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2 Table of Figures and tables   
 

 
 
 
 
 
 
 
 

Figures Description  
Figure 1 Photograph of a Prosopis shrub. 
Figure 2 An illustration of a 20m by 20m plot of Prosopis and an indication 

of where to take the GPS point. 
Figure 3 An illustration of a large patch of Prosopis with multiple 20m by 

20m areas and an indication of where to take the GPS point. 
Figure 4 An illustration of a large dense patch of Prosopis with an 

indication of how to take the GPS track around the patch. 
Figure 5 Photograph of an Acacia tree. 
Figure 6 Photograph of Sorghum bicolour grass. 
Figure 7 Photograph of Cynodon plectostachyus grass. 
Figure 8 Photograph of Sporobolous cordofanus grass. 
Figure 9 Photograph of a Ficus sur tree. 
Figure 10 Google earth imagery showing dense patch of fig trees. 
Figure 11 RGB images showing the full extent of the Sentinel-2 images 

selected for inclusion in the analysis. 
Figure 12 An example of a reclassified Fmask raster as a cloud and water binary mask 

for the image acquired on 14/05/2018. Cloud and water are shown in light 
grey.   

Figure 13 An example of the cropped and masked images for all nine utilised bands, in 
this case for the image acquired on 14/05/2019.  

Figure 14 Optimisation curves for mtry hyperparameter using Random 
Forest. 

Figure 15 Optimisation curves for cost hyperparameter using SVM with 
linear kernel. 

Figure 16 Optimisation curves for cost and sigma hyperparameter using 
SVM with radial kernel. 

Figure 17 Confusion matrices for all combinations of classifier and image set 
Figure 18 The proportional cover of classes in the two grazing areas for all 

combinations of classifier and image set. 
Figure 19 Classification maps for every classifier and image set combination 

showing the spatial distribution of classes across the seasonal 
grazing areas. 

Tables  Description 
Table 1  R packages and Python modules utilised in the analysis and their 

description. 
Table 2 Values included in the manual grid of hyperparameter values for 

RF models.  
Table 3 Values included in the manual grid of hyperparameter values for 

SVM Linear kernel models.  
Table 4 Values included in the manual grid of hyperparameter values for 

SVM Radial kernel models. 
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3 Introduction 
 
This technical report is a supporting document for the research paper “Effects of 
seasonality and classifier on the accuracy of grazing resource and land 
degradation maps in a savanna ecosystem”. The focus of the report is to document 
the methodology of the research paper in full, and to present results not found in 
the research paper. The methods are outlined in such a way that all aspects of the 
methodology could be repeated as this becoming increasingly important in light of 
the repeatability crisis (Konkol et al., 2019). 
 
4 Format of Report  
 
All readable text is presented in font – Century - font size 12. 
Code from all programming languages is presented in – InaiMathi - font size 10. 
Annotation in code is prefixed with – # 
 
5 Software   
 
In as far as was possible open access software and platforms were used in 
conducting the study.   
 
The following programs were used. 

• R version 3.5.3  - IDE R Studio 
• Python Version 3.7.3 - IDE Spyder 
• JavaScript - Google Earth Engine Code Editor  
• Google Earth Pro - Version 7.3 

 
Table 1: R packages and Python modules utilised in the analysis and their description. 
 

Name Language Description  Reference 
caret R Model construction 

and comparison 
Kuhn et al., 2019 

date Python Date time functions NA 
geopandas Python 

 
Geographic data 
processing 

NA 

ggmap R Map production Kahle, D and 
Wickham, H., 2012 

ggplot2 R Graphics Package Wickham 2016 
GISTools R Spatial data analysis Brunsdon and Chen 

2014 
numpy Python Data processing Oliphant 2006 
pandas Python Data processing McKinney 2010 
raster R Raster manipulation 

and analysis  
Hijmans 2019 

rasterio  Python Raster analysis Gillies 2013 
rgdal R Formatting and 

transformation of 
geographic data 

Roger et al 2019 

sentinelsat Python Download Sentinel-2 
imagery 

NA 

shapely  Python Data manipulation NA 
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snow R Paradelle processing  Tierney et al., 2018 
sp R Classes and methods 

for spatial data: 
points, lines, 
polygons and grids 

Pebesma and Bivand 
2005 

subprocess Python Execute terminal 
commands in python 

NA 

tidyr  R Data manipulation 
and formatting 

Wickham and Henry 
2019 

 
6 Field Data Collection Protocol 
 
This data collection protocol was written for the resource assessors employed by 
the South Rift Association of Land Owners, a Kenyan NGO. The resource 
assessors have limited technical and scientific knowledge, and therefore the 
language used in the protocol reflects this constraint in efficient communication.  
 
Aim 
To inform the resource assessors at Lale’enok Resource Centre how to collect the 
data required to map several plant species.  
 
Background 
Using images taken by satellites it is possible to map species of grass, herb, shrub 
and trees across large areas. Mapping these types of vegetation is important for 
analysing changes in the abundance and location of plant species over time. These 
maps can be used to understand livestock and wildlife movements and grazing, to 
monitor grazing quality and inform land management decisions. 
 
To map plant species ground reference data are needed. Ground reference data is 
knowledge of the plant species found at a particular location. This knowledge will 
allow us to match parts of the image taken from satellite with the information on 
the ground vegetation. 
 
Materials Required 
GPS 
Batteries 
Measuring Tape  
Datasheet Print Out 
Vehicle  
 
Before starting this project download all the data from the GPS to a computer and 
then remove all data from the GPS. This reduces the chance of confusing data 
points or running out of memory while in the field. 
 
Method 
To map the vegetation species, we need GPS coordinates of areas that are at least 
20meters by 20meters and are covered by a single species. We also need GPS 
coordinates of areas that contain mixed grass species, mixed herb species, mixed 
tree species, mixed herb/grass/shrub/tree species, bare soil and rock. 
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Before data collection you will need to print out the data sheet found at the end of 
this document. You may also copy the data sheet with pencil/pen on some blank 
paper to use if the printer is not working.  
 
You will also need to create a folder on the computer named - Mapping Vegetation. 
At the end of each day download all of the GPS data, points and tracks, and place 
them in the folder named - Mapping Vegetation. Inside the Mapping Vegetation 
folder create another folder and name it with the date for which the data has been 
collected. Please take a picture of the data sheet (no need to enter the data into 
excel). And if there is internet send the data and picture to me by email, 
(freddie_hunter@live.co.uk). 
 
