correlation between all of the variables and as such indicates
a possibility of dimensionality reduction. It is also apparent that (at least for this particular site),
C11 tends to be a slightly better predictor of forest/non-forest than C22, and similarly the mean appears
more informative than the standard deviation. Non-forest pixels exhibit a stronger correlation between
variables, especially between the two orbit directions.

In order to quantify the separability of forest and non-forest for each site, Table 1 lists the overlap
coefficients for each variable and site. The overlaps were derived for the temporal mean and standard
deviation, as well as an individual image (t = 0). In addition, a multidimensional overlap coefficient
was computed for each of the groups of features (t = 0, mean, and standard deviation) and is
labeled as “all” in the table. The rows labeled “all (no ∆ϕ)” consider only the intensity of VV and VH
backscatter, but not the phase. The overlap coefficient for combined mean and standard deviation
was not computed due to computational limitations, as a 12-dimensional histogram of even as little as
20 bins per dimension would require around 100 Petabytes of memory.

Figure 5. The subplots in this figure show the pairwise distributions of the annual mean and standard
deviation of C11 and C22, for ascending and descending orbits. The distributions of forest pixels are
shown in orange, non-forest in blue. Darker shades indicate a higher observation density.

Figure 6 depicts a more detailed analysis of the bivariate data distributions for the example of the
Finnish site. Each subfigure marks one combination of two of the eight features (excluding the phase),
where the diagonal subfigures show the corresponding one-dimensional distributions already seen
in Figure 4. This plot unveils a strong correlation between all of the variables and as such indicates
a possibility of dimensionality reduction. It is also apparent that (at least for this particular site),
C11 tends to be a slightly better predictor of forest/non-forest than C22, and similarly the mean appears
more informative than the standard deviation. Non-forest pixels exhibit a stronger correlation between
variables, especially between the two orbit directions.

In order to quantify the separability of forest and non-forest for each site, Table 1 lists the overlap
coefficients for each variable and site. The overlaps were derived for the temporal mean and standard
deviation, as well as an individual image (t = 0). In addition, a multidimensional overlap coefficient
was computed for each of the groups of features (t = 0, mean, and standard deviation) and is
labeled as “all” in the table. The rows labeled “all (no ∆ϕ)” consider only the intensity of VV and VH
backscatter, but not the phase. The overlap coefficient for combined mean and standard deviation
was not computed due to computational limitations, as a 12-dimensional histogram of even as little as
20 bins per dimension would require around 100 Petabytes of memory.
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Figure 6. This grid of figures shows the bivariate distribution of the combination of several temporal
statistics for the site in Finland. The subfigures on the diagonal show the univariate distributions of the
respective variable. Forest distributions are shown in orange, whereas non-forest is shown in blue.

The values show what was already apparent from the histograms: the separability of forest
and non-forest varies to a large extent between different study sites, with the UK and Finnish sites
appearing generally the most separable and the Alaskan site the least separable. Moreover, the phase
difference shows upwards of 90% overlap in almost all cases except for the UK, indicating little value
for telling forested from non-forested areas. For the t = 0 case, including the phase does slightly
reduce the overlap but for the temporal mean and standard deviation no information appears to be
gained from the phase for any of the sites. This is highlighted by similar overlap coefficients for all and
all (no ∆ϕ).

3.2. Classifier Comparison

Next, we demonstrate the performance of classification algorithms based on the theoretical class
separability. Figure 7 shows the classification outcomes when using the annual mean and standard
deviation of all available variables as features (corresponding to case 3(a) in the list of feature sets in
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Section 2.3). The prediction images are given alongside the reference data, with forest pixels shown in
green and non-forest pixels in black.

Table 1. This table shows the overlap coefficients between the forest and non-forest distributions for
a variety of different variables including C11 (VV backscatter), C22 (VH backscatter), and the phase
difference ∆ϕ, each for ascending and descending orbit, as well as combinations thereof. The three
horizontal sections show the results for a single image (t = 0), as well as the mean (µ) and the standard
deviation (σ). A value close to 0 means low overlap and high separability, whereas a value close to 1
means large overlap and low separability. The table is color coded on a linear scale; with green, yellow,
and red corresponding to overlap coefficients of 0, 0.5, and 1, respectively.

