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Abstract: Addressing seasonal water uncertainties and increased power generation demand has
sparked a global rise in large-scale hydropower projects. To this end, the Blue Nile impoundment
behind the Grand Ethiopian Renaissance Dam (GERD) will encompass an areal extent of ~1763.3 km2

and hold ~67.37 Gt (km3) of water with maximum seasonal load changes of ~27.93 (41% of
total)—~36.46 Gt (54% of total) during projected operational scenarios. Five different digital
surface models (DSMs) are compared to spatially overlapping spaceborne altimeter products
and hydrologic loads for the GERD are derived from the DSM with the least absolute elevation
difference. The elastic responses to several filling and operational strategies for the GERD are
modeled using a spherically symmetric, non-rotating, elastic, and isotropic (SNREI) Earth model.
The maximum vertical and horizontal flexural responses from the full GERD impoundment are
estimated to be 11.99 and 1.99 cm, regardless of the full impoundment period length. The vertical
and horizontal displacements from the highest amplitude seasonal reservoir operational scenarios
are 38–55% and 34–48% of the full deformation, respectively. The timing and rate of reservoir inflow
and outflow affects the hydrologic load density on the Earth’s surface, and, as such, affects not only
the total elastic response but also the distance that the deformation extends from the reservoir’s body.
The magnitudes of the hydrologic-induced deformation are directly related to the size and timing
of reservoir fluxes, and an increased knowledge of the extent and magnitude of this deformation
provides meaningful information to stakeholders to better understand the effects from many different
impoundment and operational strategies.
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1. Introduction

The Grand Ethiopian Renaissance Dam (GERD) on the Blue Nile is located in Ethiopia about
15 km upstream (east) of the Sudanese border and is set to be complete in the next several years [1,2].
The initial GERD site itself was one of four identified during a survey in the 1960s by the United States
Bureau of Reclamation [3]. The dam is located around 11.215◦ N, 35.092◦ E (Figure 1) and sits
in the Upper Blue Nile Basin, a large watershed with an areal extent of ~175,000 km2. The notable
Ethiopian Highlands drain through the basin and into the Blue Nile, and subsequently to the GERD
impoundment. Construction on the dam began in the spring of 2011, and when completed, it will be
the largest dam in Africa. The main roller compacted concrete gravity dam is 150 m tall and 1800 m
long and will work in unison with an adjacent rock-filled saddle dam that is ~50 m tall and 5 km
long in order to increase the water level of the impoundment to approximately 640 m above mean
sea level [4–6]. The entire Blue Nile River Basin contributes around 58–62% of the total water supply
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to downstream Nile River flows [7]. Blue Nile flow data at the Sudanese/Ethiopian border from
the National Meteorological Agency of Ethiopia have a historical (1967–1972; 1999–2003) annual mean
of around 50 Gt, where the vast majority (~80%) of this flow occurs in the months of July through
October [2,8,9].
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and the region’s hydrologic uncertainty will be reduced. The GERD is not the first dam on the Blue 
Nile or the Nile. However, the upstream location coupled with the size of the reservoir will affect the 
already completed downstream hydrologic engineering projects. For example, three downstream 
dams (Rosaries, Sennar, and Aswan High) will need to adjust their release operations in order to 
maintain Sudanese agricultural water supplies [10]. Downstream hydrologic power generation 
could possibly be affected by the filling and operation of the GERD impoundment. The potential 
reduction in power generation will be related to the filling and operational scenarios that the GERD 
water managers decide upon [6,10,11].  
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large dams (e.g., Three Gorges) have been shown to directly alter groundwater levels for 
hydraulically connected aquifer systems [12,13]. These connections are capable of decreasing slope 
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hydro-engineering projects can have far reaching implications for increased stress and strain on 
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Figure 1. Overview figure of the Grand Ethiopian Renaissance Dam (GERD) study area. The elevation
of the GERD impoundment’s watershed is plotted on the right along with the global overview of
the general location of the study area. The areal extent of the full GERD impoundment (640 m reservoir
level) is plotted on the left along with the weighted hydrologic load centroid for the full water volume
of the reservoir. The locations of the main dam and the saddle dam are also noted.

The impoundment of the Blue Nile at the GERD site will have a multitude of different impacts.
The annual discharge curve will be severely altered due to the GERD construction and the subsequent
large volume of the impoundment. The large capacity of the GERD impoundment allows for a
near-equal discharge for each month of the year, allowing for a reduction in both high and low Blue
Nile flow events [7]. To this end, there will likely be fewer flood and drought events and the region’s
hydrologic uncertainty will be reduced. The GERD is not the first dam on the Blue Nile or the Nile.
However, the upstream location coupled with the size of the reservoir will affect the already completed
downstream hydrologic engineering projects. For example, three downstream dams (Rosaries, Sennar,
and Aswan High) will need to adjust their release operations in order to maintain Sudanese agricultural
water supplies [10]. Downstream hydrologic power generation could possibly be affected by the filling
and operation of the GERD impoundment. The potential reduction in power generation will be related
to the filling and operational scenarios that the GERD water managers decide upon [6,10,11].

Groundwater levels are also likely to be impacted by the GERD impoundment and subsequent
reservoir operations. To this end, reservoirs can provide seepage into the subsurficial rock and connected
aquifer systems. This diffusion of water into the underlying rock is capable of increasing pore pressure
and reducing frictional stresses. Further, impoundment and operational strategies of large dams
(e.g., Three Gorges) have been shown to directly alter groundwater levels for hydraulically connected
aquifer systems [12,13]. These connections are capable of decreasing slope stability and can trigger
slope failure events as caused by the changes in hydrostatic pressure due to the varying levels
in the groundwater and the hydraulically connected reservoir levels [14–17].

Other impacts from the GERD impoundment are related to the large hydrologic loading forces
applied to the reservoir-adjacent lithosphere. Drastic changes in surface loads brought on by large
hydro-engineering projects can have far reaching implications for increased stress and strain on
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surrounding fault systems and subsequent seismicity [18–23]. The initial GERD impoundment
and subsequent reservoir creation along with seasonal fluxes in water levels due to operational phases
cause large changes in both the areal extent and volumetric content of the reservoir. These marked
variations in hydrologic loads can impart large forces on the surface of the Earth and are capable of
deforming the lithosphere. For example, numerous studies have shown that in situ and remotely
sensed products (e.g., GNSS, InSAR, GRACE, etc.) are capable of quantifying the flexural response
from changes in hydrologic loads (snow, reservoirs, seasonal precipitation, drought, regional climatic
changes, lakes, etc.) [24–31]. The size of the GERD project allows for a large influx of water into
the upstream reservoir area during the filling stages as well as during normal seasonal operation.
These loads are highly dependent on the chosen filling and operational strategies. The amplitude
and extent of the flexural response is mostly dependent on the underlying rheology as well as the timing
and amount of the hydrologic forcing. Both the early filling stages and the subsequent operational
scenarios play important roles in the application of hydrologic load induced lithospheric deformation
for an impoundment of this size.