Prosopis Data Collection 
Areas of Prosopis that can be used in the study need 
to be at least 20meters by 20meters in size. It is very 
important that the area is dense with Prosopis 
(Figure 1). If you were to be looking down like a bird 
on the area, you would mostly see Prosopis. No large 
acacia trees/shrubs can be present. In the data 
sheet there is a column where you need to estimate 
the percentage covered by the species.  
 
When you find an area that is at least 20meters by 
20meteres you will need to go into the area and take 
a GPS coordinates of the middle of the area. It is 
very important that you are in the middle of the 
20m by 20m area (Figure 2). Hold the GPS 
high in the air and stand still while you 
take the coordinates. 
 
It is important that the area is at least 
20m by 20m, but you do not need to 
accurately measure the size of it, just be 
sure that it is big enough. Use the 
measuring tape to get a rough estimate if 
you are unsure. You do not need to waste 
time accurately measuring the size of the 
area a rough estimate is fine. 
 

Figure 2: An illustration of a 20m by 20m plot 
of Prosopis and an indication of where to take 
the GPS point. 

Figure 1: Photograph of a 
Prosopis shrub. 
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If the area you have found is larger than 20m by 
20m, such as 40m by 40m, please take further 
GPS coordinates. But be sure to move at least 20 
meters away from where you have taken previous 
GPS points (see figure 3). 
 
For areas that are very big, or are very dense with 
Prosopis, you can instead of going into the middle 
of each 20m by 20m part of the large area, you can 
walk very closely around the edge while tracking 
your path with the GPS (see figure 3).  
 
In order to map the species between 50 and 150 
GPS points for Prosopis are required. This data 
can be made up of individual data points from 
individual patches and 
those tracks from larger 
areas.  
 
Every time you take a 
new GPS point or track 
please record the ID in 
the data collection 
sheet, along with the 
species name, data type 
(point or track).  
 
Acacia  
For Acacia trees (Figure 5), do exactly the 
same as what is written for Prosopis.  

 
 
 
 
 
 
 
 
 
 

 
 

Sorghum bicolour 
For Sorghum bicolour (Figure 6) grass species, do exactly the same as is written 
for Prosopis. 

Figure 3: An illustration of a 
large patch of Prosopis with 
multiple 20m by 20m areas 
and an indication of where to 
take the GPS point. 
 

Figure 4: An illustration of a large dense patch of Prosopis with 
an indication of how to take the GPS track around the patch. 
 

Figure 5: Photograph of an Acacia tree. 

Figure 6: Photograph of Sorghum bicolour grass. 
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Cynodon plectostachyus 
For Cynodon plectostachyus (Figure 7) 
grass species, do exactly the same as is 
written for Prosopis.       

 
 
 
 
 
 
 
Sporobolous cordofanus 
For Sporobolous cordofanus (Figure 8) grass 
species, do exactly the same as is written for 
Prosopis. 
 
 
 

 
 

Control Data 
Control data are different from the individual species data and should be much 
faster and easier to collect. For control data 150 GPS points or more of areas, that 
do not contain Prospis spp, Acacia spp, Cynodon plectostachyus , Sorghum bicolour 
or Sporobolous cordofaunus are needed. Instead of containing the focal species, 
control point areas can be mixed vegetation types, mixed trees, mixed shrubs, 
mixed herbs, mixed grasses, bare ground, rock, or any combination of these. The 
GPS points for control data need to be a mixture of these types and the type of 
control data being collected entered into the data sheet.   
 
Please find data entry sheet in Appendix A. 
 
End of Protocol 
 
7 Coordinate Extraction from Google Earth Imagery. 
 
Data for the fig tree species Ficus sur  
(Figure 9) were collected via Google 
Earth imagery (GEI). Only points 
with a high confidence of fig tree 
presence were collected.  

Figure 7: Photograph of Cynodon plectostachyus 
grass. 

Figure 8: Photograph of Sporobolous cordofanus grass. 

Figure 9: Photograph of Ficus sur tree. 



Frederick Hunter              Technical Report 

 8 

 
 
 
 
 
The fig trees are clearly identifiable in 
comparison to other vegetation, which is 
an essential requirement for collecting 
reference data remotely by this method 
(Figure 10).  
 
Point coordinates obtained remotely via 
GEI were exported as KML. The 
following Python function extracts 

coordinates from KML files containing, points or lines and writes a csv file with 
two columns one for latitude and another for longitude.  
 
from osgeo import ogr 
import pandas as pd 
 
def get_coords(kml): # get all coordinates from kml. 
    coords = [] # open list to save coordinates in 
    for layer in kml: 
        for feature in layer: 
            geometry = feature.GetGeometryRef() 
            if geometry != None: 
                for i in range(0, geometry.GetPointCount()): 
                    coords.append(geometry.GetPoint(i)) 
        df = pd.DataFrame(coords) 
        return df.to_csv (r'output.csv', index = None, header=True)  
# path to .kml file/      
kml=ogr.Open('Dissertation/SORALO_data/control_data/Mixed_veg/Mixed_veg.kml') 
 
get_coords(kml) 

 
Columns containing the relevant data class and date of data collection 
information is then added to the reference data along with class information. 
 
8 Format Ground Reference Data 
 
Ground reference data were formatted and transformed to Sentinel-2 image 
coordinate reference system using the SP R package (Roger et al 2013). All data 
consisting of row ID, latitude, longitude, class and data of data collection where 
combined to a single csv file. 
 
The reference data was formatted and transformed with the following R code. 
 
# libraries  
library(GISTools) 
library(rgdal) 
 

Figure 10: Google Earth imagery showing a dense 
patch of fig trees (Ficus sur). The polygon encloses 
a particularly large patch of fig trees. Stars 
indicate examples of locations where Ficus sur  
training data was collected. 
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# import data. 
df<-read.csv("All_Reference_Data.csv", stringsAsFactors = FALSE) 
 
# structure of data 
str(df) 
 
# number of classes 
levels(df$Class) 
 
# number of samples in each class 
Summary(df$Class) 
 
# get coordinate columns  
coords <- df[,c(3,4) 
 
# create spatial points object  
spatpoint<- SpatialPoints(coords, proj4string=CRS("+proj=longlat")) 
 
# transform CRS to UTM 
transoformed_spatpoint<- spTransform(spatpoint, CRS("+proj=utm +zone=36 +south +datum=WGS84 +units=m 
+no_defs +ellps=WGS84 +towgs84=0,0,0")) 
 
# get new coords 
coords_df_T<-as.data.frame(transoformed_spatpoint @coords) 
 
# add to data frame 
df$Easting <-  coords_df_T$lon 
df$Northing <-  coords_df_T$lat 
 
# write new csv file with transformed coords 
write.csv(df, "Ground_Ref_Data_Transformed.csv") 

 
9 Sentinel-2 Image Selection 
 
Selection of images with acceptable levels of cloud cover over the study site 
(<10%) was accomplished by viewing the full extent and resolution of an S1 
image in the Google Earth Engine code editor.  
  