OVL Alaska Colombia Florida Indonesia UK Finland

t
=

0



C11,asc 0.457 0.691 0.325 0.496 0.224 0.133
C11,desc 0.546 0.598 0.239 0.674 0.385 0.131
C22,asc 0.468 0.548 0.353 0.350 0.244 0.152
C22,desc 0.518 0.473 0.254 0.522 0.502 0.162
∆ϕasc 0.974 0.950 0.988 0.979 0.960 0.949
∆ϕdesc 0.920 0.988 0.974 0.994 0.780 0.971
all 0.181 0.113 0.112 0.171 0.060 0.060
all (no ∆ϕ) 0.441 0.373 0.191 0.296 0.152 0.110

µ



µ(C11)asc 0.286 0.597 0.265 0.282 0.137 0.094
µ(C11)desc 0.423 0.476 0.189 0.352 0.190 0.093
µ(C22)asc 0.316 0.427 0.301 0.254 0.147 0.112
µ(C22)desc 0.380 0.351 0.232 0.306 0.216 0.110
µ(∆ϕ)asc 0.922 0.924 0.989 0.991 0.918 0.883
µ(∆ϕ)desc 0.944 0.987 0.953 0.994 0.840 0.900
all 0.204 0.175 0.123 0.104 0.073 0.069
all (no ∆ϕ) 0.250 0.236 0.162 0.118 0.107 0.086

σ



σ(C11)asc 0.305 0.800 0.621 0.645 0.221 0.145
σ(C11)desc 0.428 0.749 0.403 0.635 0.294 0.133
σ(C22)asc 0.323 0.727 0.647 0.400 0.215 0.216
σ(C22)desc 0.436 0.552 0.455 0.428 0.400 0.189
σ(∆ϕ)asc 0.908 0.923 0.971 0.990 0.851 0.933
σ(∆ϕ)desc 0.935 0.972 0.916 0.980 0.680 0.912
all 0.163 0.203 0.235 0.227 0.077 0.073
all (no ∆ϕ) 0.264 0.444 0.363 0.310 0.143 0.105

Random forest and SVM classifiers are favorites among the remote sensing community and
indeed they appear to give the best scores overall. The kNN results in particular appear very noisy;
this is because kNN is not very robust in the presence of noisy variables like the phase and in fact the
results of the kNN classification improve drastically when removing the phase based features. Table 2
collates the balanced accuracy scores for each of the aforementioned feature sets.

For classification using a single time step, the balanced scores are generally around 65% to 80%,
varying strongly between sites. For Indonesia, the classification scores are less than 65%, whereas in
Finland, scores of more than 90% are observed even for a single time step. For most sites, the scores
improve drastically when considering the entire time series. That is to be expected as is mitigates
variations in backscatter not attributable to land cover, such as topography, seasonality, and random
fluctuations. In general, the scores improve to around 75% to 90% when using the full time series
as feature vector. There is a further small increase in accuracy when only the mean and standard
deviation are used as features. For Florida, some of the scores decrease when the full time series
data are used for classification, which could indicate that the reference land cover was collected in
the beginning of the year and has subsequently changed, such that the data at t = 0 may be the best
predictor for land cover. In the cases presented here, SVM generally performs best, whereas kNN



Remote Sens. 2020, 12, 1899 14 of 21

yields the lowest scores. The exception is Finland, where there is sufficient class separation for the
QDA to outperform other classifiers due to its robustness to noise.
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3.2. Classifier Comparison

Next, we demonstrate the performance of classification algorithms based on the theoretical class
separability. Figure 7 shows the classification outcomes when using the annual mean and standard
deviation of all available variables as features (corresponding to case 3(a) in the list of feature sets in
Section 2.3). The prediction images are given alongside the reference data, with forest pixels shown in
green and non-forest pixels in black.
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Figure 7. This figure shows classification results with different classifiers, based on the mean and
standard deviation (per orbit). For each study site, 10,000 points per class were selected at random
for training the classifier. The top row shows the reference data (corresponding to Figure 3), whereas
the remaining rows show the predictions obtained from various classifiers. Forest pixels are shown in
green, and non-forest pixels in black. Each prediction image also shows the balanced accuracy score
compared to the reference data.

Random forest and SVM classifiers are favorites among the remote sensing community and
indeed they appear to give the best scores overall. The kNN results in particular appear very noisy;
this is because kNN is not very robust in the presence of noisy variables like the phase and in fact the
results of the kNN classification improve drastically when removing the phase based features. Table 2
collates the balanced accuracy scores for each of the aforementioned feature sets.

For classification using a single time step, the balanced scores are generally around 65% to 80%,
varying strongly between sites. For Indonesia, the classification scores are less than 65%, whereas in
Finland, scores of more than 90% are observed even for a single time step. For most sites, the scores
improve drastically when considering the entire time series. That is to be expected as is mitigates

Figure 7. This figure shows classification results with different classifiers, based on the mean and
standard deviation (per orbit). For each study site, 10,000 points per class were selected at random
for training the classifier. The top row shows the reference data (corresponding to Figure 3), whereas
the remaining rows show the predictions obtained from various classifiers. Forest pixels are shown in
green, and non-forest pixels in black. Each prediction image also shows the balanced accuracy score
compared to the reference data.

