
remote sensing  

Article

Predicting Carbon Accumulation in Temperate
Forests of Ontario, Canada Using a LiDAR-Initialized
Growth-and-Yield Model

Paulina T. Marczak 1,* , Karin Y. Van Ewijk 1, Paul M. Treitz 1, Neal A. Scott 1 and
Donald C.E. Robinson 2

1 Department of Geography and Planning, Queen’s University, Kingston, ON K7L 3N6, Canada;
karin.vanewijk@queensu.ca (K.Y.V.E.); paul.treitz@queensu.ca (P.M.T.); neal.scott@queensu.ca (N.A.S.)

2 ESSA Technologies, Vancouver, BC V6J 5C6, Canada; drobinson@essa.com
* Correspondence: paulina.marczak@queensu.ca

Received: 2 December 2019; Accepted: 3 January 2020; Published: 6 January 2020
����������
�������

Abstract: Climate warming has led to an urgent need for improved estimates of carbon accumulation
in uneven-aged, mixed temperate forests, where high uncertainty remains. We investigated the
feasibility of using LiDAR-derived forest attributes to initialize a growth and yield (G&Y) model in
complex stands at the Petawawa Research Forest (PRF) in eastern Ontario, Canada; i.e., can G&Y
models based on LiDAR provide accurate predictions of aboveground carbon accumulation in
complex forests compared to traditional inventory-based estimates? Applying a local G&Y model,
we forecasted aboveground carbon stock (tons/ha) and accumulation (tons/ha/yr) using recurring
plot measurements from 2012–2016, FVS1. We applied statistical predictors derived from LiDAR to
predict stem density (SD), stem diameter distribution (SDD), and basal area distribution (BA_dist).
These data, along with measured species abundance, were used to initialize a second model (FVS2).
A third model was tested using LiDAR-initialized tree lists and photo-interpreted estimates of
species abundance (i.e., FVS3). The carbon stock projections for 2016 from the inventory-based G&Y
model) were equivalent to validation carbon stocks measured in 2016 at all size-class levels (p < 0.05),
while LiDAR-based G&Y models were not. None of the models were equivalent to validation data
for accumulation (p > 0.05). At the plot level, LiDAR-based predictions of carbon accumulation
over a nine-year period did not differ when using either inventory or photo-interpreted species
(p < 0.05). Using a constant mortality rate, we also found statistical equivalency of inventory and
photo-interpreted accumulation models for all size classes ≥17 cm. These results suggest that more
precise information is needed on tree characteristics than we could derive from LiDAR, but that
plot-level species information is not as critical for predictions of carbon accumulation in mixed-species
forests. Further work is needed on the use of LiDAR to quantify stand properties before this technique
can be used to replace recurring plot measurements to quantify carbon accumulation.
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1. Introduction

Forests play a key role in the global carbon cycle, storing 80% of all terrestrial aboveground
carbon [1] and contribute substantially to the total annual global terrestrial carbon sink (3.0 ± 0.8
GtC/yr) [2] with recent estimates placing the net global forest sink at 1.1 ± 0.8 GtC/yr [3]. Sustainable
forest management (SFM) practices could be developed to enhance rates of carbon sequestration in
forests (e.g., [4]). To account for the impact of SFM practices on rates of carbon storage over large areas,
spatially comprehensive techniques are needed to quantify carbon stocks (tons/ha) and predict carbon
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stock changes (tons/ha/yr). This would allow forest managers to (i) make more informed management
decisions and; (ii) enhance the use of forests to limit the rate of climate warming [5].

Predictions of aboveground forest carbon accumulation (i.e., tree growth) are often made by
applying statistical models of forest growth and yield (G&Y) to plot-level inventory data [6]. The key
challenge is the extrapolation of plot-level data over larger areas. Plot-scale forest inventories often
have limited point sampling, high cost, and limited personnel [5,7]. These G&Y models may require
inputs of tree-level diameter-at-breast height (DBH), species, site quality, and other attributes to project
future carbon accumulation [8]. To apply G&Y models over large areas, remote sensing methods would
be required to collect spatially-explicit (i.e., “wall-to-wall”) data that can be used to initialize G&Y
models. Spatially comprehensive estimates of biomass and growth would support SFM, especially in
complex forests with multiple tree ages (i.e., size classes) and species [9].

Light detection and ranging (LiDAR; also referred to as airborne laser scanning; ALS) is an active
remote sensing system that generates a 3-D point cloud from which statistical metrics defining vertical
and horizontal forest structure are derived [10,11]. In this discrete return system, a pulse of laser light
travels to the object, where the time of travel to and from the object for each individual laser pulse is
recorded to determine the distance, referred to as pulsed ranging [12]. A discrete-return sensor can
transmit up to five returns; when a laser pulse hits the bare ground or a dense object, only a single
return is recorded [11,13]. Conversely, when the pulse travels through a forest canopy, some component
energy can intercept various components of the understory, as well as the ground, resulting in multiple
returns [11]. The metrics, which statistically describe the point cloud (e.g., percentiles, density) can be
used as independent variables to predict stem diameter distribution (SDD; i.e., the number of stems/ha
across a set of diameter size classes), stem density (SD; stems/ha for a given plot), species abundance,
and other attributes needed to initialize G&Y models [9,13,14]. Studies that predict SDD from LiDAR
have been limited; this can be partially attributed to the low accuracy of predicting multiple response
variables, which complicate model calibration and validation [14]. SDD is thus often weighted by
basal area (BA); i.e., the cross-sectional area of a tree at breast height across a hectare, in m2/ha)
due to the intrinsic quadratic relationship between DBH and BA [15]; BA distribution (BA_dist)
(i.e., the value of the summed individual-tree BA across a hectare in a distributed range, e.g., size
classes, in m2/ha), gives greater importance to larger trees and improves predictions, thus is often used
in SDD studies [16,17]. Previous studies have initialized local G&Y models using LiDAR-predicted
variables to evaluate BA_dist as a proxy for growth [5], or map present aboveground carbon density
using predictions of SDD [18]. Others have used process-based modelling to evaluate its effectiveness
in single-species forests/plantations for BA_dist growth [19] and biomass [20]. Zhang et al. (2018) [21]
used repeat LiDAR surveys to calibrate biomass change. Thus, the application of LiDAR to quantify
stand characteristics for the initialization of G&Y models has the potential for predicting carbon
accumulation in uneven-aged mixedwood temperate forests.

Area-based approaches (ABAs) to quantify SDD and BA_dist using LiDAR metrics include both
parametric and non-parametric techniques. Parametric techniques assume that the data conforms to a
given probability density function (PDF; [22]) such as the Weibull distribution, which has been used
extensively to predict SDD and BA_dist [23,24]. Some have alluded to predicting future growth based
on moderate success predicting SDD and other stand attributes across a landscape using parametric
approaches (e.g., [18]). However, modelling of SDD and BA_dist in complex forests has proven to be
more challenging. As a result, non-parametric techniques such as k-nearest neighbours (k-NN) and
random forests (RF) are becoming increasingly popular [5,8,25,26]. Non-parametric techniques offer
the advantage of identifying important variables using variable reduction techniques and eliminating
those variables with high collinearity, thus promoting them for LiDAR-based applications in complex
forests [14,27].

To date, the application of non-parametric approaches to create tree lists and project G&Y models
for carbon accumulation has been limited, and, to the best of our knowledge, virtually non-existent in
complex forests with mixed species and age structures. For the purposes of this study, we defined tree
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lists as lists of species-assigned stem diameters for the number of trees in a stand, excluding site class
or height. A previous study used k-NN imputation to parameterize the Forest Vegetation Simulator
(FVS; [28]) over a large forested area in Oregon, finding that k-NN exhibited higher accuracy for
larger trees and concluded that LiDAR could be used for spatially explicit BA_dist projections [5].
Tompalski et al. (2018) [29] used an ABA approach to find the best matching yield curves compared to
those generated by a locally parameterized model. Others report predictions of single-tree attributes
including SDD, but do not compare projections of future growth (e.g., [14,30]). Many studies that
have used the RF non-parametric algorithm found it stronger at predicting forest attributes than other
non-parametric approaches, including k-NN [14,30,31], however, there remains no consensus on a
preferred model across conditions [8]. Application of RF for predicting forest attributes in complex
stands (i.e., mixedwood, uneven-aged) is increasing given it alleviates several challenges associated
with parametric techniques, including: (i) the need for significant a priori knowledge to properly
parameterize models; (ii) collinearity between predictors; and (iii) overfitting when a large number
of predictor variables are used [14]. Whereas parametric models must be highly parameterized to
predict complex SDDs and often require forest type stratification to improve model accuracy, RF is
not constrained by these requirements [24,31–33]. Predicting species abundance, a requirement in
initializing many G&Y models, has also proved to be challenging in mixedwood forests due to increased
structural complexity, coupled with the challenges of accurately normalizing LiDAR strength of return
(i.e., intensity [34,35]), although advances have been made (e.g., [36,37]). However, the error associated
with an imprecise or inaccurate characterization of species abundance on growth estimates remains
unclear, as studies do not typically compare any potential changes in accuracy using inventory-derived
species abundance compared to predictions from LiDAR for G&Y models (e.g., [5,38,39]).