Selecting images for this project was conducted using the JavaScript code editor 
from Google Earth Engine (GEE). This editor allows full extent and resolution 
viewing of Sentinel-2 images. As a result, assessing cloud cover of the study area 
is more effective in GEE than quick view of images via the Sentinel-2 data 
repository found. 
 
GEE is a powerful open access cloud computing service for remote sensing image 
analyses (https://earthengine.google.com/). The following process outlines how 
images for selected area and date range can be filtered by cloud coverage and 
viewed prior to download. The image obtained within the date range with least 
cloud coverage is displayed.  
 
The following steps were followed to identify the most useful images over the 2018 growing 
season.  
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- The polygon tool in the code editor was used to draw an area around the 

ROI. This imported a variable named geometry to the code editor.  
- Searched sentinel 2 in the search bar and selected import sentinel 2 MSI: 

Multi-Spectral Instrument, level 1C (note 1C means not atmospherically 
corrected).  

- Code below was entered into the code editor and date range of interest 
modified to suit dates of interest (NB If no image is returned the date range 
may be too constrained). The code overlays the least cloudy image obtained 
within the date range specified.  

 
//Function used to filter images by cloud percentage.  
var image = ee.Image(imageCollection 
.filterDate("2018-01-01", "2018-12-30") 
.filterBounds(geometry) 
.sort("CLOUD_COVERAGE_ASSESSMENT") // displays least cloudy image first. 
.first()); 
print("A Sentinel-2 scene:", image); 

 
var trueColour = { 
  bands:["B4", "B3", "B2"], 
  min:0, 
  max:3000 
}; 
Map.addLayer(image, trueColour, "True Colour Image") 

 

The images in figure 5 were selected because they contained low cloud coverage 
over the study area and because the time interval between image acquisition was 
considered large enough for each image to contain different spectral information.  
 
The image acquired on the 14/05/2018, shown in figure 11, is visibly greener than 
all other images indicating that vegetation biomass is greater in this image 
compared to all others. This was used in all single image classifications because 
this image represents the image acquired closest to peak biomass, and images 
used at peak biomass have previously been shown to produce greatest 
classification accuracy in single image classification models (Feilhauer et al., 2013: 
Rapinel et al., 2019: Shoko and Mutunga 2017). 
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10 Image Download 
 
Using the date of image acquisition, images were downloaded with the SentinelSat 
Python package. A function was written to automate image downloading. The 
function require a .geojson file (which was created and downloaded from this site 
- http://geojson.io/#map=2/20.0/0.0) of the study area, image acquisition date and the 
tile id. Using tile id restricts downloading of multiple scenes of the same region in 
the same day. Products are downloaded to the current directory. 
 
from sentinelsat import SentinelAPI, read_geojson, geojson_to_wkt 
import os 
import subprocess 
import geopandas as gpd 
from datetime import date 
import pandas as pd 
from shapely import wkt 
 
# Path to geojson  
AOI_PATH = 
'/Users/freddiehunter/Work/GIS_Course_Work/Dissertation/Image_Processing/CMD_Download/AOI_BOX.geojson' 
 
# Date of interest 
Day = ('20180514', date(2018, 5, 24)) # format date as such. 
 
# Tile ID of interest 
Tile_ID = 'T36MZC' 
 
def get_product(AOI_PATH, Day, Tile_ID): 
    api = SentinelAPI(username, 'password','https://scihub.copernicus.eu/dhus') 

Figure 11: RGB images showing the date and full extent of the Sentinel-2 
images selected for inclusion in the analysis. The study site is the area found 
between the two lakes in the north of the images. 

14/05/2018 29/05/2018 28/06/2018 07/08/2018 

01/10/2018 
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    footprint = geojson_to_wkt(read_geojson(AOI_PATH)) 
    products = api.query(footprint, 
                     date = Day, 
                     platformname='Sentinel-2', 
                     area_relation = 'Contains')  
    df = pd.DataFrame.from_dict(products).T 
    product_df = gpd.GeoDataFrame(df, geometry = df['footprint'].apply(wkt.loads)) 
    product_df["Product_ID"] = product_df.index 
    tilename = product_df['filename'] 
    tile_id = str(tilename).split('_') 
    tile_id = tile_id[5::6] 
    product_df['Tile_ID'] = Tile_ID 
 
    return product_df 
  
# Run function 
df = get_product(AOI_PATH, Day, Tile_ID) 
 
# Download product  
api.download_all(df['Product_ID']) 

 
11 Sen2Cor Processing  
 
Sen2Cor is an algorithm for converting Sentinel-2 images from level one products, 
to level two products. The algorithm corrects for atmospheric effects, such that 
reflectance values are in theory the same as those that would be obtained at the 
Earth surface.  
 
In this study the stand alone installer version 02.05.05 was used, and can be 
installed with the following link (http://step.esa.int/main/third-party-plugins-
2/sen2cor/: Main-Knorn et al., 2017). After Sen2Cor instillation a terminal 
command can be used to run the algorithm and parameters are available to select 
the spatial resolution of the output images.  
 
Within terminal set the directory to Sen2Cor-02.05.05 and run following code 
with a path to the .safe level one directory.  
 
bin/L2A_Process --resolution 20 
/Users/freddiehunter/Work/GIS_Course_Work/Dissertation/Image_Processing/Sent2_data/Data/1C/S2A_MSIL1C_20180
524T073731_N0206_R092_T36MZC_20180524T113104.SAFE 

 
12 Cloud Masking  
 
There are several cloud masks available for Sentinel-2 imagery. The Fmask 
developed by Zhu and Woodcock (2012) is considered the most accurate for 
Sentinel 2 (Frantz et al 2018). Installing and implementing the Fmask with the 
command line on a macOS can be achieved using the following commands in 
terminal. The sequence requires the prior installation of Python via Anaconda or 
Conda min, GDAL, RIOS, Numpy and Scipy. 
 