This study seeks to provide a first look at the modeled vertical (subsidence and uplift)
and horizontal displacement brought on by the initial GERD impoundment along with reservoir
operations from several predicted seasonal release plans. This work was undertaken in order to glean
a better understanding of the amplitude and spatiotemporal dynamics of the load-induced flexural
response at and around the GERD study site. In order to accomplish this task, we seek to answer
the following questions: (1) What are the areal extents, reservoir volumes, and hydrologic loads
from potential scenarios of long-term reservoir operation and multi-year reservoir filling schedules?
(2) What are the modeled elastic flexural responses as caused by hydrologic loading variations from
long-term reservoir operations and multi-year reservoir filling schedules at the GERD? We utilize
digital surface models (DSMs) and hydrologic inputs from several filling and operational scenarios
to answer (1), and we use those results along with a localized Earth model to compute the elastic
displacements for each of the scenarios in order to answer (2).

2. Data and Methods

2.1. Reservoir Extents, Volumes, and Loads

Traditional remote sensing techniques to delineate water/reservoir extents (e.g., multispectral
and/or radar satellite platforms) cannot be employed in this situation as the final GERD impoundment
process has not yet begun. Instead, this study utilizes a DSM-based technique to determine areal
extents and loads for varying reservoir levels behind the GERD. Several remotely sensed DSMs were
examined in order to more precisely derive the areal extent, reservoir volume, and hydrologic load
for every 1 m increment of the GERD impoundment. We inspected five different well-known DSMs
that encompass the entirety of our study area, and selected the most accurate surface model based on
a comparison of overlapping data from the Geoscience Laser Altimeter System (GLAS) instrument
onboard the Ice, Cloud, and land Elevation Satellite (ICESat) platform. More specifically, we tested three
DSMs generated from Shuttle Radar Topography Mission (SRTM) data (one arcsecond void filled, three
arcsecond void filled, three arcsecond not void filled), one derived from Advanced Land Observing
Satellite (ALOS) data, and another from Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) data [32–34]. All five surface models were mosaicked to encompass the entirety
of the study area (all DSM grids encompassing the minimum bounding box around the extent of
the full GERD impoundment) and were then projected to UTM Zone 36N (EPSG: 32636) using
the WGS84 ellipsoid.

We acquired all GLAH14 (Land Elevation; Version 34) GLAS tracks from the National Snow
and Ice Data Center (NSIDC) that overlap the five different mosaicked DSMs mentioned above [35].
GLAH14 elevation products are provided in ellipsoidal heights referenced to the Topex/Poseidon (TP)
ellipsoid. As such, the GLAH14 data were converted to orthometric height above the WGS84 reference
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ellipsoid by subtracting the corresponding EGM96 geoid from the TP ellipsoidal heights and then
subtracting 0.7 m. The WGS84 coordinates were projected to UTM Zone 36N (EPSG: 32636) in order to
be directly comparable to the five DSMs investigated in this study. Lastly, the elevation values were
filtered using the ”sat_corr_flg” (saturation correction) and ”FRir_qa_flg” (cloud presence) flags to only
keep unsaturated elevation GLAS points and to further filter the GLAS data to only include cloud-free
pulses, respectively. We compared overlapping GLAS pulses to the nearest DSM cell value for each of
the five elevation models mentioned above in order to determine the appropriate DSM used to derive
the most reliable hydrologic load inputs for our deformation models (as discussed in Section 2.2).
We calculated the mean absolute difference and standard deviation for all quality GLAS pulses from
the nearest cell for each of the five DSMs at five different slope bins of less than or equal to 1◦, 3◦, 5◦,
10◦, and 90◦ (i.e., all data). Mean absolute differences were derived for several slope bins in order to
better determine the most accurate DSM to select for further processing. Areas with larger slopes can
cause increased ground elevation values within the ~70 m GLAS footprint. These increased elevation
ranges can decrease the accuracy of the returned GLAS elevation value as the elevation variation affects
the GLAS laser return time and power, and subsequently negatively affects the final ellipsoidal height
given by the GLAH14 product. We utilize Table 1 to show the GLAS comparisons for each of the slope
bins for the five DSMs investigated. We note that the AW3D30 DSM has a lower mean absolute
difference for each of the five different slope bins as compared with every other DSM we investigated.
Similarly, the standard deviations are almost always lower for the AW3D30 DSM as compared with
the other four surface models. The overall lower mean absolute differences and associated standard
deviations for the AW3D30 DSM are evident in this table and highlight why we have selected this
surface model for our hydrologic calculations. For comparison, we display the meter-by-meter areal
extent and volumetric water loads for each of the five DSMs mentioned above in Table S1. We note
increases of ~7% and ~19% in areal extent and volumetric water load for the least accurate DSM
investigated as compared to the results from the AW3D30 DSM that we have utilized for our final
reservoir calculations. We describe the ALOS-based DSM in the following paragraph.

Table 1. Mean absolute differences in elevation between the investigated digital surface models (DSMs)
and spatially overlapping Ice, Cloud, and land Elevation Satellite (ICESat) Geoscience Laser Altimeter
System (GLAS) pulses for all data, slopes ≤1◦, ≤3◦, ≤5◦, and ≤10◦ along with their standard deviations.

DSM All: Mean
Difference (SD)

1◦: Mean
Difference (SD)

3◦: Mean
Difference (SD)

5◦: Mean
Difference (SD)

10◦: Mean
Difference (SD)

ALOS
4.61 m 3.85 m 3.74 m 3.82 m 3.77 m

(26.73 m) (1.69 m) (4.15 m) (20.93 m) (20.18 m)

ASTER
8.16 m 6.32 m 6.04 m 6.42 m 6.88 m

(27.20 m) (4.29 m) (5.73 m) (21.28 m) (20.65 m)

SRTM_1arc
5.47 m 4.56 m 4.74 m 4.84 m 4.75 m

(26.71 m) (2.09 m) (4.28 m) (20.87 m) (20.13 m)

SRTM_3arc_nonVoid
7.22 m 4.60 m 4.86 m 5.07 m 5.34 m

(27.17 m) (2.23 m) (4.46 m) (20.92 m) (20.24 m)

SRTM_3arc_yesVoid 7.22 m 4.60 m 4.86 m 5.07 m 5.34 m
(27.17 m) (2.23 m) (4.46 m) (20.92 m) (20.24 m)

The ALOS DSM was acquired from the Japan Aerospace Exploration Agency (JAXA) and is part of
the ALOS World 3D-30m (AW3D30) project. The surface model has a cell spacing of 1 arcsecond (~30 m)
and a vertical height accuracy of 4.4 m (RMSE). The AW3D30 product was up-sampled from the AW3D
version (~5 m cell size) using a simple average of the 49 (7 × 7) underlying AW3D cells, and consists of
16-bit signed integer values [36]. We mosaicked three AW3D30 grids (N009E035, N010E035, N011E035)
over the study region and manually adjusted the cells where the GERD infrastructure (main dam
and saddle dam) is located to the appropriate infrastructural elevation values. We utilized this DSM to
derive the areal extent, reservoir volume, and subsequently, the GERD impoundment load grids used
in the flexural model described in Section 2.2.