Figure 8a shows the balanced accuracy scores for each of the classifiers and study sites. Similarly,
Figure 8b shows Cohen’s Kappa scores instead. The three different cases presented here correspond to
the last three sections of Table 2.

These plots serve to highlight the poor performance of phase-based features for classifying forest
and non-forest: When training the classifiers using the phase exclusively, the balanced accuracy scores
are barely above 50% indicating no significant improvement over random guessing. This shows even
more clearly in the Kappa scores which are all near 0%, with the exception of the UK and Finland
where we have already seen a slight separation between forest and non-forest in Figure 4. Even for
these two sites, however, there is no improvement when including the phase in addition to C11 and C22.
We can finally conclude that the phase alone contains almost no useful information for discriminating
between forest and non-forest as was already apparent from the high overlap coefficient between the
phase distributions of the two classes. In most cases, the classification results are equally good or even
better when excluding the phase. This is true in particular for kNN, which does not work well in the
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presence of noise variables (the phase in this case). Only for the simplest model (QDA), and to a lesser
extent for random forest and SVM, does the presence of the phase not affect the classifier performance.
Overall, including phase information in the feature set may in fact reduce classifier performance.

Table 2. This table summarizes the balanced accuracy scores from Figure 7 and equivalent outcomes
from using a single time step or the entire time series. The variables used for classification are VV
and VH backscatter as well as the VV-VH phase difference (∆ϕ). The rows differ in whether these
variables were considered for a single time step (t = 0), the entire time series, or the mean and standard
deviation (µ and σ) of the time series, and whether or not they include the phase difference. The table
is color coded on a linear scale; with green, yellow, and red corresponding to accuracy scores of 100%,
75%, and 50%, respectively.

Scores Alaska Colombia Florida Indonesia UK Finland Mean

t
=

0


kNN 68.5% 66.4% 75.1% 62.5% 70.6% 89.4% 72.1%
random forest 78.2% 72.0% 79.5% 64.3% 74.0% 90.7% 76.5%
QDA 69.6% 68.1% 75.0% 64.9% 71.9% 88.3% 73.0%
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Figure 8. This figure visualizes the performance of the four classifiers tested (random forest, kNN,
QDA, and SVM) for each study site, as measured by the balanced accuracy score (a) and Cohen’s
Kappa (b). Three different subsets of variables are represented; VV, VH, and the phase difference ∆ϕ

(blue), only VV and VH (orange), and only ∆ϕ (green).

3.3. UK Phase Anomaly

We now analyze the correlation between phase difference and forest cover that was apparent in
the UK study site but not—or to a much lower degree—in the other sites.
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Figure 9 shows the spatial distribution of the VV-VH phase difference. There is a clear spatial
structure both for the ascending and descending orbit. The pattern suggests a relation between the
phase and the topography, specifically the slope orientation of the terrain.
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(a) descending orbit
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Figure 9. This figure shows the distribution of the VV-VH phase difference (∆ϕ) in descending (a) and
ascending orbit (b) for the UK study site. The top row shows the phase difference for each pixel,
while the bottom row shows the corresponding distribution separately for forest and non-forest.

To verify this suspected relation, we computed the correlation between the phase difference
as well as various terrain parameters. The platform heading of the satellite is about −16◦ for the
ascending orbit and −163◦ for the descending orbit, relative to north. Figure 10 shows hillshade
images generated from a DEM of the study site. The hillshade illumination intensity I is computed
from the DEM as a function of the aspect of the terrain slope α and the azimuth angle θ as

Iθ ∝ cos (π − θ − α) . (8)

To illustrate the dependence of the observed correlation effect on the azimuth angle, the figure
shows one hillshade image for −16◦, i.e., the heading angle in the ascending orbit, and another for
74◦, i.e., for an illumination source displaced by 90◦. The histograms to the right of the images show
the corresponding distributions of the simulated illumination intensity for forest and non-forest for
both angles.