Setting up an environment that contains all required libraries.  
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- conda create -n senEnv rois 
- source activate senEnv 
- conda –add channels conda-forage 
- conda install python-fmask 

 
The environment is activated with  
 

- Source activate senEnv.  

 
Running the Fmask. 
 
Set directory to where level1 products are stored. The mask requires a Sentinel-2 
level1.safe directory.  
 

- fmask_sentinel2Stacked.py -o utput_name.img --safedir --pixsize 20 --cloudbufferdistance 150 --
shadowbufferdistance 150 sentinel1c_directory.safe 
 

Cloud and cloud shadow buffers are set to 150 pixels and pixel size to 20.  
 
The resulting raster contains classes, cloud, cloud shadow, water and clear sky 
pixel. To reclassify and write a geo referenced raster to produce a binary raster 
mask the following python function was used. 
 
import numpy as np 
import rasterio as rio 
 
# where cloud.img is your fmask 
path = '../FMASK_Processing/FMASK_Python_reclass/cloud.img' 
 
def reclassFmask(path): 
    raster = rio.open(path) 
    naip_meta = raster.profile 
    band1 = raster.read(1) 
    band1 = band1.astype(np.uint8) 
    # collect index arrays 
    one_or_less = band1_large <= 1 
    from_2_to_5 = (1 < band1_large) & (band1_large <= 5) 
    greater_6 = band1_large >= 6 
    # now modify target array 
    band1_large[one_or_less] = 10 
    band1_large[from_2_to_5] = 20 # values classified as 20 are to be masked 
    band1_large[greater_6] = 10 
 
    with rio.open('fmask_reclass.tif', 'w', **naip_meta) as dst: 
        dst.write(band1, 1) 
               
reclassFmask(path)      
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13 Image Cropping and Image Set Creation 
 
The following R code imports the Sen2Cor corrected image bands, creates a stack 
of those bands, crops to the area extent of the shapefile and masks the stack 
according to the reclassified Fmask raster. Combinations of image stacks of the 
same date are then stacked together to form time series image sets. 
 
# required libraries 
library(raster) 
library(rgdal) 
 
# import area of interest shapefile 
extent<-readOGR(“Raster_Crop_Extent”) 
crs(extent) 
 
# transform projection of shapefile to that of satellite image. 
Extent <- spTransform(extent, CRS(“+proj=utm +zone=36 +south +datum=WGS84 +units=m +no_defs 
+ellps=WGS84 +towgs84=0,0,0”)) 
plot(extent, axes=T) 
 
# create bounding box of AOI 
extent_box<-bbox(extent) 

 

Figure 12: An example of a reclassified Fmask raster as a cloud and water binary mask for the image 
acquired on 14/05/2018. Cloud and water are shown in light grey.   
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• The following section of code is representative of the process applied to 
each of the five images.  

 
# import bands 
# May 14 2018 
b02 <- raster(“L2A_2018_14_05/T36MZC_20180514T073611_B02_20m.tif”) 
b03 <- raster(“L2A_2018_14_05/T36MZC_20180514T073611_B03_20m.tif”) 
b04 <- raster(“L2A_2018_14_05/T36MZC_20180514T073611_B04_20m.tif”) 
b05 <- raster(“L2A_2018_14_05/T36MZC_20180514T073611_B05_20m.tif”) 
b06 <- raster(“L2A_2018_14_05/T36MZC_20180514T073611_B06_20m.tif”) 
b07 <- raster(“L2A_2018_14_05/T36MZC_20180514T073611_B07_20m.tif”) 
b8A <- raster(“L2A_2018_14_05/T36MZC_20180514T073611_B8A_20m.tif”) 
b11 <- raster(“L2A_2018_14_05/T36MZC_20180514T073611_B11_20m.tif”) 
b12 <- raster(“L2A_2018_14_05/T36MZC_20180514T073611_B12_20m.tif”) 
 
# create stack of bands 
stack_may14<-stack(b02,b03,b04,b05,b06,b07,b8A,b11,b12) 
#check crs 
crs(stack_may14) 
 
# crop according to bounding box. 
Crop_stack_may14_mask<-crop(stack_may14, extent_box) 
 
# import cloud fmask. 
Mask_may_14 <- raster(“L2A_2018_14_05/reclass_14_05_2018_FMASK.tif”) 
 
# crop fmask to same extent as img 
crop_mask_may_14_<-crop(mask_may_14, extent_box) 
 
# mask values that = 20. This is the value assigned to pixels that need to be masked.  
Crop_mask_may_14_[crop_mask_may_14_ == 20] <- NA  
 
# mask stack by cloud mask  
stack_may_14 <- mask(crop_stack_may14_mask, mask = crop_mask_may_14_) 
 
#remove unnecessary objects from R environment 
rm(b02,b03,b04,b05,b06,b07,b8A,b11,b12,stack_may14, crop_mask_may_14_, mask_may_14) 

 
• For brevity only code for a single image is presented. The same process 

was applied to all five images.  
 
# images to include in model – Wet season single image 
datasetA <- stack_may_14 
 
# for data included in model – Wet season time series  
datasetB <- stack(stack_may_14, stack_may_29) 
 
# for data included in model – Wet season time series  
datasetC <- stack(stack_may_14, stack_may_29, stack_june_28, stack_august_07, stack_october_01) 
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14 Classification  
 
14.1 Formatting Images and Reference Data  
 
The R code presented below outlines the implementation of classifications 
(Random Forest and Support Vector Machine (SVM) with both linear and radial 
kernel), collection of statistics, pixel counts, confidences maps and the production 
of figures. 
 
Code was obtained and modified from the following sources. 
http://amsantac.co/blog/en/2016/10/22/model-stacking-classification-r.html 
https://machinelearningmastery.com/tuning-machine-learning-models-using-the-caret-r-
package/ 
https://dataaspirant.com/2017/01/19/support-vector-machine-classifier-implementation-r-
caret-package/ 
https://machinelearningmastery.com/how-to-estimate-model-accuracy-in-r-using-the-caret-
package/ 
 
The example code implements RF for the wet season single image dataset. Where 
svmLinear and svmRadial implementation differs from RF the alternative code is 
also supplied. 
 