We derived the areal extents, volumes, and water level changes for each 1 m increment from
the pre-impoundment level of 500 m to the reservoir’s maximum capacity at 640 m. The AW3D30 DSM
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was contoured for each of the associated water level increments upstream of the GERD pour point,
and the incremental areal extents were then derived for each reservoir extent boundary. Similarly,
for each water level increment, we calculated the volume for each cell in the grid by deriving the water
depth change from the initial DSM elevation value and multiplied by the appropriate cell dimensions of
the mosaicked AW3D30 surface model (i.e., ~30 × ~30 m). We then summed these cell-by-cell volumes
to derive the total volumetric content for the incremental water level. These meter-by-meter areal
extent and volumetric water load values are further used to plot hypsometric curves for water level
versus areal extent and water load along with areal extent versus water load. Cubic and quadratic fits
of these curves were calculated and the coefficients from the water level versus water load and the areal
extent versus water level equations were applied in order to create daily and mean monthly water
level, areal extent, and volumetric content changes from inflow and outflow calculations for each of
the different impoundment and operational scenarios that are discussed in the following paragraph.

A filling plan has not been finalized for the GERD, and, as such, we focused our input water
load derivations and subsequent initial impoundment deformation modeling on representative filling
scenarios as laid out in [5,7]. [5] utilized an 80-month filling strategy based on natural inflow rates
from 1973–1978. Here, the mean annual inflow of this impoundment strategy is only ~0.5% greater
than the 41-year mean annual inflow of ~50 Gt (1961–2002), and the annual outflow during this initial
impoundment stage does not fall below 28.9 Gt. Monthly water level values were acquired from
the above-cited paper, and daily loads were created in conjunction with the coefficients from the cubic
fits mentioned in the previous paragraph. We call this daily filling scenario M1. [7] derived precipitation,
seepage, actual evapotranspiration (ET), inflow, and outflow (in m3s−1) at the GERD impoundment
for 39 years (January 1961 to the end of December 1999). These 468 monthly hydrologic observations
were utilized to determine average monthly inflow datasets based on three types of water years
(Average: 1961–1999, Average Wet: 1961–1981, and Average Dry: 1981–1999), where we took the mean
of the water inflow from the hydrologic variables within their respective year ranges. The monthly
GERD outflow rates from these three sets of inflow observations were derived as a percentage of
the total inflow from 5 to 90% at 5% intervals. Here, an outflow percentage value of 5 indicates that only
5% of the daily GERD inflow is allowed to flow through the dam outlets as outflow (i.e., 95% storage).
We note that precipitation inputs were included in the inflow calculation and the seepage and actual ET
were removed from the reservoir volume and the subsequent water level calculation (not the outflow).
That is, there may be a negative water storage rate in months where the summation of the seepage
and ET rates is greater than the difference between the inflow and outflow rates. Finally, the monthly
reservoir storage was determined for each of the three types of water years and their 18 different
percentages of inflow rates from 5 to 90%. These monthly hydrologic observations were utilized
in conjunction with the coefficients from the cubic fits described in the previous paragraph to determine
daily water levels for each scenario. We call these filling scenarios A5–A90 (Average), AW5–AW90
(Average Wet), and AD5–AD90 (Average Dry), respectively. These cell-by-cell water levels for each of
the 55 different impoundment scenarios (one scenario derived from [5] and 54 derived from [7]) were
used to create the initial impoundment load grids that are utilized as inputs into the elastic deformation
model that is discussed in Section 2.2.

Similarly, a seasonal operation plan has not been finalized for the GERD, and, as such, we focused
our annual flexural modeling on the five operational strategies as laid out in [7]. They described
these five operational scenarios as (1) “hpp_1500MW_a”: Operation is geared towards a hydroelectric
power production (hpp) of 1500 MW regardless of the season, unless the reservoir is at full capacity
(hpp increase) or the total volume is low (hpp decrease), (2) “hpp_1500MW_b”: Operation is geared
towards an hpp of 1500 MW if the active storage is less than 50%, unless the total volume is low
(hpp decrease) or the active storage of the reservoir is above 50% (hpp increase), (3) “hpp_1700MW”:
Operation is geared towards an hpp of 1700 MW regardless of the season, unless the reservoir is at
full capacity (hpp increase) or the total volume is low (hpp decrease), (4) “hpp_1800MW”: Operation
is geared towards an hpp of 1800 MW regardless of the season or overall reservoir volume, unless
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the reservoir is at full capacity (hpp increase), and (5) “eco_mgt”: Operation best represents the natural
flow regime with peak flows during the flood season and reduced flows during the dry season. We call
these five operational scenarios (L1–L5). Similar to the abovementioned filling scenarios from [7],
these operational strategies consist of monthly precipitation, seepage, actual ET, inflow, and outflow
(in m3s−1) at the GERD impoundment from January 1961 to the end of December 1999. The 468 different
monthly hydrologic values described in the previous paragraph were used in order to derive two
temporally different sets of overall inflow, outflow, and storage values for each of the five scenarios.
Again, we note that precipitation inputs were included in the inflow calculation and the seepage
and actual ET were removed from the reservoir volume and the subsequent water level calculation
(not the outflow). The first of the two monthly datasets consists of a single-year’s inflow, outflow,
and water storage as calculated from the respective months’ mean from the entire 39-year dataset,
and the second consists of the full 39-year hydrologic monthly dataset. The monthly hydrologic values
from both of the temporally different sets of strategies were utilized in conjunction with the coefficients
from the appropriate cubic fits in order to determine daily water levels. These cell-by-cell water levels
for each of the five different reservoir operation phases were used to create the operational load grids
that are utilized as inputs into the elastic deformation model that is discussed in Section 2.2.