In general, predicting tree growth, specifically using ABAs, has a number of challenges due
to the need to disaggregate size class-level predictions to tree-level, apply this across a larger area,
and then impute or otherwise obtain species abundance. In this study, we tested the initialization of a
LiDAR-derived G&Y model using average diameter tree lists combined with a suite of G&Y model
specifications and tests of different approaches to quantify species abundance. We used estimates of
BA_dist and SDD/SD to initialize an individual tree-based G&Y model (i.e., FVSOntario) to investigate
the feasibility of forecasting carbon accumulation (i.e., the difference in carbon stock between years) in
an uneven-aged, mixedwood forest (i.e., the Great Lakes - St. Lawrence forest). Our objectives were: (1)
initialize a baseline G&Y model (i.e., FVS1) using plot-based diameter-at-breast-height (DBH) measures
and species abundance data; (2) initialize a second G&Y model (i.e., FVS2) based on LiDAR-derived
size-class DBH estimates and plot-based species abundance data; (3) initialize a third model (i.e., FVS3)
using LiDAR-derived size-class DBH estimates and species abundance data inferred from the Forest
Resource Inventory (FRI); (4) initialize a fourth model using BA_dist and median size-class range
values to evaluate the effect of modelling without SDD (i.e., FVS3-2), and (5) compare predicted
carbon accumulation for the different models to inventory-based estimates of carbon accumulation.
We compared stocks at model initialization to 2012 inventory validation data (i.e., FVS1), projected
stocks for all the models after a four-year simulation to 2016 inventory validation data, and further
compared LiDAR model outputs at 2021.

2. Materials and Methods

2.1. Overview

For Objective 1, size class bins were defined as trees with DBH ranging from: 8–17 cm (saplings),
17–26 cm (polewoods), 26–38 cm (small sawlogs), and 38 cm and above (medium and above sawlogs).
The number of individuals per size-class and plot-level tree lists (by species) were extracted from
2012/13 inventory DBH and species abundance data. For FVS2 (LiDAR-initialized tree lists and
inventory-based species abundance), input variables (i.e., SDD, SD, and BA_dist) were predicted
from 2012 LiDAR data using a non-parametric algorithm (i.e., RF, [40] and independently optimized
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predictor variables. To obtain tree lists, we divided estimates of BA_dist by SD (plot-level) or SDD
(size-class level) to obtain average diameter and number of stems per plot, combined with species
abundance from inventory measures. For Objective 3 (FVS3; LiDAR-initialized tree lists and FRI
species abundance), LiDAR-based DBH (FVS2) was combined with photo-interpreted FRI-based
species abundance and used to create input tree lists. For objective 4, determining the sensitivity
of precise SDD predictions on model performance was tested by using mid-range DBH values for
each size class to construct tree lists, in conjunction with predicted BA_dist for estimates of SDD
and FRI-based species abundance (i.e., FVS3-2). Each model was then projected forward for four
years to predict carbon stocks in 2016, and accumulation (measured as the difference between 2012
and 2016 carbon stocks). Finally, for Objective 5, we evaluated equivalency in accumulation and
stock at multiple times using a regression-based equivalence test (i.e., the Robinson test, [41]). For
carbon stocks, we evaluated the inventory-based projections against LiDAR-based models for 2012 and
2016, then we compared inventory and LiDAR-based projections to the 2016 inventory measures of
carbon stock. For accumulation at the 2016 mark, we compared all projected models to accumulation
derived from field data (i.e., field-measured tree list data converted to differences in carbon stock using
the FVSOntario model between 2012–2016). Measures of species influence on carbon accumulation
(i.e., significant differences between FVS2 and FVS3/FVS3-2) were evaluated for 2016 and 2021 using
the same regression-based equivalence test. Lastly, the same test was applied for carbon accumulation
and carbon stocks at 2021 (i.e., year nine) to determine if there were any longer-term stabilization
effects on G&Y model predictions.

2.2. Study Area

The Petawawa Research Forest (PRF; 45◦59′52.0”N, 77◦25′39.6”W) is the older of two National
Research Forests in Canada (Figure 1) [42]. PRF was established in 1918 to experiment with forest
management practices for the Great Lakes - St. Lawrence Forest Region (GLSL). Located in eastern
Ontario, it is 100 km2 in size and has mean annual precipitation and temperature of 859 mm and
5.6 ◦C, respectively [43]. The area lies on the lower reaches of the Precambrian Shield and is strongly
influenced by glaciation and post-glacial outwashing, ranging in elevation from 140 to 280 m above
sea level. The terrain is one of sandy plains; imposing hills and shallow, sandy soils, as well as bedrock
outcrops; or gently rolling hills and deep loamy sand with boulders [44].

The GLSL is considered a transition zone between the northern boreal forests and southern
deciduous forests [45]. The GLSL region experiences natural disturbances such as fire and
downbursts/windthrow at an intermediate frequency. Other disturbances impacting forest structure
include land-use change, insect outbreaks and fire suppression [45]. Percentage species composition
at PRF include 32% white pine (P. strobus), 23% trembling aspen (P. tremuloides), 11% oak (Quercus
spp.), 10% red pine (P. resinosa), 8% white birch (B. papyrifera), 5% maple (Acer spp.), 5% white spruce
(P. glauca), 4% other conifers, and 2% other hardwoods [45,46]. Various silvicultural practices, including
shelterwood harvesting, thinning, competition control (i.e., removal of excess trees), tree planting
and scarification regeneration also influence present and future forest stand structure in parts of the
forest [45,47].
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Figure 1. Petawawa Research Forest location in Ontario, Canada (45◦59′52.0”N, 77◦25′39.6”W) and
plot locations.

2.3. FVSOntario

Forest Vegetation Simulator Ontario (FVSOntario; version 3.03.0006) is an empirical, single-tree,
G&Y model parameterized for the climate and species of Ontario [48,49]. In the 1990s, suitable G&Y
models were being considered for Ontario’s G&Y Program that would predict tree and stand growth
better than traditional stand tables (i.e., [50]). The Forest Vegetation Simulator (FVS, [28]) was identified
as a potential fit as it was able to account for a range of silvicultural treatments, species, and forest
conditions; while meeting additional criteria as outlined in Woods and Robinson [49]. Results of the
model evaluation of the FVS US Lake States (LS) variant indicated poor representation of growth for
Ontario-specific scenarios [51]. FVSOntario was consequently developed based on multiple calibrations
and validation efforts within the Boreal and Great Lakes - St. Lawrence forest regions in combination
with the British Columbia variant (PrognosisBC) user interface [48,49,52].

FVSOntario contains an extension based on the US Fire and Fuels Extension (FFE, [53]) that uses
individual tree lists as input and converts DBH measurements to estimates of carbon stock (metric
tons/ha) using species-specific biomass conversion equations developed by Jenkins et al. (2003) [54].
This process was automated using a batch script that ran the FFE extension (i.e., the carbon submodel)
used to calculate estimates of carbon stocks [55].

2.4. Field Data Collection

Inventory BA_dist and SD/SDD were derived from tree mensuration data for the size classes at
the plot level, with summary statistics shown in Table 1. These data were collected for 75 circular plots
(radius = 14.1 m; area = 625 m2) during the summers of 2012/2013 with re-measurement in 2016/2017
as part of this study [56,57]. Plots were selected using a stratified random sampling design; i.e., stands
were selected randomly within 15 previously identified forest type strata. Plot centre locations were
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recorded using an SX Blue II GPS (UTM NAD83 Zone 18). Mensuration data were collected for all trees
with DBH ≥ 8 cm whose centres were within the radius of the plot. Plot-level data included overall
stand description (coniferous plantation, natural-deciduous canopy, natural-pine dominated canopy
or natural-mixed complex canopy), origin (natural/planted), and development stage/canopy layering
(stem exclusion, understory re-initiation, and old-growth). Tree-level data included DBH, species,
status (live, dead, live veteran, or removed), origin (natural, planted, layering, coppice, or unknown),
crown class (intermediate, co-dominant, dominant, emergent/veteran, suppressed, and anomaly),
health class (healthy, minor defoliation, major defoliation, or complete defoliation), tree height for a
subset of trees (height to live foliage and total tree), and decay class (1-branches still present, 5-bark
completely off and no branches) for standing dead trees. The base of the live crown and total tree
heights were recorded for a selection of dominant and co-dominant species using a Vertex™ hypsometer
(Långsele, Sweden). Each tree in the resulting calibration data (i.e., inventory tree lists used to initialize
FVS1) was then manually inspected for abnormal growth patterns. A small number of trees had a
negative diameter increment in our data, however, these decreases were only attributed to dying or
decayed trees and were thus included in measurements [58].