Figure 13: An example of the cropped and masked images for all nine utilised bands, in this case for the 
image acquired on 14/05/2019.  
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• Libraries required. 
 
library(ggplot2) 
library(caret) 
library(raster) 
library(snow) 
library(rgdal) 
library(plyr) 
 

• Reading of formatted and transformed ground reference data. 
 
# import ground ref data ---- 
df<-read.csv(“Ground_Ref_Data_Transformed.csv”) 
 
# check data structure 
str(df) 
 
# check levels and sample sizes of classes 
summary(df$Class) 
 
# turn ref data into spatial pointsdataframe  
# get coordinates 
coords <-df[,c(2,3)] 
 
# format as spatial dataframepoints 
ref_data<-SpatialPointsDataFrame(coords, proj4string=CRS(“+proj=utm +zone=36 +south +datum=WGS84 +units=m 
+no_defs +ellps=WGS84 +towgs84=0,0,0”), df) 
 

• Importing cropped and masked images. 
 
# Import image set 
datasetA <- stack(stack_may_14) 
crs(datasetA) 
 

• For all wet season time series models the following code was used 
 
datasetB <- stack(stack_may_14, stack_may_29) 

 
• For all multi-season time series models the following code was used.  

 
datasetC <- stack(stack_may_14,stack_may_29,stack_june_28, stack_august_07, stack_october_01) 
 
# set bands names  
names(datasetA) <- c(“B2”,”B3”,”B4”,”B5”,”B6”,”B7”,”B8A”,”B11”,”B12”)  
 

• Extract pixel values from all bands according to coordinates in ground 
reference data. 

 
# Extract training data values from the image bands 
ref_extracted <- as.data.frame(raster::extract(datasetA, ref_data)) 
ref_extracted$class<-train$Class 
 
# ensure complete cases (i.e. no broken pixels with NA values) 
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ref_extracted <- train_extracted[complete.cases(ref_extracted), ] # Store the complete cases subset in a new data 
frame 

 
• Split pixel value data in to training and test data. 

 
# Split data into training and testing data 
Ref_split <- createDataPartition(y = ref_extracted$class, p= 0.7, list = FALSE) 
training_data <- ref_extracted[Ref_split,] 
testing_data <- ref_extracted[-Ref_split,] 
 
# check dimensions/size of training and testing data 
dim(training_data); dim(testing_data); 
 

14.2 Hyperparameter Optimisation  
 

• Optimising parameters for RF. 
 
Table 2: Values included in the manual grid of hyperparameter values for RF models. * Mtry = 
the number of randomly selected predictors available at each decision tree. 

 
 
 
 

 
# prepare training scheme 
#Repeated k-fold Cross Validation – 10-fold cross validation with 3 repeats  
control <- trainControl(method=”repeatedcv”, number=10, repeats=3) 
 
# create tuning grid for parameter mtry  
# get number of bands/predicors in the model. 
noPredictors<- -1 + length(training_data) 
 
# number of trees was held constant at 500. 
Grid_rf <- expand.grid(mtry=c(1:noPredictors), ntree = 500)) 
 
# run model 
rf_wet_season_single_image_Grid <- train(class ~., data = training_data, method =”rf”, preProcess = c(“center”, 
“scale”), trControl = control, tuneGrid = grid_rf, tuneLength = 1) 
 

• Optimising parameters for SVM linear. 
 
Table 3: Values included in the manual grid of hyperparameter values for SVM linear kernel 
models.  

 
 
 
 
 

 
Grid_Linear <- expand.grid(C = c(0, 0.5, 1, 2, 5, 7, 10, 15, 20, 25)) 
 
svmLinear_wet_season_single_image_Grid <- train(class ~., data = training_data, method =”svmLinear”, preProcess 
= c(“center”, “scale”), trControl = control, tuneGrid = grid_Linear) 

Image Set No Tree Mtry 
Wet Season Single Image 500 1 - 9 
Wet Season Time Series  500 1 - 18 
Multi-Season Time Series 500 1 - 45 

Image Set Cost 
Wet Season Single Image 0, 0.5, 1, 2, 5, 7, 10, 15, 20, 25 
Wet Season Time Series  0, 0.5, 1, 2, 5, 7, 10, 15, 20, 25 
Multi-Season Time Series 0, 0.5, 1, 2, 5, 7, 10, 15, 20, 25 



Frederick Hunter              Technical Report 

 19 

 
• Optimising parameters for SVM radial. 

 
Table 4: Values included in the manual grid of hyperparameter values for SVM radial kernel 
models. * Sigma =  Reach of single training instance 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Grid_Radial <- expand.grid(sigma = c(0, 0.01, 0.02, 0.025, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.25, 0.5, 0.75, 
0.9),C = c(0, 0.5, 1, 2, 5, 7, 10, 15, 20, 25)) 
 
svmRadial_wet_season_single_image_Grid <- train(class ~., data = training_data, method =”svmRadial”, preProcess 
= c(“center”, “scale”), trControl = control, tuneGrid = grid_Radial) 
 

• Get Model Results. 
 
print(rf_wet_season_single_image_Grid) 

 
• Create plot showing relationship between accuracy and hyperparameter 

value. 
 
pdf(“RF_Wet_Season_Single_Image_mtry_tuning.pdf”)  
plot(rf_wet_season_single_image_Grid, cex=2, pch=16, lab.cex=4, cex.lab=3, cex.axis=3) 
dev.off()  

 
• Find and set hyperparameter values.  

 
# set optimal mtry value 
metry_value = rf_wet_season_single_image_Grid$bestTune$mtry 

 
• For svmLinear find and set hyperparameter values.  

 
# set optimal C value 
C_value = svmLinear_wet_season_single_image_Grid$bestTune$C 
 

• For svmLinear find and set hyperparameter values.  
 
# set optimal C value 
C_value = svmRadial_wet_season_single_image_Grid$bestTune$C 
# set optimal Sigma value  
Sigma_value = svmRadial_wet_season_single_image_Grid$bestTune$Sigma 

Image Set Cost Sigma 
Wet Season 
Single Image 

0, 0.5, 1, 2, 5, 7, 
10, 15, 20, 25 

0, 0.01, 0.02, 0.025, 0.03, 0.04, 
0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 
0.25, 0.5, 0.75, 0.9 

Wet Season 
Time Series  

0, 0.5, 1, 2, 5, 7, 
10, 15, 20, 25 

0, 0.01, 0.02, 0.025, 0.03, 0.04, 
0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 
0.25, 0.5, 0.75, 0.9 

Multi-Season 
Time Series 

0, 0.5, 1, 2, 5, 7, 
10, 15, 20, 25 

0, 0.01, 0.02, 0.025, 0.03, 0.04, 
0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 
0.25, 0.5, 0.75, 0.9 
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• The following code sets up empty data frames and rasters with which to fill 
the results of running 100 classification replicates. 