2.2. SNREI Deformation

We created a spherically symmetric, non-rotating, elastic, and isotropic (SNREI) Earth model
based on the local rheology around the study region in order to calculate the most accurate vertical
and horizontal displacements imposed by the loading of the GERD impoundment scenarios as
well as the loading and unloading from the seasonal reservoir operations. To this end, we utilized
the rheologic parameters in the Crust 1.0 model [37] for the cell that encompasses the majority of
the GERD impoundment (centered at 10.5◦ N, 35.5◦ E) to appropriately amend the STW105 reference
Earth model [38] in order to derive more meaningful load Love numbers (LLNs) for the study region.
More specifically, we used the density, compressional (Vp) and shear wave (Vs) velocities, and depths
for the crustal values in the abovementioned Crust 1.0 cell and appropriately replaced the rheologic
values in the STW105 Earth model while keeping the original mantle properties intact. We also replaced
the oceanic water layer in the upper 3 km of the STW105 model with appropriate density, Vp, and Vs

values for the upper crust. From this altered, GERD-centric STW105 model (CRUSTY_GERD_STW105),
we calculated the two Lamé parameters (λ and µ) for the Earth radii increments needed to appropriately
derive the LLNs. We utilized the CRUSTY_GERD_STW105 Earth model and set the mantle to be both
isotropic and compressible and the core to be layered and compressible in the calculation of the LLNs.
Elastic LLNs were derived to a harmonic degree of 32,768 (at 1 degree increments) using the method
and scripts outlined in [39,40]. These LLNs represent dimensionless parameters that explain Earth’s
elastic response to different loads and stresses [41,42].

We calculated the elastic response, or Green’s functions (GFs), to a set disc loading scenario using
the flexural theory from [43] based on the CRUSTY_GERD_STW105 Earth model-derived LLNs using
the Regional ElAstic Rebound calculator (REAR) from [44]. REAR is optimized for the calculation
of displacements from very high harmonic degrees, which is important for the analysis of geodetic
observables in study areas which are subjected to smaller-scale surface mass variations (like hydrologic
loading at the reservoir scale) [45]. This is important as the increased number of spherical harmonic
degrees allows for a higher resolution model domain (e.g., finely layered mantle and crustal layers) as
well as for a more detailed (finer spatial resolution) output displacement product. REAR computes
the elastic flexural response of SNREI Earth models to loading and unloading scenarios. In this case,
the loading and unloading scenarios are the filling of the GERD impoundment along with the seasonal
operations. The computed GFs are the surface rates of displacement associated with a unit rate of mass
variation from a finite-sized disc load, where the diameter of the disc corresponds to the cell resolution
of the input DSM (AW3D30) utilized to derive the load files. These GFs were utilized in conjunction
with the hydrologic load files calculated for each 1 m water level increment (500 to 640 m) to derive
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the elastic deformation caused by the hydrologic load from the entire GERD impoundment. We
also derived the flexural response for each areal extent where the corresponding water level utilized
in the input load file is the water level at which the areal extent was derived plus 1 m (501 to 641 m).
This was done to create a displacement factor to utilize in the linear interpolation of the flexural
response from sub-meter water level changes. For example, we derived the vertical and horizontal
displacements utilizing each cell from the 600 m water level areal extent along with the deformation
from the same cells plus 1 m of water level (i.e., 601 m). We employed the flexural responses from
these +1 m data runs to derive a displacement factor to apply to daily floating point values of water
level changes that are present in our load inputs from the different filling and operational scenarios.
For example, this displacement factor is calculated from the quotient of the displacement from the 600 m
areal extent load with a water level of 600 + 1 m and the displacement from the 600 m areal extent load
with a water level of 600 m, divided by 1000. This allows us to calculate the daily flexural responses
from sub-meter water level changes (e.g., at 0.001 m intervals between water levels of 600 and 601 m)
without having to run the flexural model through many tens of thousands of iterations.

We utilized the daily reservoir load files as described in Section 2.1 to derive the modeled
flexural response using the SNREI model discussed in the preceding paragraph. We calculated
the deformation from the daily load changes for each of the 55 different impoundment scenarios as
well as from both temporal sets of the 5 different operational scenarios. We then determined the daily
accumulated maximum vertical and horizontal displacements from those daily load changes for each
of the 55 different impoundment scenarios. We note that we stopped each filling scenario as soon
as the reservoir reached its full supply level of 640 m. We also calculated the time to full supply
level along with the accumulated annual inflow, outflow, and storage for each of these 55 filling
scenarios. We note that each of these data runs began on January 1. We utilized the daily vertical
and horizontal displacements in response to the daily load changes (Section 2.1) to derive the maximum
seasonal accumulated flexural responses for both the full 39-year dataset and the average annual
scenarios (as discussed in Section 2.1). Here, the maximum accumulated responses are defined as
the displacement from the load change at the beginning of the year to the peak load for the highest
annual amplitude water load change for each of the scenarios. We note that we started the average
annual operational scenarios on the first day of the first month in which there is a positive storage rate
(i.e., L1–L3, L5: July 1, and L4: June 1), and we started the annual cycles within the 39-year seasonal
operational dataset on the first day in which there was a positive water storage.

3. Results

3.1. Initial Impoundment

The overall areal extent and volumetric water load for the full impoundment of the GERD (500 to
640 m) using the AW3D30 surface model and the methods outlined in Section 2.1 are ~1763.30 km2

and 67.37 Gt, respectively. We derived the monthly inflow, outflow, and water storage values for
each of the 54 impoundment scenarios derived from [7], and plot them in supplementary materials
Figures S1, S2, and S3. We utilized these annual curves to derive daily reservoir inflow and outflow,
and subsequently the accumulated water levels and volumes for each of the impoundment strategies.
We focus our discussion on the 22 filling scenarios M1, A45-A75, AW45–AW75, and AD45–AD75
due to the markedly low levels of accumulated annual outflow and long impoundment periods at
the lower and upper end of the percentage scenarios, respectively. We note that the full impoundment
periods and the accumulated annual outflow rates for the A80-A90, AW80–AW90, and AD80–AD90
and the A5-A40, AW5-AW40, and AD5-AD40 scenarios range from 9.7 (AW80) to 76.7 years (AD90)
and 2.4 (AD5) to 22.0 Gt/year (AW40), respectively. The total accumulated annual inflow for each
of the average, average-wet, average-dry, and M1 impoundment scenarios are 51.25, 55.11, 48.32,
and 50.00 Gt, respectively. For reference, we plot the daily reservoir inflows and outflows along
with the accumulated water levels and volumes for each of the 54 impoundment strategies derived
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from [7] in Figures S4, S5, and S6. We also plot the accumulated daily GERD storage and water levels
for the M1 scenario derived from [5] in Figure S7. Along with these plots, we show the time-to-full,
the accumulated annual inflows, outflows, and storage values for each of the 54 filling scenarios
derived from [7] (A5–A90, AW5–AW90, and AD5–AD90) in Table S2. We note that we do not have
the inflow and outflow rates for scenario M1 as the data acquired from [5] do not consist of the full
hydrologic values that we have acquired from the study by [7]. However, we require only water levels
in order to appropriately derive the load inputs for the elastic flexural model.