Table 1. Descriptive statistics for Petawawa Research Forest inventory data used for FVS1 model
tree-list construction (n = 75; brackets indicate the second smallest value).

Forest Stand Attribute Average Min Max Standard
Deviation

BA_dist (m2/ha) 28.79 1.85 59.98 13.43
BA_dist Medium and above

sawlogs (m2/ha) 10.00 0 (1.87) 49.30 12.25

BA_dist Small sawlogs (m2/ha) 6.49 0 (0.87) 20.48 5.74
BA_dist Polewoods (m2/ha) 6.43 0 (0.40) 20.67 5.34

BA_dist Saplings (m2/ha) 5.86 0 (0.19) 19.54 4.26
SD (stems/ha) 810.45 32 1936 415.40

SDD Medium and above
sawlogs (stems/ha) 50.13 0 (16) 208 56.06

SDD Small sawlogs (stems/ha) 83.20 0 (16) 256 72.17
SDD Polewoods (stems/ha) 188.37 0 (16) 704 161.64

SDD Saplings (stems/ha) 488.75 0 (16) 1936 365.77

2.5. LiDAR Data Collection and Processing

LiDAR data were collected by Leading Edge Geomatics (Oromocto, NB) on 17–20 August 2012
using the Riegl Q680i sensor with a horizontal accuracy of ~0.18 m RMSE over an average flying height
of 725 m a.g.l. The sensor collected data in the shortwave infrared (SWIR; 1550 nm) and possessed an
average sampling density of 11.9 pulses/m2. The LiDAR data were first height-normalized using the
vendor-provided 0.5 m spatial resolution digital elevation model (DEM) and the open-access Fusion
software package v.3.7 [59].

A standard suite of predictive metrics describing height and intensity was generated for each
of the 75 plots using the rLiDAR package in R [60,61]. Based on all returns, metrics included the
proportion of first and all returns, percentiles, statistical descriptors of central tendency for height
and intensity (e.g., mean, mode), spread (e.g., skewness, kurtosis), and descriptors of canopy versus
non-canopy hits. Intensity-based metrics were included to enhance the potential for characterizing
SDD [14]. Typically, intensity normalization requires a priori knowledge of return-scale observed
range [14,62]. Although intensity could not be normalized as range information was not provided by
the vendor, previous studies have suggested non-normalized intensity metrics may be useful predictors
in modelling SDD [14], although normalization could improve predictive accuracy ([63,64] as cited
in [14]). Following the recommendation of White et al. (2013) [11], all metrics were generated using
a 1.37 m minimum height threshold (i.e., the minht parameter). Returns below this threshold were
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excluded. A minimum canopy threshold of 2 m was also set to represent the lower portion of the
canopy for canopy-specific metrics (i.e., the above parameter; [65]).

2.6. Growth Modelling

2.6.1. SDD, SD, and BA_dist Prediction

Individual tree measurements of DBH were placed into discrete size classes (i.e., SDD), similar to
the operational forest management classes as outlined in Shang et al. (2017) [14] (Table 2). Prediction
within these size classes provides relevant harvesting information to inform forest management
strategies. The large and extra-large sawlog classes were grouped into a ‘medium and above’ class to
better represent the low relative total BA_dist in these size classes; these classes are generally reserved
for more productive forests [66].

Table 2. Diameter Class Bins.

Minimum Value DBH (cm) Diameter Class

8.00 Sapling
17.01 Polewood
26.01 Small Sawlog
38.01 Medium and above Sawlog

We then calculated individual tree BA (m2/ha) by converting measures of DBH (modified from [67];
Equation (1); S1).

Basal Area = ((πDBH2)/40,000)/0.0625, (1)

Observed BA_dist was calculated by aggregating individual tree BA to the appropriate size classes.
The R package randomForest [40,68] was used to predict SDD, SD, and BA_dist, based on the

predictor variables derived from LiDAR. RF iteratively and randomly samples variables to create a
large group (i.e., forest) of classification and regression trees (CARTs) [25]. Metrics that did not correlate
(−0.70 < R >0.70) with other selected metrics were selected for input into final BA_dist models. RF has
its own internal measure of validation, referred to as the out-of-bag (OOB) error rate. This is applied by
running samples originally left out of the tree, i.e., the OOB samples, and evaluating the accuracy [69].
The two user-defined parameters in RF, mtry (i.e., the number of predictor variables to try) and ntree
(i.e., the number of RFs to run), was set to 1/3 and 500, respectively.

2.6.2. Constructing Tree Lists

Following RF predictions, we could now construct tree lists (Figure 2). Average DBH for FVS2
and FVS3 was first calculated (Equations (2) and (3), S1):

Average DBH at size-class level =
√

(((BA_distPRED/SDDPRED)*40,000)/π), (2)

Average DBH at plot level =
√

(((BA_distPRED/SDPRED)*40,000)/π), (3)

We also used the size-class specific predicted SDD (scaled by plot radius, i.e., 0.0625 ha, to represent
per-plot tree list counts) as the number of trees for FVS2 and FVS3. At the plot level, we used scaled
SD to populate tree lists.

Because constructing tree lists using this method sometimes resulted in unrealistic values, we tested
an approach using the estimated median DBH in each size class and removed SDD to test enhancements
in model estimates (i.e., FVS3-2). For instance, the range of DBH in the sapling size class is from
8–17 cm. Thus, the mid-range value of 12.5 cm was used. Accordingly, a value of 21.5 cm was used
for polewoods, and 32 cm for small sawlogs. For medium and above sawlogs (i.e., stems greater
than 38 cm), the upper reference value was set to the Ontario-specific upper limit of large sawlogs
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(i.e., 60 cm, [66]). Thus, DBH was set to 49 cm. For plot-level comparisons, a midrange value of 34 cm
(i.e., the median between 8 cm and 60 cm) was used. To obtain the stem count for the tree lists, we used
our predictions of BA_dist along with these median values, converted to individual-BA (Equation (4)):

Number of stems = (BA_dist)/(mid-range individual-tree BA), (4)
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Tree lists additionally required species types associated with each stem. The first two models
(i.e., FVS1 and FVS2) used measures of inventory-derived species abundance in addition to average
DBH predicted from BA_dist/SDD/SD. To apply species abundance on an individual tree basis for FVS2,
we simply multiplied an individual species’ abundance by the total number of stems in a given class.

FVS3 and FVS3-2 used species abundance estimated from FRI data, which estimate species in
10 percent increments from trained forest managers’ photo-interpretation of high-resolution imagery.
Where forest plots intersected multiple FRI polygons, an average abundance was calculated. Two
additional plots had over 90% of the area in one respective polygon, thus the species abundance for
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that polygon was used. Individual tree species were assigned by multiplying the individual species’
abundance by the total number of stems in that class.

2.6.3. Parameterizing Growth Scenarios

There were two alternative ways to construct the LiDAR-based plot-level G&Y models. Firstly,
average-DBH tree lists were constructed based on the results of LiDAR predictions for SD and BA_dist
at the plot level (i.e., FVS2, FVS3, or FVS3-2 Average). An additional method using the aggregate of
size-class level tree lists was applied to build a second iteration of the plot-level models (i.e., FVS2,
FVS3, or FVS3-2 Aggregate).

FVSOntario estimates mortality using internal model logic, however, this often resulted in sudden
tree die-off when using high predictions of SDD from LiDAR-based models. The model may
alternatively be parameterized with user-defined mortality. We first used a constant annual mortality
rate of 40% based on volume estimates, henceforth referred to as the constant mortality rate [70]. We
also tested mortality based on the net difference in stem count from the 2012/2016 inventory data,
where the net difference in all stems for a given species is representative of that species’ mortality rate.
Although there was a potential of stems appearing in 2016 that were not large enough to be included
in inventory in 2012, we found no instance of this scenario anywhere in the inventory data. Thus, we
used a species-specific annual mortality rate for the five most dominant species and an average of
these mortalities (weighted by the number of stems) for subsequent species. Based on these inventory
stem count changes, species-specific mortality was 1.8% P. strobus, 1.5% P. glauca, 3.5% A. balsamea,
0.3% P. resinosa, 0.5% Q. rubra, and approximate average mortality of 1.5% applied to all other species.
Projections were run for nine years on a yearly interval using separate initializations for both the
constant and species-specific mortalities. Table 3 outlines the names and data used for the plot-level
model and Figure 3 summarizes the overall construction of each FVS model.

Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 28 

 

FVS3 
FVS3 Aggregate 

(constant 
mortality) 

BA_dist; SD  FRI data Aggregate Constant  

FVS3 
FVS3 Aggregate 
(species-specific 

mortality) 
BA_dist; SD FRI data Aggregate 

Species-
specific 

FVS3-2 
FVS3-2 Average 

(constant 
mortality) 

BA_dist; SD FRI data Average Constant 

FVS3-2 
FVS3-2 Average 
(species-specific 

mortality) 
BA_dist; SD  FRI data Average 

Species-
specific 

FVS3-2 
FVS3-2 Aggregate 

(constant 
mortality) 

BA_dist; SD  FRI data Aggregate Constant  

FVS3-2 
FVS3-2 Aggregate 
(species-specific 

mortality) 
BA_dist; SD FRI data Aggregate 

Species-
specific 

2016 
validation 

2016 validation N/A; 2016 
inventory data 

2016 inventory 
data 

N/A N/A 

 

Figure 3. An overview of FVS models and parameterizations used. 