 
#data frame for overall accuracy and kappa values  
OA_mean_rf <- data.frame() 
 
# data frame for confusion matrix values 
df_CM_rf_ <- data.frame() 
 
# data frame for all class specific statistics  
df_byClass_rf_wet_season_single_image<-data.frame() 
 
# prepare blank raster for classification prediction   
prediction_raster<-datasetA$B2 
prediction_raster[prediction_raster > 0] <- 0 
 
# import shapefiles for pixel counts  
wet_season <- readOGR(‘Wet_Season_Area_Only/’) 
plot(wet_season) 
crs(wet_season) 
 
# transform shapefile crs 
wet_season<-spTransform(wet_season, CRS(“+proj=utm +zone=36 +south +datum=WGS84 +units=m +no_defs 
+ellps=WGS84 + towgs84=0,0,0”)) 
crs(wet_season) 
 
dry_season <- readOGR(‘Conservation_And_Buffer_Only_Merged/’) 
plot(dry_season) 
crs(dry_season) 
 
# transform shapefile crs 
dry_season<-spTransform(dry_season, CRS(“+proj=utm +zone=36 +south +datum=WGS84 +units=m +no_defs 
+ellps=WGS84 + towgs84=0,0,0”)) 
crs(dry_season) 
 
# dataset for storing count values 
Pixel_Counts <- data.frame() 
 
# collect variable importance data 
var_imp <- data.frame() 
 

14.3 Classification Loop 
 

• Classification loop performed 100 times. Results from each loop are stored 
in the corresponding data frames created above. 

 
# set seed value to force randomisation per loop run.  
Seed = 100 
 
# start of loop ---- 
for(I in 1:100){ 
 
  # set seed  
  seed<-1+seed # seed number increased by 1 with each loop repeat. 
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  Set.seed(seed) # set the seed. 
 
  # Randomly split data into training and testing data 
  intrain <- createDataPartition(y = train_extracted$class, p= 0.7, list = FALSE) 
  training_data <- train_extracted[intrain,] 
  testing_data <- train_extracted[-intrain,] 

   
• Set hyperparameters as optimal values found in training and validation of 

model. 
 

  Grid_rf <- expand.grid(mtry = c(metry_value)) 

 
• For svmLinear. 

 
  Grid_svmLinear <- expand.grid(C = c(C_value)) 

 
• For svmRadial. 

 
  Grid_svmRadial <- expand.grid(C = c(C_value), Sigma = c(Sigma_Value))  
 

• Training models. 
 
  # train model with tune length  = 1 (forces model fit once) 
  rf_wet_season_single_image <- train(class ~., data = training_data, method =”rf”, preProcess = c(“center”, 
“scale”),tuneGrid = grid_rf, tuneLength = 1, ntree = 500) 
 

• Get Overall Accuracy and Kappa accuracies. 
 

  OA_results<-as.data.frame(rf_wet_season_single_image_Grid_multi$results) 
  OA_mean_rf<-rbind(OA_mean_rf, OA_results) 
 

• Get classification predictions. 
 
  # get predictions  
  test_pred_grid <- predict(rf_wet_season_single_image, newdata =     testing_data) 
 

• Confusion matrix results. 
   
  # get confusion matrix values 
  cm_rf_ <- confusionMatrix(test_pred_grid, testing_data$class) 
  cm_data_fame_rf_<- as.data.frame(cm_rf_$table) 
   
  # append confusion matrix data to data frame  
  df_CM_rf_<-rbind(df_CM_rf_, cm_data_fame_rf_) 
 

• Predict classification map. 
   
  # get classification map 
  beginCluster() # parallelise the job  
  loop_predictions <- clusterR (datasetA, raster::predict, args = list(model = rf_wet_season_single_image)) 
  endCluster() 
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  # add classification prediction map as layer to stack of rasters. One layer for every run of the loop. 
  Prediction_raster<-stack(loop_predictions,, prediction_raster) 
 

• Count number of cells in grazing areas for each class for each run of the loop 
and add to data frame. 

 
  # method shown only for acacia for brevity.  
  Acacia <- loop_predictions 
   
  # acacia cells  
  acacia[acacia != 1] <- NA # set all values not of focal class to NA. 
   
  # count only dry season.  
  # remove all pixels outside of dry season area 
  masked_class<-mask(acacia,dry_season)  
   
  # count number of pixels. 
  Dry_masked_acacia<-as.data.frame(cellStats(masked_class, sum)) 
  Pixel_Counts<-rbind(Pixel_Counts,dry_masked_acacia) 
 
  # remove all pixels outside of wet season area 
  masked_class<-mask(acacia,wet_season) )  
 
  # count number of pixels 
  wet_masked_acacia<-as.data.frame(cellStats(masked_class, sum)) 
  Pixel_Counts<-rbind(Pixel_Counts,wet_masked_acacia) 
   
 # end of loop 
} 
 

14.4 Formatting OA and Kappa Accuracy Statistics  
 
# get mean and standard deviation of OA   
mean(OA_mean_rf$Accuracy) 
sd(OA_mean_rf$Accuracy) 
 
# get mean and standard deviation of Kappa   
mean(OA_mean_rf$Kappa) 
sd(OA_mean_rf$Kappa) 
 
# add variables to data set 
# add model type variable 
OA_mean_rf$Model<-c(‘RF’) 
# add image set variable 
OA_mean_rf$DataSet<-c(‘Wet Season Single Image’) 
 
# write dataframe 
write.csv(OA_mean_rf, “RF_Wet_Season_Single_Image_OA_Kappa.csv”) 
 

• Plotting OA and Kappa accuracy statistics.  
 