The histograms clearly show that there is a correlation effect between forest cover and terrain
slope orientation that disappears when the illumination source is rotated by 90◦. Figure 11 quantifies
this correlation and its dependence on the azimuth angle: Figure 11a shows the correlation of the
mean VV-VH phase difference in ascending and descending orbit as well as the forest cover with the
hillshade image for different azimuth angles θ. The dashed and dotted lines indicate the heading angle
and perpendicular directions, respectively. For the ascending orbit, these lines correspond to the special
cases shown in Figure 10. Figure 11b shows the correlation with additional terrain parameters such
as elevation and slope in matrix form. There is a mild correlation between the hillshade illumination
at −16◦ and the phase difference of −0.23 in the descending orbit, and 0.18 in the ascending orbit.
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Combined with the observed relation between forest cover and the hillshade illumination (correlation
of 0.1), this is sufficient to explain the small correlation between forest cover and phase difference in
descending orbit of 0.07. Albeit small, this correlation leads to the shift between forest and non-forest
distributions shown in Figure 9a.

As the phase is a geometric phenomenon it is expected to exhibit a dependence on the ground
geometry, i.e., the topography. The correlation between hillshade and forest cover is surprising,
however. One possible explanation is the difference in solar exposure of north-facing vs. south-facing
slopes which could drive differences in vegetation growth. However, this explanation would lead
to expect maximum correlation at an azimuth angle of exactly 0◦. Instead, the observed correlation
appears to correspond to the actual heading angle of the satellite. Other site-specific differences
between north- and south-facing slopes are possible. Another explanation could be an intrinsic bias in
the reference data. This is unlikely, though, as all reference data have been derived exclusively from
optical data and are thus not affected by the same geometric considerations.

We can finally conclude that the apparent correlation between phase difference and forest cover
is likely due to a mutual correlation with the terrain slope angle. After accounting for this effect the
phase difference shows little prediction power for forest cover.
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Figure 10. (a,c) depict hillshade images for illumination (azimuth) angles of −16◦ and 74◦, respectively.
This corresponds to the perceived illumination intensity for a source pointed in azimuth direction (a) of
the ascending orbit and in perpendicular orientation (c). The histograms to the right of the hillshade
images (b,d) show the distribution of this illumination intensity separately for forest and non-forest.
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Figure 11. The figure on the left (a) shows the correlation between a simulated hillshade image of the
UK study site and the mean VV-VH phase difference in ascending and descending orbit as well as
the forest cover for different illumination angles. Dashed and dotted lines indicate the heading angle
and perpendicular directions, respectively. The figure on the right (b) shows the correlation between
different variables in matrix form. Iθ denotes the hillshade with illumination angle θ.
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4. Discussion

The presented results suggest that separation between forest and non-forest is indeed possible
using Sentinel-1 C-band data. In general, the separability of these two classes was greatly dependent
on the study site. A larger selection of study sites may be required to determine whether this is due
to the characteristics of the individual study sites or a feature of the broader climate zones, forest
types, and types of forest disturbance found in each site. Overall, forest was characterized by larger
backscatter values in both VV and VH, as well as larger annual variation in VV and VH compared to
non-forest. This is in contrast to the results by Quegan et al. [13], who found that forest exhibits a lower
temporal variability than non-forest. This may be explained by two factors. First, they mainly contrast
forest with agriculture, which has a strong annual variability in backscatter due to growth and harvest
cycles. Second, the low variability in backscatter was primarily found in older forests, where large
biomass values are likely to be above the saturation point for biomass–backscatter relationships, and no
backscatter is likely to reach the soil through dense canopies so differences in soil moisture will not
change the backscatter observed.

While it was possible to achieve some separation between forest and non-forest even with a single
image, using a time series or statistics from a time series was clearly helpful in all cases. Balanced
accuracy scores of around 80% to 93% were possible across all study sites when data from multiple
scenes were used, but the best accuracy ranged from just 65% up to 91% when a single scene was
used. We found no benefit to using the full time series over the simple temporal statistics of mean and
standard deviation. In fact, there was a significant increase in classification accuracy when reducing
the feature set in this way, due to the notable dimensionality reduction and noise removal.

All classifier scores presented here should not be taken as the best achievable classification results.
The goal of this study was not to find the best possible classifier, and as such no efforts were undertaken
to optimize any hyperparameters or tune the classifiers. The emphasis was instead on identifying
trends in classifier behavior when presented with different sets of features derived from Sentinel-1
SLC data.

Nevertheless, we can make some generalized observations regarding the relative performance of
the four classifiers tested. When the classifiers are trained on the full time series, i.e., in the presence of
high-dimensional data and high noise, an SVM or random forest classifier was found to give the best
result. For a reduced feature set, SVM marginally outperforms random forest, on average.