2.7. Accuracy Assessments 

RF-based predictions of SD, SDD, and BA_dist were evaluated based on the cross-validation 
coefficient of determination (R2), R, RMSE, rRMSE, sRMSD, bias, and the Balanced Error Index (BEI, 
[14], S2) compared to inventory-based measures. Negative values of bias indicate an underestimation 
of the LiDAR-based models compared to inventory measurements, and positive values indicate 
overestimation. Ten-fold cross-validation was applied to assess accuracy using the randomForest rfcv 
function in R [69] due to low sample size (n = 75; see similar approaches in plot sizes of 54, [16]; 115, 
[24]; 144, [71]). A cross-validation RMSE (RMSEcv) was calculated based on the average error from each 
repeated test to determine model stability (i.e., overfitting), where a close agreement between RMSE 
and RMSEcv would indicate minimal overfitting and good predictive performance [72]. An external 

Figure 3. An overview of FVS models and parameterizations used.



Remote Sens. 2020, 12, 201 10 of 29

Table 3. Summary of FVS models.

Overall Model Name of Model
LiDAR Variables Used

for Tree List
Construction

Species Data Used for
Tree List Construction

Aggregate or Average?
(Plot-Level

LiDAR-Based Only)
Mortality Rate Applied

FVS1 FVS1 at 2012 N/A; 2012 inventory data 2012 inventory data N/A N/A
FVS1 FVS1-projected (constant mortality) N/A; 2012 inventory data 2012 inventory data N/A Constant
FVS1 FVS1-projected (species-specific mortality) N/A; 2012 inventory data 2012 inventory data N/A Species-specific

FVS2/2021 validation FVS2 Average (constant mortality) BA_dist; SD 2012 inventory data Average Constant
FVS2/2021 validation FVS2 Average (species-specific mortality) BA_dist; SD 2012 inventory data Average Species-specific
FVS2/2021 validation FVS2 Aggregate (constant mortality) BA_dist; SD 2012 inventory data Aggregate Constant
FVS2/2021 validation FVS2 Aggregate (species-specific mortality) BA_dist; SD 2012 inventory data Aggregate Species-specific

FVS3 FVS3 Average (constant mortality) BA_dist; SD FRI data Average Constant
FVS3 FVS3 Average (species-specific mortality) BA_dist; SD FRI data Average Species-specific
FVS3 FVS3 Aggregate (constant mortality) BA_dist; SD FRI data Aggregate Constant
FVS3 FVS3 Aggregate (species-specific mortality) BA_dist; SD FRI data Aggregate Species-specific

FVS3-2 FVS3-2 Average (constant mortality) BA_dist; SD FRI data Average Constant
FVS3-2 FVS3-2 Average (species-specific mortality) BA_dist; SD FRI data Average Species-specific
FVS3-2 FVS3-2 Aggregate (constant mortality) BA_dist; SD FRI data Aggregate Constant
FVS3-2 FVS3-2 Aggregate (species-specific mortality) BA_dist; SD FRI data Aggregate Species-specific

2016 validation 2016 validation N/A; 2016 inventory data 2016 inventory data N/A N/A
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2.7. Accuracy Assessments

RF-based predictions of SD, SDD, and BA_dist were evaluated based on the cross-validation
coefficient of determination (R2), R, RMSE, rRMSE, sRMSD, bias, and the Balanced Error Index (BEI, [14],
S2) compared to inventory-based measures. Negative values of bias indicate an underestimation
of the LiDAR-based models compared to inventory measurements, and positive values indicate
overestimation. Ten-fold cross-validation was applied to assess accuracy using the randomForest rfcv
function in R [69] due to low sample size (n = 75; see similar approaches in plot sizes of 54, [16]; 115, [24];
144, [71]). A cross-validation RMSE (RMSEcv) was calculated based on the average error from each
repeated test to determine model stability (i.e., overfitting), where a close agreement between RMSE
and RMSEcv would indicate minimal overfitting and good predictive performance [72]. An external
measure of R2 (R2

cv) was generated using cross-validation results. BEI was used to assess an overall
goodness-of-fit of SDD models, where values closer to 0 represent a better fit, while values closer to 1
signify a poor fit.

G&Y models were validated using the regression-based equivalence test, i.e., the Robinson test (R
package equivalence, [41]) and the graphical procedures and functions by Fekety (2019) [73]. This test is
valid for non-parametric distributions given its bootstrap design, which builds confidence intervals (CIs)
by estimating the coverage probability of the intervals [41]. Additionally, initial validation of carbon
accumulation and carbon stock using a non-parametric analysis of variance (ANOVA; i.e., a Friedman
test) could not reject the null hypothesis of similar groups for LiDAR models to inventory data for
certain size classes with low sample size (i.e., n). Visualization of the projections showed a large
spread of values, strongly suggesting the groups were dissimilar and that the test power was not
high enough (e.g., perhaps due to inadequate sample size). Furthermore, recent LiDAR-based forest
attribute studies have used the Robinson test as an indicator of model performance (e.g., [5,74–76]).
The test was used to evaluate the null hypothesis of dissimilar slopes (i.e., proportionality; if model
predictions are equivalent to the validation data, the regression will have a slope approaching 1) and
intercept (i.e., model bias). The test region of equivalence was set to ±25% of the mean intercept and
±25% for slope; the null hypothesis of dissimilarity being rejected if the resulting slope and intercept
contain two joint one-sided 95% CIs at a level of α = 0.05 [73].

Firstly, for the year 2012, carbon stocks from the LiDAR-based models (i.e., FVS2, FVS3, FVS3-2)
were validated with inventory-derived carbon stocks (i.e., FVS1). In 2016, carbon stock projections
(i.e., FVS1-projected, FVS2, FVS3, FVS3-2) were validated to 2016 inventory data following the approach
of Gough et al. (2008) [77]. Carbon accumulation from 2012–2016 was evaluated using constant and
species-specific mortality rates. To determine the sensitivity of using FRI-based species abundance,
we also evaluated carbon stock equivalency between FVS2 and FVS3 in 2012, 2016, and 2021, and
similarly for 2012–2016 and 2012–2021 accumulation. G&Y model predictions for 2012 and 2016 were
then also compared using RMSE, rRMSE, sRMSD, R, and percent bias. We evaluated the G&Y model
predictions by forest type to investigate whether carbon accumulation and stocks were better predicted
in certain forest conditions (e.g., less structural complexity). Thus, predictions were blocked according
to forest types common in Ontario and which there were sufficient data across PRF, including red and
white pine (PIN; n = 34), conifer upland (CU; n = 8), conifer lowland (CL; n = 4), mixedwood (MX;
n = 9), intolerant hardwood (i.e., poplar and white birch; INT; n = 6) or tolerant hardwood (THW;
n = 14 [78]). Figure 4 summarizes these evaluation measures.
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All statistical analyses were performed using the R programming environment (v.3.5.0) [61]; with
scripts coded in the Sublime Text environment (v.3.1.1) [79] and sent to the R executable using the
R-Box extension (v.1) [80]. An example walkthrough of the modeling process is available in S3.

3. Results

3.1. Deriving Tree Lists

Differences between RMSE and RMSEcv were small, indicating the SDD, SD, and BA_dist models
were stable (Table 4). BA_dist was predicted with moderate accuracy, with plot-level predictions and
medium and above sawlogs having the highest predictive accuracy in the model validation. rRMSE
was lower for BA_dist than SDD/SD, indicating that BA_dist was better predicted relative to the
mean value. However, both predictions had higher sRMSD (i.e., higher standard deviations of errors).
In general, BEI was high, i.e., 0.84, 0.67, 0.34, 0.75, 0.76, and 0.64, for PIN, THW, INT, CU, CL, and MX,
respectively (0.73 averaged over the four size classes). Observed and predicted values of BA_dist and
SD/SDD by forest type are presented in Figures 5 and 6 respectively.

Table 4. Overall accuracy measures for SDD, SD, and BA_dist predicted values. Mean observed value
can be found in Table 1.