The maximum accumulated vertical and horizontal displacements from the SNREI model for
the complete GERD impoundment utilizing the methods and datasets described in Sections 2.1
and 2.2 are 11.99 and 1.99 cm, respectively. Figure 2 plots the total vertical and horizontal response
from the entire hydrologic load from the full 140 m GERD impoundment. Vertical and horizontal
displacements from the complete impoundment in excess of 1 cm extend out to ~99 and ~49 km from
the 640 m weighted hydrologic load centroid, respectively. We point the reader to Video S1 for an
animation showing the modeled flexural response along with its associated areal extent and water
volume for each meter of water level rise from 500 to 640 m.

Remote Sens. 2020, 12, x 8 of 19 

 

storage and water levels for the M1 scenario derived from [5] in Figure S7. Along with these plots, 
we show the time-to-full, the accumulated annual inflows, outflows, and storage values for each of 
the 54 filling scenarios derived from [7] (A5–A90, AW5–AW90, and AD5–AD90) in Table S2. We 
note that we do not have the inflow and outflow rates for scenario M1 as the data acquired from [5] 
do not consist of the full hydrologic values that we have acquired from the study by [7]. However, 
we require only water levels in order to appropriately derive the load inputs for the elastic flexural 
model. 

The maximum accumulated vertical and horizontal displacements from the SNREI model for 
the complete GERD impoundment utilizing the methods and datasets described in Sections 2.1 and 
2.2 are 11.99 and 1.99 cm, respectively. Figure 2 plots the total vertical and horizontal response from 
the entire hydrologic load from the full 140 m GERD impoundment. Vertical and horizontal 
displacements from the complete impoundment in excess of 1 cm extend out to ~99 and ~49 km from 
the 640 m weighted hydrologic load centroid, respectively. We point the reader to Video S1 for an 
animation showing the modeled flexural response along with its associated areal extent and water 
volume for each meter of water level rise from 500 to 640 m. 

 
Figure 2. Vertical and horizontal displacements from the full GERD impoundment. The modeled 
vertical displacement is plotted on the colored grid while the horizontal displacement motion vectors 
are plotted on top. The weighted hydrologic load centroid from the full reservoir volume is plotted 
as a star. The total areal extent of the full impoundment (640 m reservoir level) is drawn as a black 
polygon. These are the modeled elastic displacements from the full hydrologic loading for the entire 
GERD impoundment. 

Figure 3 plots the daily accumulated horizontal and vertical displacements for each of the 22 
different filling scenarios. We note that the vertical displacement for each of the filling scenarios 
maxes out at the same response due to the fact that we plot the accumulated displacement for the 
entire filling, and that according to [43], the elastic flexural response to any given load is both 
constant and instantaneous. That is to say, these maximum displacement values are the same for the 
vertical and horizontal displacements plotted in Figure 2. 

Figure 2. Vertical and horizontal displacements from the full GERD impoundment. The modeled
vertical displacement is plotted on the colored grid while the horizontal displacement motion vectors
are plotted on top. The weighted hydrologic load centroid from the full reservoir volume is plotted
as a star. The total areal extent of the full impoundment (640 m reservoir level) is drawn as a black
polygon. These are the modeled elastic displacements from the full hydrologic loading for the entire
GERD impoundment.

Figure 3 plots the daily accumulated horizontal and vertical displacements for each of
the 22 different filling scenarios. We note that the vertical displacement for each of the filling
scenarios maxes out at the same response due to the fact that we plot the accumulated displacement
for the entire filling, and that according to [43], the elastic flexural response to any given load is both
constant and instantaneous. That is to say, these maximum displacement values are the same for
the vertical and horizontal displacements plotted in Figure 2.
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The horizontal displacement on the second y-axis is marginally offset from the vertical displacement
on the first y-axis and is plotted as the slightly minor lines of the same symbology for each of
the filling scenarios.

3.2. Seasonal Operations

We derived the average monthly inflow, outflow, and water storage values for each of the five
operational cycles, and plot them in Figure S8. We utilized these monthly hydrologic variables to derive
an average annual regime of daily reservoir inflow and outflow rates, and subsequently the accumulated
water levels and volumes for each of the five seasonal strategies (L1–L5). These are plotted in Figure
S9. This figure shows that the maximum annual seasonal amplitudes of change for the areal extent,
water level, and reservoir volume for each of the five average annual operational scenarios (L1–L5)
are 491.12, 492.28, 484.33, 420.06, and 360.40 km2, 16.22, 16.25, 16.01, 14.13, and 12.22 m, and 23.09,
23.16, 22.76, 19.59, and 16.74 km3, respectively. We note that the percentage of the total accumulated
water volume from the full impoundment for each average annual seasonal scenario is 25% (L1),
34% (L2), 34% (L3), 34% (L4), and 29% (L5). Similarly, we plot the daily water levels, water storage,
and inflow and outflow rates for the five operational scenarios over their entire 39-year cycle in Figure
S10. This figure shows that the maximum annual seasonal amplitudes of change for the areal extent,
water level, and reservoir volume for each of the 39-year operational scenarios (L1–L5) are 902.02,
868.00, 821.83, 903.36, and 644.81 km2, 41.22, 36.99, 33.28, 46.53, and 26.88 m, and 36.46, 36.30, 35.22,
34.35, and 27.93 km3, respectively. We note that the percentages of the total accumulated water volume
from the full impoundment for each of these maximum seasonal amplitudes from the full 39-year daily
seasonal scenarios are 54% (L1), 54% (L2), 52% (L3), 51% (L4), and 41% (L5). This shows how large an
effect dam operations can have on the amplitudes of seasonal hydrologic load fluctuations. In turn,
these markedly different fluxes will determine the amplitude of flexural responses to the corresponding
annual load changes in any given operational year, as discussed below.