#import data 
OA_Ka<-read.csv("RF_Wet_Season_Single_Image_OA_Kappa.csv") 
names(OA_Ka) 
OA_Ka<-OA_Ka[,c(3:8)] 
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OA_Kb<-read.csv("SVMLinear_Wet_Season_Single_Image_OA_Kappa.csv") 
names(OA_Kb) 
OA_Kb<-OA_Kb[,c(3:8)] 
OA_Kc<-read.csv("SVMRadial_Wet_Season_Single_Image_OA_Kappa.csv") 
names(OA_Kc) 
OA_Kc<-OA_Kc[,c(4:9)] 
OA_Kd<-read.csv("RF_Wet_Season_Time_Series_OA_Kappa.csv") 
names(OA_Kd) 
OA_Kd<-OA_Kd[,c(3:8)] 
OA_Ke<-read.csv("SVMLinear_Wet_Season_Time_Series_OA_Kappa.csv") 
names(OA_Ke) 
OA_Ke<-OA_Ke[,c(3:8)] 
OA_Kf<-read.csv("SVMRadial_Wet_Season_Time_Series_OA_Kappa.csv") 
names(OA_Kf) 
OA_Kf<-OA_Kf[,c(4:9)] 
OA_Kg<-read.csv("RF_Multiple_season_time_series_OA_Kappa.csv") 
names(OA_Kg) 
OA_Kg<-OA_Kg[,c(3:8)] 
OA_Kh<-read.csv("svmLinear_Multiple_season_time_series_OA_Kappa.csv") 
names(OA_Kh) 
OA_Kh<-OA_Kh[,c(3:8)] 
OA_Ki<-read.csv("SVMRadial_Multiple_season_time_series_OA_Kappa.csv") 
names(OA_Ki) 
OA_Ki<-OA_Ki[,c(4:9)] 
 
# combine all data sets 
 
OK_K_Complete<-rbind(OA_Ka,OA_Kb,OA_Kc,OA_Kd,OA_Ke,OA_Kf,OA_Kg,OA_Kh,OA_Ki) 
data_long <- gather(OK_K_Complete, Accuracy_Measure, Value, Accuracy:Kappa, factor_key=TRUE) 
 
#format combined dataset 
 
levels(data_long$Accuracy_Measure)[levels(data_long$Accuracy_Measure)=="Accuracy"] <- "Overall Accuracy" 
levels(data_long$Accuracy_Measure) 
data_long$Accuracy_Measure<-as.character(data_long$Accuracy_Measure) 
data_long[data_long$Accuracy_Measure == "Accuracy"] <- "Overall Accuracy" 
 
# plot as boxplots 
 
ggplot(data=data_long, aes(x=Accuracy_Measure, y=Value)) + geom_boxplot(stat="boxplot", alpha=1, fill="grey80") 
+ guides(fill=FALSE) + theme_bw() + ylab("Accuracy") + xlab("Accuracy Measure") + theme(axis.text.x = 
element_text(size=12), axis.text.y = element_text(angle = 0, hjust = 1, size=12)) + theme(text = 
element_text(size=15)) + facet_wrap(data_long$DataSet~data_long$Model) 
 
 
14.5 Confusion Matrix Production   
 
# format confusion data matrix 
names(df_CM_rf_) 
unique(df_CM_rf_[,c(1,2)]) 
 
dt_rf_ <- as.data.table(df_CM_rf_) 
mean_cm_rf_<-dt_rf_[, mean(Freq), by = list(dt_rf_$Prediction, dt_rf_$Reference)] 
mean_cm_rf_<-as.data.frame(mean_cm_rf_) 
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# plot normal confusion matrix  
ggplot(data = mean_cm_rf_, mapping = aes(x = mean_cm_rf_$dt_rf_, y = mean_cm_rf_$dt_rf_.1)) + 
  geom_tile(aes(fill = mean_cm_rf_$V1), colour = “white”) + 
  geom_text(aes(label = 24radie(“%1.0f”, mean_cm_rf_$V1)), vjust = 0.5) + 
  scale_fill_gradient(low = “white”, high = “red”) + 
  theme_bw() +  
  theme(legend.position = “none”) +  
  xlab(“”) + 
  ylab(“”) + 
  theme(axis.text.x = element_text(colour=”black”,size=15),axis.title.x= element_text(colour=”black”,size=15), 
axis.text.y = element_text(colour=”black”,size=15), axis.title.y= element_text(colour=”black”,size=15)) + 
theme(axis.text.x = element_text(angle = 45, hjust = 1))  + 
  scale_y_discrete(limits = rev(levels(mean_cm_rf_$dt_rf_.1))) + coord_equal() 
 
# save plot 
ggsave(“rf_wet_season_single_image_con_mat.pdf”) 
 

• Normalising confusion matrices  
 
# normalise confusion matrix 
 
# get sample size of each class in testing data 
number_testing_samples<-as.data.frame(summary(testing_data$class)) 
 
# splot data frame by class  
split_mean_cm_rf_<-split(mean_cm_rf_, mean_cm_rf_$dt_rf_.1) 
 
# set values as percentage  
split_mean_cm_rf_$Acacia$V1<-split_mean_cm_rf_$Acacia$V1/22*100 
split_mean_cm_rf_$`Cynodon plectostachyus`$V1<-split_mean_cm_rf_$`Cynodon plectostachyus`$V1/21*100 
split_mean_cm_rf_$`Ficus sur`$V1<-split_mean_cm_rf_$`Ficus sur`$V1/16*100 
split_mean_cm_rf_$`General Control`$V1<-split_mean_cm_rf_$`General Control`$V1/18*100 
split_mean_cm_rf_$`Grass Control`$V1<-split_mean_cm_rf_$`Grass Control`$V1/22*100 
split_mean_cm_rf_$`Mixed Vegetation Control`$V1<-split_mean_cm_rf_$`Mixed Vegetation Control`$V1/22*100 
split_mean_cm_rf_$Prosopis$V1<-split_mean_cm_rf_$Prosopis$V1/12*100 
split_mean_cm_rf_$`Sorghum bicolor`$V1<-split_mean_cm_rf_$`Sorghum bicolor`$V1/6*100 
split_mean_cm_rf_$`Sporobolus cordofanus`$V1<-split_mean_cm_rf_$`Sporobolus cordofanus`$V1/22*100 
 