Size Class RMSE RMSEcv rRMSE sRMSD Pseudo-R2 R2 cv R Bias (%) Mean

BA_dist (m2/ha) 8.52 8.32 0.29 0.62 0.60 0.62 0.79 0.80 28.39
BA_dist Saplings (m2/ha) 3.85 3.79 0.65 0.89 0.17 0.19 0.45 −0.70 5.90

BA_dist Polewoods (m2/ha) 4.28 4.20 0.65 0.79 0.35 0.37 0.64 2.99 6.66
BA_dist Small Sawlogs (m2/ha) 4.69 4.79 0.74 0.83 0.32 0.29 0.55 2.78 6.64

BA_dist Medium and above
Sawlogs (m2/ha) 2.16 2.08 0.66 0.59 0.62 0.65 0.81 1.14 10.01

SD (stems/ha) 365.02 350.43 0.43 0.84 0.22 0.28 0.40 1.58 823.25
SDD Saplings (stems/ha) 301.18 302.45 0.62 0.82 0.33 0.32 0.19 0.19 489.69

SDD Polewoods (stems/ha) 143.39 143.79 0.76 0.88 0.18 0.21 0.39 3.32 194.63
SDD Small Sawlogs (stems/ha) 59.08 59.09 0.72 0.83 0.33 0.33 0.59 3.36 85.99

SDD Medium and above
sawlogs (stems/ha) 34.52 33.22 0.66 0.59 0.62 0.67 0.81 0.93 50.60
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We omitted the FVS3-2 model from the further discussion due to poor results. To investigate
LiDAR-projected carbon accumulation values compared to FVS1 projections, additional comparisons
were made to FVS1 for both carbon stocks and accumulation at the plot and size-class level to investigate
any statistical equivalence; none of the models showed a statistical equivalence of proportionality
(p > 0.05) for either mortality rate, although some had equivalent means. Additional comparisons were
made for carbon accumulation. Interestingly, while we did find that the means yielded equivalent
results at both mortality rates, proportionality remained underpredicted by the LiDAR-based models.

3.2. G&Y Modelling for Carbon Stocks at Model Initialization and Four-Year Projection

When compared to initial (2012) validation carbon stocks (i.e., FVS1 initialization), we found low
correlation across all plot-level models and generally high deviations from the mean and spread of
variation (Table 5). The plot-level model with the highest correlation was FVS3 aggregate (R = 0.16),
slightly higher than the FVS2 aggregate equivalent (R = 0.12); this stayed relatively consistent when
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projected to 2016. LiDAR-initialized models generally had a low bias, while aggregate and average
models had similar bias across inventory versus FRI species models.

Table 5. Measures of accuracy and precision for initial carbon stocks in plot-level models compared to
in-situ carbon stocks for year 2012 (All forest types). Carbon stock values for 2016 appear in brackets,
with constant and species-specific mortality, respectively. Mean observed values were 30.49, 33.40 for
2012 and 2016, respectively. This table represents values for Figures 7 and 8.

Model RMSE rRMSE sRMSD R Bias (%) Mean

FVS1 N/A (2.88; 3.32) N/A (0.09; 0.10) N/A (0.17; 0.19) N/A (0.99; 0.98) N/A (2.86; −2.45) 30.49 (33.40; 31.67)
FVS2 Aggregate 23.18 (23.36; 22.83) 0.76 (0.72; 0.70) 1.37 (1.35; 1.32) 0.12 (0.11; 0.11) 4.84 (6.71; 2.05) 31.97 (34.65; 33.12 )
FVS2 Average 20.34 (20.58; 20.32) 0.67 (0.63; 0.66) 1.20 (1.19; 1.18) −0.01 (0.01; 0.01) −0.30 (3.13; −1.41) 30.40 (33.48; 32.01)

FVS3 Aggregate 23.44 (23.72; 22.96) 0.77 (0.73; 0.70) 1.39 (1.37; 1.33) 0.16 (0.15; 0.16) 7.89 (9.98; 5.68) 32.90 (35.71; 34.31)
FVS3 Average 20.60 (20.91; 20.46) 0.68 (0.64; 0.63) 1.22 (1.21; 1.19) −0.02 (0.01; 0.01) 0.07 (3.91; −0.29) 30.52 (33.74; 32.37)

The equivalent FVS average models were not correlated for 2012 or 2016. None of the models were
proportionally equivalent to inventory carbon stocks but were statistically unbiased. FVS2 and FVS3
aggregate models had high heteroscedasticity in observed versus predicted values (Figure 7), becoming
increasingly variable at higher carbon stocks; this did not stabilize in 2016 (Figure 8). FVS1-projected
was statistically equivalent to inventory measures of carbon stocks for 2016 for bias and proportionality
at both constant and species-specific mortality rates (R = 0.99, 0.98, respectively). There was no
statistical difference between projected values of carbon stock in 2016 for either mortality scenarios for
LiDAR-initialized models, referring to the range of CIs within proportionality.
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At a size-class level, projections varied widely across both years (Table 6). None of the LiDAR-
initialized size-class models were proportionally equivalent to the inventory carbon stocks for either
year and were generally highly skewed from the mean and had a high spread of variance; models
remained stable in 2016. Mortality rates had negligible effects on the overall model accuracy and bias.
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FVS1 was equivalent in both bias and proportionality to 2016 inventory carbon stocks, except
for the polewood size class at constant mortality where proportionality was closer to the 0.0−0.3
range (i.e., consistently underpredicting) where a value of 0.75 is the minimum CI range considered
equivalent. FVS1 saplings at both mortality rates were proportionally equivalent but not equivalent
in bias.

On a forest-type level, there were some variances in correlation in 2012, especially for the CU
group (n = 8; R = 0.70 for FVS2 Aggregate; R = 0.76 for FVS3 aggregate). Generally, groups were
consistent with overall results, with a high spread of variation that ranged from rRMSE = 0.39 for
FVS3 aggregate in the INT group (n = 6), to 2.42 in the FVS2 aggregate CL group (n = 9). For 2016,
these correlations remained relatively consistent (CU FV2 aggregate R = 0.73 at constant mortality;
FVS3 aggregate R = 0.79 at both mortality rates). For size classes, forest types still had high deviations
from observed values at both years. Carbon stocks for CU medium and above sawlogs had a moderate
correlation with inventory data for both inventory and photo-interpreted (FRI) species models in 2012
(R = 0.42, 0.43, respectively), however, these values were extremely far from the observed mean and
had a high spread of variance (rRMSEmax = 12.91; sRMSDmax = 6.77). THW small sawlogs had similar
correlations (i.e., R = 0.37 and 0.34, for FVS2 and FVS3, respectively), with lower deviations from
the mean and lower spread of variance (rRMSEmax = 0.83; sRMSD%max = 1.01). INT saplings had
a higher correlation for FVS3 at R = 0.57, and had a similar trend in mean and spread of variation,
at rRMSE = 0.94 and sRMSD = 2.88.



Remote Sens. 2020, 12, 201 16 of 29

Table 6. Measures of accuracy and precision for initial carbon stocks in size-class level models compared to in-situ carbon stocks for the year 2012. Carbon stock values
for 2016 appear in brackets, with constant and species-specific mortality, respectively. The means of observed values for 2012 are represented in the FVS1 column. For
2016, inventory stocks were observed to be 13.34, 7.88, 6.08, and 5.02 tons/ha, for medium and above sawlogs, small sawlogs, polewoods, and saplings, respectively.

Model RMSE rRMSE sRMSD R Bias (%) Mean

FVS1 Medium and
above Sawlogs N/A (1.36; 1.78) N/A (0.10; 0.13) N/A (0.08; 0.11) N/A (0.99; 0.99) N/A (0.23; −4.06) 12.77(13.47; 12.80)

FVS2 Medium and
above Sawlogs 23.24 (23.72; 23.36) 1.82 (1.78; 1.75) 1.47 (1.42; 1.40) 0.00 (0.02; 0.01) 1.63 (1.16; −3.08) 12.98(13.50; 12.93)

FVS3 Medium and
above Sawlogs 22.50 (22.98; 22.62) 1.76 (1.72; 1.69) 1.42 (1.38; 1.35) 0.01 (0.05; 0.05) 3.15 (2.85; −0.89) 13.17(14.35; 13.23)

FVS1 Small Sawlogs N/A (1.73; 1.80) N/A (0.22; 0.23) N/A (0.22; 0.23) N/A (0.98; 0.97) N/A (1.93; −2.13) 7.39(8.03; 7.71)
FVS2 Small Sawlogs 8.92 (9.94; 9.21) 1.21 (1.19; 1.17) 1.23 (1.22; 1.20) −0.01 (0.00; 0.07) −2.67 (−4.43; 3.35) 7.19(7.91; 7.53)
FVS3 Small Sawlogs 8.95 (9.44; 9.28) 1.21 (1.20; 1.18) 1.23 (1.21; 1.26) 0.06 (0.07; 0.07) −0.34 (3.35; −0.58) 7.36(8.15; 7.84)

FVS1 Polewoods N/A (1.86; 1.41) N/A (0.30; 0.23) N/A (0.35; 0.26) N/A (0.94; 0.96) N/A (−0.62; −2.16) 5.66(6.18; 6.09)
FVS2 Polewoods 5.76 (6.38; 6.20) 1.01 (1.03; 1.00) 1.20 (1.19; 1.16) 0.04 (0.04; 0.04) 19.74 (25.12; 19.23) 6.78(7.78; 7.42)
FVS3 Polewoods 5.71 (6.37; 6.21) 1.01 (1.02; 1.00) 1.19 (1.19; 1.16) 0.07 (0.07; 0.07) 22.03 (28.25; 23.06) 6.90(7.98; 7.66)

FVS1 Saplings N/A (1.65; 1.35) N/A (0.33; 0.27) N/A (0.41; 0.34) N/A (0.97; 0.98) N/A (23.82; 18.05) 4.36(6.21; 5.92)
FVS2 Saplings 3.98 (4.94; 4.78) 0.91 (0.99; 0.98) 1.24 (1.24; 1.20) −0.07 (−0.04; −0.03) 14.14 (35.81; 29.80) 4.97(6.81; 6.51)
FVS3 Saplings 4.16 (5.50; 5.30) 0.95 (1.10; 1.06) 1.29 (1.38; 1.34) 0.11 (0.12; 0.12) 19.95 (43.54; 37.93) 5.23(7.20; 6.92)
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3.3. G&Y Modelling of Carbon Accumulation (2012 to 2016)

Carbon accumulation predictions were highly biased and had high rRMSEs and sRMSDs (Table 7).
In contrast to carbon stock projections, carbon accumulation was not statistically equivalent for
the baseline FVS1-projected model for either bias or proportionality to measured inventory-based
accumulation at either mortality rate, where a constant mortality rate generally overpredicted, and a
species-specific mortality rate underpredicted mean accumulation (Figure 9).