The maximum accumulated vertical (and horizontal) displacement from the SNREI model for
each of the five average annual operational scenarios (L1–L5) is 3.27 (4.89), 3.29 (4.94), 3.24 (4.84), 2.76
(4.14), and 2.40 cm (3.59 mm), respectively. We plot the total vertical and horizontal response for these
annual average operational scenarios (L1–L5) in Figure 4a–e. Vertical and horizontal displacements
from the maximum seasonal amplitudes in excess of 1 cm and 3 mm for these five scenarios extend out
to ~92 and ~51 km (L1–L3), ~77 and ~44 km (L4), and lastly ~49 and ~40 km (L5) from their respective
maximum water level weighted hydrologic load centroids.
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Figure 4. Vertical and horizontal displacements from each of the five average annual operational
scenarios. The modeled vertical displacement is plotted on the colored grid while the horizontal
displacement motion vectors are plotted on top. The maximum water level weighted hydrologic
load centroids are plotted as stars. The maximum areal extent of the reservoir for each of these
scenarios is drawn as a black polygon. (a–e) correspond to the average annual seasonal scenarios
L1–L5, respectively. These are the maximum accumulated displacements for each of the five average
annual operational scenarios.

We plot the daily accumulated maximum horizontal and vertical displacements for each of the five
seasonal operational scenarios in Figure 5. We note that the maximum accumulated displacements are
the same as the responses plotted in Figure 4a–e. We also note that the maximum displacement for
operational scenario L4 occurs one month prior to the other four scenarios. This is due to the operational
start date of June 1 for the L4 scenario versus July 1 for the remaining four scenarios. Here, July 1
and June 1 are the first days in each scenario in which there is net positive reservoir storage.
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Figure 5. Maximum accumulated daily vertical and horizontal displacements from the five different
average annual operational scenarios. Seasonal operations are started July 1 for scenarios L1–L3 and L5
and on June 1 for scenario L4. These are the first days in each scenario in which there is net positive
reservoir storage. These plots track the daily displacement at the location of the overall maximum
accumulated vertical and horizontal displacement for each average annual scenario. Note that
the top and bottom portions of the plot correspond to vertical and horizontal displacement in cm
and mm, respectively. We also note that the y-axis scale for the horizontal displacement is half that of
the vertical displacement.
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We note that the maximum accumulated vertical (and horizontal) displacement for each of
the largest seasonal amplitudes of hydrologic change from the full 39-year dataset for the five
operational scenarios (L1–L5) is 6.58 (9.39), 6.29 (8.94), 5.91 (8.45), 6.56 (9.58), and 4.61 cm (6.69 mm),
respectively. We plot the total vertical and horizontal response for these maximum annual operational
scenarios (L1–L5) in Figure 6a–e, respectively. Vertical and horizontal displacements from the maximum
seasonal amplitudes in excess of 1 cm and 5 mm for these scenarios extend to ~78 and ~50 km (L1),
~93 and ~50 km (L2), ~93 and ~48 km (L3), ~78 and ~46 km (L4), and lastly ~78 and ~44 km (L5) from
their respective maximum water level weighted hydrologic load centroids.
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Figure 6. Total vertical and horizontal displacements from the maximum annual amplitude for each of
the five 39-year operational scenarios. The modeled vertical displacement is plotted on the colored
grid while the horizontal displacement motion vectors are plotted on top. The maximum water level
weighted hydrologic load centroids are plotted as stars, and the maximum areal extent of the reservoir
for each of these scenarios is drawn as a black polygon. (a–e) correspond to the maximum displacement
out of the full 39-year dataset for each of the five different seasonal operational scenarios (L1–L5).

We plot the daily maximum vertical and horizontal accumulated flexural responses from the full
39-year dataset for each of the five scenarios in Figure 7. We start the water level for each of
these runs such that the maximum water level over the full 39-year dataset is never greater than
the maximum GERD water level of 640 m. We note that the seasonal maximum and minimum
vertical and horizontal displacements for all five scenarios over all 39 years of hydrologic data are
6.58 and 1.32 cm (vertical) and 9.58 and 1.91 mm (horizontal), respectively. This further highlights
the stark differences in the annual stresses applied on the crust from the varying hydrologic loading
and unloading operational scenarios of the reservoir.
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Figure 7. Maximum seasonal accumulated daily vertical and horizontal displacements for all five
operational scenarios from the full 39-year datasets. These plots track the daily displacement at
the location of the annual season’s overall maximum accumulated vertical and horizontal displacement
for each scenario. The plotted data are the accumulated vertical and horizontal displacements for each
seasonal cycle in the full 39-year dataset. Note that the displacement at the beginning of each season
reverts back to zero, and the subsequent seasonal displacements are accumulated from that start point
until the end of the season. The top and bottom portions of the plot correspond to vertical and horizontal
displacement, respectively. We also note that the y-axis scale for the horizontal displacement is half
that of the vertical displacement.

4. Discussion

4.1. Initial Impoundment

At present, our DSM-derived results cannot be validated to in situ or other remote sensing-based
areal extent and volumetric water load curves of the GERD as the final impoundment process has not yet
begun. However, our very high R-squared values of 0.99 are indicative of the quality of the relationships
between water level, areal extent, and volumetric content (Figure S11a–c). These relationships can be
employed by water managers and researchers to derive more meaningful operational rule curves and to
better understand the hydrologic fluctuations as they relate to future GERD studies (e.g., remotely
sensed volumetric calculations from ICESat-2, GRACE-FO, and SWOT). We note our method relies
heavily on the DSM employed by our processing methodology, and that we have utilized the most
accurate surface model (as compared to spatially overlapping ICESat GLAS pulses) at our disposal
(Section 2.1).

For a comparison to the modeled vertical displacements from the full impoundment at the GERD
(Figure 2), we note that vertical displacements from the full impoundment for two other large
hydro-engineering projects (Lake Mead in the United States and the Three Gorges Reservoir in China)
are ~12 cm and ~3.8 cm, respectively [46,47]. The locational difference in the maximum vertical
displacement and the weighted hydrologic load centroid in Figure 2 is very likely caused by the upstream
reaches of the GERD reservoir at this water level “pulling” the centroid toward the south-southeast
away from the deformation center. Further, Video S1 shows the south-southeastward migration of
the weighted hydrologic load centroid as the reservoir levels rise and the upstream reaches “pull”
the centroids in that direction. We note that utilizing a different DSM than the one selected for
this analysis would affect the displacements calculated from our flexural modeling methodology.
The displacements from a given load are directly related to the input water levels at each cell in the DSM
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grid. As such, the overall difference in the modeled displacements from different DSMs would be
dependent on the cell-by-cell differences in their water levels. We note that the results in Figure 2
and Video S1 are the total accumulated elastic flexural response from the GERD impoundment in its
entirety. Further, we note that filling scenarios for reservoirs of this size are typically drawn out
over several years/wet-dry seasons due to the size of the reservoir itself, downstream water users,
and the seasonality of the inflows at the impoundment.