The performance of the kNN classifier depends greatly on appropriate feature selection. While for
the smallest feature set—consisting of annual mean and standard deviation of backscatter alone—this
classifier showed similar performance to the other classifiers, adding noisy variables such as the
cross-polarized phase difference reduced its mean accuracy from 84.1% to 82.9%. In the presence
of high-dimensional data such as the full time series, its accuracy was further reduced to 80.5%.
Given that kNN also does not scale well with large numbers of observations (the algorithm has to
search the entire training data for each new data point) we would not recommend using it for forest
classification based on these data.

Being the conceptually simplest classifier, QDA is fast and performs well in easy classification
problems, i.e., scenarios where the classes show clear separation. This is true in particular of the
Finnish study site. As this is not the case for other areas, however, we would not recommend using
this classifier in general.

The accuracies achieved here are comparable to the results found in similar studies using diverse
sensors. Dostálová et al. [23] use Sentinel-1 GRD data to map forest area over a site in eastern
Austria. They achieve a balanced accuracy of 90% compared to validation data obtained from airborne
full-waveform laser scanning. Our study complements this result by testing a variety of study
sites, as well as quantifying the separation and thus relevance of multiple variables and derived
temporal statistics, including phase information. In a global forest/non-forest map generated from
L-band ALOS PALSAR data [12], the achieved accuracy was 91.3% compared with Google Earth
imagery, 94.8% compared with the FRA, and 84.9% compared with the DCP. Other studies have used
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optical data, such as Landsat images, to create similar maps. Mayaux et al. [24] assess the accuracy
of the Landsat-based Global Land Cover (GLC) 2000 map individually for each land cover class.
By combining forest classes and non-forest classes, respectively, the resulting balanced accuracy score
for forest/non-forest classification was 91.3%. In a European forest/non-forest map also based on
Landsat data, Pekkarinen et al. [25] achieve a balanced accuracy of 85.6%.

The UK study site exhibited an unexpected shift in phase distributions between forest and
non-forest for one particular orbit direction. Our analysis of the topography showed that this shift
is driven by the terrain slope orientation. Consequently, while the phase appeared to carry some
information, for this site, this is an artifact of the topography and does not make a sufficient case for the
inclusion of the phase in these classification efforts. The dependence of forest cover on the terrain is a
site specific property that can not be generalized. As this phenomenon is independent of the radar data,
the relationship between forest and terrain should be modeled separately rather than using the phase
as a proxy for terrain in this way. These results suggest that the phase information of dual-polarized
SAR data may be left out of forest monitoring applications unless it is used to derive interferometric
quantities, in particular the temporal coherence. Coherence is a measure of the consistency of the
phase over time. Because vegetation tends to result in lower temporal coherence [26–30], this could
be an additional feature for land cover classification. However, if no interferometric analysis is to be
undertaken, we would recommend to work with GRD rather than SLC data for forest monitoring.

There are some limitations to the capacity for forest monitoring using Sentinel-1 data,
as highlighted by the poor classification accuracy for single-scene data and the variability of the
accuracy across study sites. The need for time series data can be a problem when temporal accuracy
is required at sub-annual scale, e.g., for change detection. However, in the absence of time series
data some of the added noise can be compensated for with spatial smoothing, at the cost of spatial
resolution. Furthermore, the differences between study sites suggest that the accuracy of time series
based classification is highest in areas of pronounced seasonality, as witnessed in, e.g., Finland or the
UK. Nevertheless, even in areas with low seasonality such as the tropics, accuracies of around 80% to
85% paired with the independence of SAR data from cloud cover make a strong case for its use.

5. Conclusions

In our study of six partially forested areas in Alaska, Colombia, Finland, Florida, Indonesia,
and the UK, we looked at the separation between forest and non-forest pixels for different feature sets
derived from Sentinel-1 SLC data.

The following are the main conclusions.

(a) Using an SVM classifier, we were able to achieve balanced accuracy scores up to 93% in Finland,
with a mean accuracy of 87% across all study sites.

(b) Given an annual time series of Sentinel-1 data, it is sufficient to extract the annual mean and
standard deviation (separated by orbit) for forest mapping.

(c) There was little useful information in the cross-polarized phase difference, and no information
in its variability. Most classifiers performed equally well or better when excluding the phase
difference from the feature set.

(d) For high-dimensional data, such as unaggregated time series data, we suggest using an SVM or
random forest classifier as these appear the most robust to noise. For aggregated statistical data
(such as annual mean and variance) our findings suggest that the best results may be achieved
with an SVM classifier.

Finally, our goal was to assess the potential of C-band SAR data for forest detection. While longer
wavelengths certainly offer better performance, we have observed sufficiently high classification
accuracies globally to make a case for the use of Sentinel-1 data in forest monitoring applications.
This case is helped by the free and open data policy as well as high revisit frequency, offering a potential
for change detection applications.
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