Table 7. Measures of accuracy and precision for carbon accumulation in plot-level models compared to
2016−2012 inventory-based accumulation. Species-specific mortality values follow in brackets (All
forest types). Mean observed carbon accumulation was 1.97 tons/ha/yr.

Model RMSE rRMSE sRMSD R Bias (%) Mean

FVS1-Projected 2.88 (3.32) 1.46 (1.68) 1.11 (1.28) 0.15 (0.17) 47.09 (−40.27) 2.90(1.18)
FVS2 Aggregate 2.89 (2.99) 1.46 (1.51) 1.11 (1.15) 0.06 (0.17) 35.61 (−41.08) 2.68(1.16)
FVS2 Average 2.85 (2.59) 1.44 (1.31) 1.10 (1.00) 0.13 (0.26) 56.15 (−18.65) 3.22(1.61)

FVS3 Aggregate 2.92 (2.88) 1.48 (1.46) 1.13 (1.11) 0.05 (0.19) 42.30 (−28.44) 2.81(1.41)
FVS3 Average 2.97 (2.65) 1.51 (1.34) 1.15 (1.02) 0.07 (0.18) 63.18 (−5.95) 3.22(1.86)
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Figure 9. Results of bootstrapped equivalence tests of carbon accumulation across model types (constant
mortality). Grey area represents the validation mean region of equivalence (95% confidence interval)
for bias (i.e., whether observed and predicted means are equivalent), and a one-to-one line for the test
of proportionality, while the black bars represent the range of the confidence interval outputted by the
bootstrapped test. To be considered equivalent, the black bars must be completely contained within the
equivalence region. Quantitative results are presented in Table 7.

Correlation between LiDAR-initialized model values and inventory rates were comparable to
2012/2016 carbon stock projections (e.g., 2012 FVS2 aggregate R = 0.16; 2016 R = 0.11; accumulation
constant mortality R = 0.13, species-specific mortality = 0.17), with comparable spreads of variation
(i.e., sRMSD), however, predictions were considerably higher than the observed means (i.e., higher
rRMSE). Compared to predictions of carbon stock, accumulation predictions were either largely
systematically over or under-predicted. Accumulation appeared consistent across both FVS1 and
LiDAR-initialized models, with the exception of a few outliers for FVS1 (Figure 10).

At the size-class level, none of the models were proportionally equivalent to inventory-based
accumulation, although some models were statistically equivalent to the mean (i.e., the models were
equivalent in bias). RMSE was still high for all groups, although some models had high correlations
and similar distributions of values visually.

On a forest type level, some incremental improvements in correlation and error were observed,
while some models were several orders of magnitude under- or over-predicted versus the mean
observation. Specifically, the accumulation from INTconstant, CLconstant, and CLspecies-specific forest types
all had rRMSEs greater than±5.00. The strongest predictions were for the PIN type, with the FVS1 mean
approaching an rRMSE of 0.78 for constant mortality and 1.01 for species-specific mortality, comparable
to 0.78 for the FVS3 aggregate constant mortality model, and 0.88 for the species-specific model; bias
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was generally positive for constant mortality (FVS1 bias = 15.5%) and negative for species-specific
mortality (FVS1 bias = −41.13%).
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3.4. Influence of Species Designation on Carbon Stock Predictions

At the plot-level, FVS2 was statistically equivalent to FVS3 for 2012, 2016, and a nine-year
projection at both mortality rates, shown here for FVS2 average at constant mortality (Figure 11, S4).
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At the size-class level, predictions were more varied. Medium and above sawlogs were not
equivalent in proportionality (p > 0.05) for 2012, 2016, or 2021, however, they were equivalent in bias
for both years. In contrast, small sawlogs and polewoods were found to be equivalent in bias and
proportionality in all three years at both mortality rates for FVS2 to FVS3 equivalent models. Testing
constant mortality, carbon stock projections grouped by forest types held equivalency for 2016 except
for the INT and MX types. We did not test by size class due to the insufficient number of plots needed
to perform a meaningful statistical equivalence test.

3.5. Influence of Species Designation on Carbon Accumulation Predictions

Carbon accumulation was generally not equivalent when compared between LiDAR-initialized
models at the plot level. FVS2 aggregate models were equivalent to FVS3 aggregate models at the
constant mortality level for 2016 and 2021, but not for species-specific mortality. Similar trends were
observed at the size class level. Medium and above size class accumulation rates were equivalent
for 2016 and 2021 for constant mortality, but were not equivalent for species-specific mortality, while
saplings were not equivalent at either rate at either year. Small sawlogs and polewoods were equivalent
at both years in both bias and proportionality for constant mortality, but not for species-specific
mortality. Accumulation by forest type (i.e., PIN, THW, INT, CU/CL, MX) did not retain proportional
equivalency for constant mortality for 2016 and thus was not examined for 2021.

4. Discussion

To the best of the authors’ knowledge, no study has projected carbon accumulation in mixed
temperate stands using local G&Y models from LiDAR-initialized tree lists and photo-interpreted
species abundance data. We determined the utility of LiDAR-initialized G&Y models to improve
estimates of carbon accumulation and carbon stocks in an understudied mixedwood temperate forest
compared to projections using inventory data. We also sought to understand the importance of
precise species abundance data on predictions of carbon accumulation and carbon stock using a
locally-tailored model.

Equivalence testing indicated that neither FVS2- nor FVS3-based carbon accumulation or carbon
stocks at any size class and at the plot level were equivalent to inventory-initialized estimates at
a four and nine-year projection, emphasizing the difficulty in parameterizing models for complex
temperate forests with moderate-to-poor SDD/SD and BA_dist predictions. Inventory-based FVS1
predictions were equivalent for carbon stocks, but failed to maintain equivalency for 2012−2016
accumulation compared with validation data, signifying that accumulation is more sensitive to precise
parameterization than carbon stocks. A key finding was that FVS2 and FVS3 (i.e., inventory-based
measures of species abundance and photo-interpreted species, respectively) were equivalent for most
size classes and at the plot level (p < 0.05). They were also generally equivalent when examined at a forest
type level for carbon stocks, but not for accumulation. This finding suggests that predictions of species
abundance from LiDAR (e.g., [5,81]) may possibly be replaced in studies where photo-interpreted
estimates are available for the purpose of improving carbon stock estimates and broad accumulation
estimates. Testing mortality rates showed that the constant mortality rate was more effective due to the
high variability that species-specific rates caused, especially for photo-interpreted parameterization.
Furthermore, these data are spatially-explicit and can be used in conjunction with LiDAR data to
initialize tree-lists and map carbon accumulation at the forest level.

4.1. Assessment of BA_dist, SDD, and SD Attribute Predictions

Model predictions of BA_dist were better than SDD and SD predictions. Results were favourable in
comparison to other studies that predicted BA_dist from LiDAR in similar forest types; i.e., Spriggs et al.
(2017) [18] reported an rRMSE of 22% and 33% in sugar maple and mixedwood plots, respectively
(plot size = 2500 m2), Vauhkonen & Mehtätalo (2014) [82] reported an rRMSE of 13–68% (Scots Pine
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plantations; plot size = 400 m2), Lamb et al. (2017) [83] reported an rRMSE of 36.6% in spruce
plantations; compared to 29% in this study.