A filling plan has not been finalized for the GERD, and, as such, we focus our discussion on 22
(M1, A45–75, AW45–75, and AD45–75) of the 55 different scenarios as laid out in the end of Section 2.1.
These particular filling scenarios were deemed the most realistic after comparing their outflow rates
to the mean outflow at the impoundment site as well as their respective filling times. The former is
important to negate downstream user impacts and the latter is important for the operation and timing
of the reservoir operations. The filling time is also an important parameter where faster impoundments
may increase the drained response that is responsible for the increase in diffusive pore pressure through
the underlying rock. The filling scenarios had a start date of January 1, and for the most part, the first
five months of each filling scenario shows little to no impoundment. We note that 14 of the 22 filling
scenarios examined were complete before the fifth year, and that the shortest filling scenario (AW45)
and the longest filling scenario (AD75) took ~2.65 and ~8.6 years, respectively.

Although the total magnitude of the vertical and horizontal displacements are the same for
each filling scenario plotted in Figure 3, it is the timing of the hydrologic variables that play a role
in the temporal dynamics of the load-induced flexural response. This is especially true for a marked
seasonal hydrologic regime defined by a peak discharge lasting a few months followed by a low-flow
period that we see at the GERD impoundment. This is evidenced in Figure 3 by the fact that 8 of
the 22 filling scenarios (A45–55, AW45–55, and AD45–50) have nearly 50% (~6 and ~1 cm) of their total
accumulated (~12 and ~2 cm) vertical and horizontal displacement (respectively) within the last half of
the first year of the filling scenario. We point the reader to Dataset S1 for the complete displacement
arrays for each of the 22 filling scenarios. We also note that all but one of the filling scenarios (M1)
have more than 25% of their total deformation in the same six-month time span. However, if we think
in terms of displacement per unit time and we take the quotient of the total accumulated vertical
displacement and the filling time for each scenario plotted in Figure 3, we find that the top-five scenarios
in terms of the lowest total daily displacement rate are AD75 (~0.04), A75 (~0.04), AW75 (~0.05),
AD70 (~0.05), and M1 (~0.05 mm/day). In contrast, the bottom-five scenarios in terms of the highest
total daily displacement rate are AW45 (~0.12), A45 (~0.12), AW50 (~0.12), AD45 (~0.11), and A50
(~0.09 mm/day). We note that because the total displacement is the same for each of the filling scenarios
(500 to 640 m), these displacement rates are for the five longest and five shortest filling scenarios,
respectively. We reiterate that the overall flexural response (Figure 2) from the full impoundment
applied on the surrounding lithosphere will not occur within one season, but will be spread out over
the filling scenario decided upon by the water managers. As such, we have shown (Figure 3) 22 different
potential filling scenarios at the GERD, and how their associated flexural responses accumulate over
their respective impoundment periods.

4.2. Seasonal Operations

Overall, the differences in accumulated horizontal and vertical displacements between the five
operational scenarios plotted in Figure 5 stem from the different monthly (and subsequently, the daily)
reservoir outflow rates. These scenarios are discussed at the end of Section 2.1 and are plotted
in Figures S8 and S9, respectively. The different outflow rates are responsible for variations in monthly
(and subsequently, the daily) water storage, and, in turn, the different areal extents and total
water levels for each of the five scenarios. We expect there to be differences in the accumulated
displacement from the different operational scenarios as the inputs into the elastic deformation models
are the hydrologic load grids derived from these areal extents and water levels. The notable difference
in both the timing and the quantity of reservoir outflow in scenarios L4 and L5 as compared with
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the outflow rates in scenarios L1–L3 causes the decreased accumulated displacement for scenarios L4
and L5 (See Figures S8 and S9).

We start the seasonal model runs at the first date in which there is positive reservoir storage
(L1–L3, L5: July 1 and L4: June 1) and use a 622 m reservoir level as the initial model input. We selected
the 622 m water level as [48] specified the minimum operating level of the GERD as such. However,
other studies stated that the minimum operating level is at 590 m [49,50]. We ran our models with both
622 and 590 m as the starting point, and we note that the total volumetric change is the same in both runs
and that the amplitudes of the seasonal water level and areal extent changes are larger with the 590 m
elevation starting point. Further, the maximum accumulated vertical and horizontal displacements
are around 1 cm and 1 mm larger (respectively) in the 590 m data runs as compared with the flexural
results from the 622 m starting point. This is due to the increased load per unit area for the 590 m data
runs as the reservoir volumes for both starting points are the same, but the maximum areal extents
for the 590 m runs are smaller than their 622 m counterparts, thereby increasing the hydrologic load
per unit area. In turn, this larger, more condensed loading affects the distance that the deformation
extends from the corresponding load centroid as compared with the 622 m data runs. Here, we note
that the vertical and horizontal displacements from the maximum seasonal amplitudes in excess of
1 cm and 3 mm for the scenarios with a 590 m water level start extend out to ~59 and ~50 km (L1–L2),
~59 and ~48 km (L3), ~48 and ~46 km (L4), and lastly ~49 and ~42 km (L5) from their respective
maximum water level weighted hydrologic load centroids. This overall reduction in the spatial reach
of the deformation as compared with the 622 m data runs is due to the abovementioned condensed
hydrologic loading around the load centroid where the 590 m data runs do not have the increased
displacement in the upstream (southerly) reaches of the reservoir.

The vertical and horizontal displacements plotted in Figure 7 are normalized to the first day of
the seasonal cycle. Here, we define the beginning of an annual seasonal cycle as the first day in which
there is positive water storage and the end to that cycle occurs when the water storage flips from
negative to positive (i.e., a full seasonal inflow and outflow curve). The daily vertical displacement
plotted in Figure 7 is the accumulated vertical response for that season at the location of maximum
deformation for that annual cycle. Here, vertical displacement that is greater than zero indicates that
the daily water level has dropped below the water level at the start of our defined seasonal cycle,
and the accumulated displacement switches sign to a positive value due to the continued withdrawal of
reservoir water (decreased water storage) and the subsequent upward flexural response (relaxation) of
the crust. The decrease in water storage and subsequent crustal relaxation for each seasonal cycle begins
after the maximum accumulated vertical displacement peak on the seasonal curves plotted in Figure 7
and ends when the reservoir storage changes from a positive to a negative value. The horizontal
displacement is nearly always positive, and, similar to the plotted vertical displacement, it switches
signs when the daily water level has dropped below the water level at the start of our defined seasonal
cycle. The horizontal response curves in Figure 7 show that the non-vertical crustal motion changes
direction from towards the center of load mass during water storage and downward flexural response
to away from the center of load mass during periods in the seasonal cycle that are dominated by a
reduction in water storage and subsequent reservoir withdrawals. This occurs simultaneously with
the decrease in water storage and subsequent crustal relaxation for each seasonal cycle and begins
after the maximum accumulated vertical displacement peak on the seasonal curves.