Falkowski et al. (2010) [5] used a k-NN/RF imputation approach to predict SDD/SD and BA_dist
in a conifer-dominated forest, achieving a correlation of 0.88, considerably higher than our findings
(R = 0.62), while their best-performing SD model performing similarly to ours (R = 0.29; R = 0.28,
respectively). Our small trees had lower correlations compared to their best sapling model (R = 0.49,
compared to R = 0.32 in this study) although our definition of sapling was more constrained (i.e., 8–17 cm
DBH, versus 8–18 cm). Although not evaluated in this study, they also reported that none of the
measured forest inventory variables, including total BA_dist and SD, were proportionally equivalent
to validation data at the ±20% equivalence level (p < 0.05). Spriggs et al. (2017) [18] discussed the
difficulty in predicting smaller stems, particularly in closed canopies where understory returns are
limited. Hudak et al. (2008) [25] reported a high correlation (R = 0.80) for BA_dist in a similar mixed
conifer forest, comparable to the results reported here (R = 0.79). Using an ITC approach, Lindberg et al.
(2010) [84] achieved rRMSEs of 37% for SD in a mixedwood forest, close to the 43% reported here,
while Vauhkonen and Mehtätalo (2014) [82] reported an rRMSE of 27.6% for SD.

RF is a common non-parametric algorithm used in forestry attribute prediction [75]. The challenge
encountered in this study was the difficulty in accurately predicting SDD and BA_dist values when
there was an absence of trees for a given size class. This was most pronounced for medium and above
trees across all forest types resulting in an over-prediction of carbon stock values for a considerable
proportion of plots. Here, we saw a consistent bias in our observed and predicted values, where a
considerable number of plots had no medium or above diameter trees, but the RF model for BA_dist
and SDD predicted the presence of trees. This could be due to the inherent characteristic of RF to
average predicted values, where a prediction of zero is unlikely in RF regression trees. Shang et al.
(2016) [85] suggested that in attribute prediction, larger size classes could be pooled together to improve
model performance of SDD predictions. Following this directive, sRMSD for medium and above size
classes was 59%, considerably lower than the sRMSD reported for their 38–50, 50–62, and 62 and above
size classes (sRMSD = 78, 80, and 89%, respectively). However, we found that following this protocol
ultimately did not translate to statistically equivalent measures of carbon stock or accumulation to
inventory data.

The SDD model selected intensity metrics for smaller size classes, and height-based metrics for
larger size classes. In similar studies where intensity metrics have been used, they have also been
selected as important for smaller size classes [14]. Although intensity helped in predicting these small
size classes (as measured by %IncMSE), it ultimately did not lead to proportional equivalency for
carbon stocks or accumulation. Conversely for BA_dist, only height variables were selected and still
resulted in a considerable decrease in G&Y model accuracy (i.e., FVS3-2).

4.2. Assessment of G&Y Models

Again, to our knowledge no studies have forecasted carbon accumulation using a predicted
average-DBH tree list from LiDAR. Some studies have compared remeasurement data from repeat
LiDAR surveys to derive carbon accumulation; Hudak et al. (2012) [76] used repeat LiDAR
surveys to quantify carbon accumulation over a six-year period by subtracting LiDAR-predicted
biomass, and Økseter et al. (2015) [86] used similar techniques for an 11-year period. In general,
our LiDAR-initialized models projecting carbon stock were not equivalent to the inventory stocks
in proportionality, regardless of the type of plot-level tree list initialization (i.e., using plot-level SD
and BA_dist, or using an aggregated list from size-class level predictions) or whether looking at the
size-class level. However, aggregate models had a consistently higher spread of values and a consistent
underprediction of larger carbon stock plots than average models. Accumulation was more sensitive;
our LiDAR-initialized models consistently over- or under-reporting accumulation rates, indicating
mortality was not ideally parameterized and should be more carefully considered. Perhaps the addition
of an ‘average’ rate could have improved the mean accumulation results. Since results were similar
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regardless of species abundance data used and regardless of mortality, it implies that further refinement
is needed in creating accurate DBH for G&Y model initialization and that perhaps using a distribution
of DBH values may improve modeling results. Indeed, perhaps more information is needed that goes
beyond the ability of LiDAR to provide for carbon stocks or accumulation, and that integration of more
ancillary data is necessary, such as aerial photography, Sentinel-2 A or other remotely-sensed data to
provide stronger initial estimates of BA_dist and SD/SDD prior to G&Y modeling [87,88].

Our findings indicate an agreement of carbon stock values for FVS1 at the plot and size-class
level with validation data (except for saplings). However, none of the FVS1-projected accumulation
models were equivalent to inventory measures. Similarly, Hudak et al. (2012) [76] reported more
variability in accumulation when extracted from biomass predictions. Accumulation appeared to be in
agreement when looking at observed versus predicted values between FVS1 and LiDAR-based models,
with similar rRMSEs (e.g., rRMSEPIN = 77.8% for FVS1; 86.50% for FVS2 aggregate at constant mortality),
suggesting that some mechanistic growth patterns were consistent (Figure 6). Because our subsequent
equivalence testing indicated the models were still dissimilar proportionally, we stratified the plot-level
accumulation models by forest type to identify any consistencies with FVS1 projections, however,
this further reduced the accuracy of accumulation results from LiDAR models and means became
statistically dissimilar, in addition to the already statistically dissimilar proportionalities. Looking at
the highest deviations in plot-level accumulation across model types (Figure 6), we examined five plots
that were clear visual outliers, two of which were consistent across model types. For constant mortality,
plot number 026, an intolerant hardwood type consisting mainly of B. papyrifera, P. grandidentata, A.
rubrum, and A. saccharum had a predicted accumulation rate of 0.9 Mg/ha/yr, compared to an actual rate
of 2.24 Mg/ha/yr. For FVS1, these extreme deviations typically occurred at species-specific mortality
rates and within CU and INT groups (e.g., plot number 075 predicted 0.34 Mg/ha/yr versus −2.28
Mg/ha/yr CU; plot number 026 −0.36 Mg/ha/yr versus −2.24 Mg/ha/yr INT). Studies have previously
identified conifers as being difficult to capture with LiDAR due to the reflective properties of crowns,
however, these inaccuracies were also present in the inventory model [18]. Given that these outliers
were generally more pronounced with species-specific mortality rates, it is likely that our models did
not parameterize ideal rates for specific hardwoods and that future consideration of mortality rate
should be more carefully reviewed.

We did not expect to see statistical equivalencies for carbon stock and accumulation
forecasts for FVS2 and FVS3 (meanFVS2STOCK2016_CONST = 33.48 tons/ha, meanFVS3STOCK2016 = 33.74
tons/ha, meanFVS2ACCUMULATION_CONST = 3.22 tons/ha/yr, meanFVS3ACCUMULATION_CONST = 3.22
tons/ha/yr).The majority of photo-interpreted species data was from 2009, with a smaller proportion
from 2014. This two-to-three-year age gap between LiDAR and species abundance data collection
suggests that the species composition played less of a role in initializing the G&Y models compared to
DBH, even for a G&Y model that includes species-specific allometric equations. This emphasizes the
need for a renewed call on accurate inputs of DBH as the primary driving factor of a more accurate
carbon accumulation forecast. We also expected less of an agreement as the model was projected into
2021, however, the LiDAR-based models still retained statistical equivalency for specific combinations;
i.e., accumulation models retained equivalency for the aggregate model with constant mortality over the
nine-year scenario, suggesting that better predictions of larger size classes influenced the consistency
of carbon accumulation predictions. We did find some discrepancies between LiDAR-based models
for certain size classes. Because saplings grow at a faster rate, we did not expect photo-interpreted
species to be proportionally equivalent as growth occurs at a faster rate for young trees, thus precise
parameterization of species would have more influence here. There was a closer agreement between
FVS2 and FVS3 at species-specific mortality for medium and above carbon stocks; however, this size
class only retained accumulation equivalency at a constant mortality rate. Because a species-specific
mortality rate coupled with an imprecise species characterization could further skew values, the use
of the constant mortality rate is preferred. Ultimately, future work could also compare the results of
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forest attribute modeling with LiDAR-derived species abundance and photo-interpreted estimates for
potential model improvement.

As species abundance is data and resource-intensive to calibrate due to the high range of
forest conditions needed to be captured [89], it may be prohibitive to initialize models based on
remotely-sensed predictions. Previous studies at PRF have attained varying levels of success in species
abundance modelling (e.g., classification accuracies of 64% P. strobus, 53.7% Q. rubra, 79% P. resinosa,
49% B. papyrifera, 79.9% A. saccharum, 33.5% A. rubrum, 51% P. glauca, Gougeon and Leckie, 2011 [90],
using an ITC approach; R = 0.69, 0.74, 0.85, 0.53, 0.73 for P. strobus, P. resinosa, P. glauca, P. betula/populus,
Acer spp., van Ewijk et al., 2014 [81], using boosted regression trees [BRTs]). Falkowski et al.
(2010) [5] found that predicting species abundance did not produce statistically equivalent results
to inventory measurements (p < 0.05), however, projections of BA_dist initialized using FVS still
followed similar trends to inventory-initialized projections. Thus, using photo-interpreted species
abundance may be preferred in complex forests where individual-tree species information is required
for G&Y model initialization and for which these data are available. Falkowski et al. (2010) [5]
also demonstrated that it may be possible to achieve statistically equivalent results of growth when
using non-inventory-equivalent predicted species abundance with BA_dist projections, rather than
estimating tree lists and explicitly projecting carbon stock values. This also suggests that the allometric
equations we used in converting diameter to carbon stock may introduce large amounts of error,
thereby requiring further refinement.