We note that the full vertical and horizontal displacement for each of the five average annual
operational strategies (L1–L5) is 27%, 27%, 27%, 23%, and 20% and 24%, 25%, 24%, 21%, and 18%
of the total maximum accumulated vertical and horizontal displacement from the entire GERD
impoundment, respectively. In context, the vertical and horizontal percent differences for the highest
amplitude year of the 39-year data cycle are 55%, 52%, 49%, 55%, and 38% and 47%, 45%, 43%, 48%,
and 34%, respectively. The overall magnitude of the vertical and horizontal displacements for the five
operational scenarios are highly varied when looking at both the average scenarios and the full 39-year
runs. The deformation is dependent on the annual load density and the input natural hydrologic
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variables (e.g., inflow, seepage, actual ET) for that particular water year as well as the operational
variables (i.e., outflow/reservoir release as it is related to hydropower generation) that the water
managers decide upon. Subsequently, these varied reservoir inflow and outflow rates and release
timings can dramatically affect the maximum accumulated seasonal displacement as well as the distance
with which the flexural response occurs away from the associated hydrologic load centroid.

5. Conclusions

This study has compared the accuracy of several widely used DSMs to spaceborne laser altimetric
products from the ICESat GLAS sensor in order to determine the most appropriate product for reservoir
extent and volumetric calculations at the GERD. We utilized the ALOS-derived AW3D30 surface model
to determine that the overall extent and total hydrologic load of the full GERD impoundment, which
are ~1763.30 km2 and 67.37 km3 (Gt), respectively. We determined the areal extent and volumetric
content for the GERD impoundment at 1 m water level increments (from 500 to 640 m) and derived
hypsometric curves for water level versus areal extent and water load along with areal extent versus
water load. We determined the most appropriate cubic and quadratic fits of these curves and found
very high R-squared values for each. We utilized the associated coefficients to derive areal extent
and volumetric content at sub-meter water level changes (e.g., 0.001 m) for each day in our scenarios.

We created daily water level, areal extent, water storage, inflow, and outflow values for 55 different
filling scenarios as well as for 5 different operational strategies at the GERD. The time to full
impoundment varies by scenario, and ranges from 1.6 to 76.7 years. We determined that the accumulated
annual storage for these scenarios ranges from 0.9 to 48.3 km3 at the longer end of impoundment time
to the shorter end, respectively. A more realistic scenario is, of course, somewhere in between these
values. The accumulated annual reservoir storage during the initial impoundment directly affects
the time it takes to fill the reservoir to its maximum water level of 640 m. We found that the maximum
seasonal amplitude of reservoir load changes for each of the five operational strategies to consist of
54%, 54%, 52%, 51%, and 41% of the total accumulated water volume from the full impoundment.
When compared with the percentages from the average annual operational strategies of 25%, 34%, 34%,
34%, and 29%, it becomes quite evident that reservoir operations have a large effect on the amplitude
of seasonal hydrologic load fluctuations.

We found the maximum accumulated vertical and horizontal displacements caused by
the hydrologic load from the full GERD impoundment to be 11.99 and 1.99 cm, and that the vertical
and horizontal displacements in excess of 1 cm extend out to ~99 and 49 km from the 640 m weighted
hydrologic load centroid, respectively. We derived the daily accumulated vertical and horizontal
displacements for 22 of the 55 filling scenarios. Although the total magnitude of the elastic vertical
and horizontal displacements are the same for each of the filling scenarios, it is the timing of these
forces that play a role in the temporal dynamics of the load-induced flexural response. We note that
the marked seasonal hydrologic regime at the GERD impoundment plays a major role in the timing of
the deformation, and this is evidenced by the fact that 8 of the 22 filling scenarios (A45-55, AW45-55,
and AD45-50) have nearly 50% (~6 and ~1 cm) of their total accumulated (~12 and ~2 cm) vertical
and horizontal displacements (respectively) within the last half of the first year of the filling scenario.

We found that the maximum accumulated vertical (and horizontal) displacement for each of
the largest seasonal amplitudes of hydrologic change from the full 39-year dataset for the five operational
scenarios (L1 – L5) is 6.58 (9.39), 6.29 (8.94), 5.91 (8.45), 6.56 (9.58), and 4.61 cm (6.69 mm), respectively.
The vertical and horizontal displacements in excess of 1 cm and 5 mm from these maximum amplitudes
extend to ~78 and ~50 km (L1), ~93 and ~50 km (L2), ~93 and ~48 km (L3), ~78 and ~46 km (L4),
and lastly ~78 and ~44 km (L5) from their respective maximum water level weighted hydrologic load
centroids. We compared this maximum seasonal displacement to the displacements from the full
impoundment and found that the vertical and horizontal percent differences for the highest amplitude
year of the 39-year data cycle for the five operational scenarios are 55%, 52%, 49%, 55%, and 38% and 47%,
45%, 42%, 48%, and 34%, respectively. We determined that the seasonal maximum and minimum
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vertical and horizontal displacements for all five operational scenarios over all 39 years of hydrologic
data are 6.58 and 1.32 cm (vertical) and 9.58 and 1.91 mm (horizontal), respectively. We have shown that
the overall magnitude of the vertical and horizontal displacements for the five operational scenarios
are highly varied, and that the deformation is dependent on the input natural hydrologic variables
(e.g., inflow, seepage, actual ET) for that particular water year as well as the operational variables
(i.e., outflow/reservoir releases as they are related to hydropower generation) that the water managers
decide upon. Subsequently, we noted that the annual load density along with the varied reservoir
inflow and outflow rates and release timings can dramatically affect the maximum accumulated
seasonal displacement as well as the distance with which the flexural response occurs away from
the associated hydrologic load centroid.
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scenarios, Figure S5: Daily reservoir inflows and outflows along with the accumulated water levels and hydrologic
loads for each of the average-dry (AD) water year impoundment scenarios, Figure S6: Daily reservoir inflows
and outflows along with the accumulated water levels and hydrologic loads for each of the average-wet (AW)
water year impoundment scenarios, Figure S7: Daily-accumulated water levels and hydrologic loads for the M1
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and water load along with areal extent versus water load. Table S1: Areal extent and volumetric water loads for
every meter of water level from 500 m to 640 m calculated from each of the five DSMs. Table S2: Annual outflow
and inflow rates, accumulated reservoir storage, and the filling times for each impoundment scenario. Video S1:
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