The removal of the less accurate SDD in predictions and using only BA_dist (i.e., FVS3-2) resulted
in statistically different models on average that were less effective than the combined SDD/BA_dist
plots, implying that regardless of the low SDD accuracy, it remained a key component in obtaining
more accurate tree lists. However, other attributes, such as quadratic mean diameter (QMD) could
also be used instead of SDD to further improve predictions, given that QMD has shown improved
predictions compared to SDD (e.g., [9]). Another alternative could be using a predicted distribution
of values, capturing a higher range of diameters than the mean (i.e., PDFs; Olofsson et al., 2008 [91]).
Unpublished work by van Ewijk (2015) [92] used height-diameter relationships to estimate diameters
from LiDAR-derived height distributions, albeit discovering that this characterization was not sufficient
for generating accurate tree lists for FVSOntario initialization.

Given that we had plots with negative accumulation for some years in the validation data,
we additionally tested whether the removal of negative mortality would improve model estimates
for both inventory and LiDAR-based models using a constant mortality rate. We found that this did
not make a large impact on predicted values and that both the inventory and LiDAR-based models
were still not equivalent to the validation data for 2016. This suggested that there were additional
underlying mechanisms not captured by the G&Y model.

4.3. Limitations and Future Work

Various considerations in this study may have contributed to errors that propagated throughout
the modelling effort. One limitation relates to plot size, which was relatively small (i.e., 625 m2); for
instance, Shang et al. (2016) [85] achieved a BEI of 0.49 for 400 m2 plots versus a BEI of 0.39 for 1000 m2

plots. Given our BEI of 0.73, increasing plot size may have decreased our attribute prediction error
so long as plot number is not reduced [93]. It is well-established that a larger plot would reduce the
‘edge effect’, or the difference between field-based plot and LIDAR-based characterization of trees
in the same radius (i.e., nature of the canopy captured in the point cloud). For instance, a tree right
outside the plot boundary but leaning in towards the plot would be excluded from any mention in
inventory data; however, the canopy itself would still be captured in the equivalent LiDAR return,
thereby influencing LiDAR metrics and the prediction of variables [11,84]. Because forests are complex
and the full range of forest dynamics is not yet understood, a modelling approach incorporating a
stochastic element could have generated more amenable results [94]. In addition, a larger number of
plots would have enabled us to examine more relationships between model parameterizations and
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predictive success, for instance further comparing carbon stock and accumulation by forest types at
each size-class level.

As with any modelling exercise, a variety of conditions and sensitivities may or may not be captured
to characterize the full range of effects. Our data were stratified by common forest types of Ontario
based on species abundance ranges in our data; however, stratification by NDVI, forest structural
groups, aspect, slope, elevation, etc., may have enhanced model performance [75].

While we tested for mortality across all modelling approaches, our value for species-specific
mortality rate was chosen somewhat arbitrarily based on the differences between 2012 and 2016 live
trees. Because FVSOntario had a limit of maximum stand stocking density [95], using the model-supplied
internal mortality logic would often result in a massive die-off of trees due to our sometimes-high
predictions of stems, thus we were constrained to a user-defined rate. As our defined mortalities often
resulted in either under- or over-predictions of LiDAR-based carbon stock and accumulation, it is
recognized as an important parameter. Future work should strive to improve the methodology
for selecting the most appropriate mortality rate for G&Y models especially when used with
LiDAR-initialized tree lists.

At the same time, other studies examine plantations consisting of commercial tree species,
rather than a range of dynamic conditions such as in PRF. Boisvenue et al. (2019) [96] highlight this
problem, noting that often, commercial tree species are heavily favoured in sampling, and the use of
allometric equations from a limited number of samples often leads to increased error, compounded
with the fact that the allometric equation itself may affect estimation of carbon stocks/accumulation.
PRF contains a multitude of stem sizes and classes, the smallest of which (<8 cm) were not included
in this study, partially due to the assumption that the relative total BA_dist of these trees makes
them negligible in carbon accumulation, if not for the fact that their height and relative width make
them difficult for LiDAR to capture. We set a height threshold of 1.37 m for this study, below which
returns were assumed to be ground returns and ignored in metric calculation. However, smaller
(i.e., younger) trees grow faster than large (i.e., older) trees and thus accumulate carbon at a faster
rate [88]. The exclusion of these trees in our inventory and in subsequent modelling could be a
missing component that contributes to predicted carbon accumulation (i.e., under-estimating carbon
accumulation). However, capturing the true proportion of BA_dist and SD/SDD contained within
this size class remains challenging given the lack of resources to collect during field campaigns. If a
sampled plot contains only one large tree and an abundance of <8 cm DBH trees, it is plausible that
these trees accumulate a total amount of carbon large enough for carbon accounting and reporting.
There may be a relationship between the proportion of BA_dist in <8 cm trees and canopy metrics that
can be explored in a future study to capture the fullest extent possible of the aboveground live carbon
domain. Similar work has been reported by Maltamo et al. (2004) [39], using tree height distribution as
a proxy for estimation of smaller stems, finding poor accuracy for these suppressed trees.

Although beyond the extent of this modelling exercise, Penner et al. (2015) [31] and Breidenbach et al.
(2008) [97] suggested that there are possible improvements in SDD predictions at larger stand or forest
levels; extrapolating the FVSOntario model over a larger area may improve predictions of carbon
accumulation in a future study, albeit noting the model would need to be modified to allow for
spatially-explicit modelling. Previous studies with access to spatially parameterized G&Y models have
done this for SD and BA_dist (e.g., [5,89,98]).

Many studies have successfully implemented LiDAR-derived metrics for forest attribute
modeling [25,75,87,99,100]. Recent studies have also used LiDAR for mapping aboveground carbon
density [23] or using repeat LiDAR surveys to map biomass and establish accumulation rates based
on these differences [76,101]. However, without the access of repeat LiDAR for future projections,
accumulation is usually implied from rates of BA_dist growth, which limits our ability to fully
report on carbon sequestration and gain a more holistic sense of Canada’s potential for sequestration
in understudied complex temperate forests. Looking ahead to the future of LiDAR and carbon
management, the new successfully launched Global Ecosystem Dynamics Investigation (GEDI) is
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gaining considerable attention [102]. Given this study’s finding that photo-interpreted estimates from
various years can provide equivalent estimates to inventory-level data, future studies should also look
to investigate the application of space-based LiDAR and coincident species abundance data for areas
with less access to ground data to improve estimates of carbon accumulation.

5. Conclusions

Lidar has been shown to be a valuable and reliable tool in forestry for spatially-explicit modeling of
forest stand attributes (e.g., [9,10,16,18,25]). In the context of G&Y modelling, LiDAR-derived tree lists
for initializing G&Y models of direct carbon stock and accumulation have not been tested, which could
lead to new insights for climate change mitigation in forest management practices. Complex temperate
forests remain understudied in G&Y research; improving G&Y techniques in this area could benefit
climate change mitigation and sustainable forest management. This study examined methods for
improving estimates of carbon accumulation and carbon stock using a LiDAR-derived G&Y model in
an uneven-aged, mixedwood forest of Ontario, Canada. Our predictions of forest variables using the
non-parametric RF algorithm were found to be comparable to other studies, however, small-diameter
trees, particularly saplings and polewoods, were less well predicted by LiDAR. We demonstrated
that predicting carbon stocks across a range of size classes and forest types were more accurate than
predicting carbon accumulation, but neither model output achieved statistical equivalence across a
range of forest types compared to inventory data. Thus, the information demands for accurate G&Y
modeling of carbon accumulation in complex stands remain beyond the reach of current LiDAR and
nonparametric modeling approaches. However, our findings suggest this gap is also due to high
parameterization costs of the G&Y model, such as mortality, and that these remain areas of focus.

Statistical equivalence was achieved between LiDAR-based models, suggesting complex forests
could benefit from photo-interpreted estimates to achieve the same results as inventory-derived species
abundance, possibly bypassing the need for predicting species information in carbon accumulation
studies. However, this area requires further study, including why these consistencies do not hold
across forest types. Models tended to perform better using constant mortality rates when initialized
with photo-interpreted species, which could be explained by the need to balance imprecise species
with a more generalized mortality rate. The potential of using photo-interpreted species abundance
estimates for areas where such data exists as a potential replacement or comparison for LiDAR-derived
species abundance is a novel contribution in this study.

This study explored the various considerations for establishing a G&Y model in the understudied
uneven-aged mixed forests of Ontario. Models are inherently deficient due to the complexity of the
systems studied; thus assumptions can be flawed. Additionally, it is important to note that field data
may not provide any more “true” estimates than LiDAR models, and come with their own inherent
measurement and sampling errors. Future studies should continue to explore what parameters are
crucial for improved estimates of complex forest carbon accumulation.
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