# reassemble dataframe 
balanced_mean_cm_rf_<-unsplit(split_mean_cm_rf_, mean_cm_rf_$dt_rf_.1, drop = FALSE) 
 
# plot normalised confusion matrix  
ggplot(data = balanced_mean_cm_rf_, mapping = aes(x = balanced_mean_cm_rf_$dt_rf_, y = 
balanced_mean_cm_rf_$dt_rf_.1)) + 
  geom_tile(aes(fill = balanced_mean_cm_rf_$V1), colour = “white”) + 
  geom_text(aes(label = 24radie(“%1.0f”, balanced_mean_cm_rf_$V1)), vjust = 0.5) + 
  scale_fill_gradient(low = “white”, high = “red”) + 
  theme_bw() +  theme(legend.position = “none”) +  
  xlab(“”) + ylab(“”) + 
  theme(axis.text.x = element_text(colour=”black”,size=15),axis.title.x= element_text(colour=”black”,size=15), 
axis.text.y = element_text(colour=”black”,size=15), axis.title.y= element_text(colour=”black”,size=15)) + 
theme(axis.text.x = element_text(angle = 45, hjust = 1))  + 
  scale_y_discrete(limits = rev(levels(balanced_mean_cm_rf_$dt_rf_.1))) + coord_equal() 
 
ggsave(“rf_wet_season_single_image_normalise_con_mat.pdf”) 
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14.6 Class Proportions Across Grazing Areas 
 

• Pixel counts data formatting and plotting 
 
# format pixel count dataframe 
# add columns to pixel counts 
Pixel_Counts$Species<-rep(c(“Acacia”, “Acacia”,  “Cynodon plectostachyus”, “Cynodon plectostachyus”,”Ficus 
sur”, ‘Ficus sur’, “General Control”, “General Control”, “Grass Control” , “Grass Control”, “Mixed Vegetation”, “Mixed 
Vegetation”, “Prosopis”, “Prosopis”, “Sorghum bicolor”, “Sorghum bicolor” ,’Sporobolus cordofanus’ ,’Sporobolus 
cordofanus’), times = 100) 
Pixel_Counts$Grazing_Area<-rep(c(“Grass Bank”, “Livestock Zone”), times = 100) 
 
# reformat counts 
Pixel_Counts$Counts<-Pixel_Counts$`cellStats(masked_class, sum)` 
 
# get mean and standard deviation of pixel counts.  
Mean_SD_Pixel_Counts<-
ddply(Pixel_Counts,~Species+Grazing_Area,summarise,mean=mean(Counts),sd=sd(Counts)) 
 
# add model information variables to data set 
Mean_SD_Pixel_Counts$Model<-c(“RF Wet Season Single Image”) 
Mean_SD_Pixel_Counts$Dataset<-c(“Wet Season Single Image”) 
 
# write dataset  
write.csv(Mean_SD_Pixel_Counts, “Wet_Season_Single_Image_RF_Pixel_Counts.csv”) 
 
# create bar chart of pixel counts as percentage coverage of each area. 
 
# subset data for each of the grazing areas 
grass_bank <- Pixel_Count_a[Pixel_Count$Grazing_Area==”Grass Bank”,] 
livestock_zone <- Pixel_Count[Pixel_Count$Grazing_Area==”Livestock Zone”,] 
 
# get total number of pixels in grass bank 
grass_bank<-sum(grass_bank$mean) 
 
# get total number of pixels in livestock_zone 
livestock_zone<-sum(livestock_zone$mean) 
# get mean number of pixels of each class in each grazing area  
Pixel_Count_a$Percentage <- (Pixel_Count_a$mean/(sum(Pixel_Count_a$mean)))*100 
 
# get mean value of each class pixel count as percentage coverage of grazing areas.   
Pixel_Count_a$Graz_Percentage <- (Pixel_Count_a$mean/Pixel_Count_a$grazing_size)*100 
 
# plot bar graph of pixel counts as percentage with standard deviation 
ggplot(data=Mean_SD_Pixel_Counts, aes(x=Mean_SD_Pixel_Counts$Species , y=mean)) + 
 geom_bar(colour=”black”,stat=”identity”, alpha=1, 
fill=c(“grey55”,”olivedrab4”,”seagreen4”,”grey80”,”khaki”,”navajowhite1”, ‘tomato4’, ‘orange3’, 
‘yellowgreen’,”grey55”,”olivedrab4”,”seagreen4”,”grey80”,”khaki”,”navajowhite1”, ‘tomato4’, ‘orange3’, 
‘yellowgreen’)) + 
 guides(fill=FALSE) + theme_bw() + 
 ylab(“Pixel Counts”) + xlab(“Species”) + 
 theme(axis.text.x = element_text(size=20), axis.text.y = element_text(angle = 0, hjust = 1, size=20)) + theme(text = 
element_text(size=20)) +  
geom_errorbar(aes(ymin=mean-sd, ymax=mean+sd), width=.2, position=position_dodge(.9)) +  
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facet_wrap(~Grazing_Area+Model) + 
 theme(axis.text.x = element_text(angle = 55, hjust = 1)) 
 
# save plot 
ggsave(“RF_Wet_Season_Single_Image_Pixel_Counts.pdf”) 

• .  
14.7 Classification Maps  
 

• Production of classification map 
 
# take most frequent value of each cell in stack of classification predictions and create raster containing those 
values only. 
 
# function for collecting most frequent value of each pixel in each layer of prediction stack of rasters. 
Mode <- function(x) { 
  ux <- unique(x) 
  ux=ux[!is.na(ux)] 
  ux[which.max(tabulate(match(x, ux)))] 
} 
 
# apply function to classification prediction stack of rasters  
rf_wet_season_single_image_prediction=calc(prediction_raster, fun=Mode) 
 
# write raster of predicted values.  
writeRaster(rf_wet_season_single_image_prediction, “RF_Wet_Season_Single_Image_Raster.tif”, overwrite=TRUE) 
 
 
# shape file for plotting 
GA_Boundaries_sf <- readOGR(‘Only_conservation_merge_and_dry_season’) 
 
Check crs of shp file 
crs(GA_Boundaries_sf) 
 
# check crs of raster 
crs(rf_wet_season_single_image_prediction) 
 
# crop and mask raster to shapefile (bounding box only) 
26radien_rf_single_image_preds <- crop(rf_wet_season_single_image_prediction, GA_Boundaries_sf) 
#mask raster to shape file  
crop_mask_rf_single_image_preds <- mask(26radien_rf_single_image_preds, GA_Boundaries_sf) 
#convert raster to dataframe 
crop_mask_rf_single_image_preds <- as.data.frame(rasterToPoints(crop_mask_rf_single_image_preds)) 
 
# change variable names and check data 
names(crop_mask_rf_single_image_preds)[1:2] <- c(“Easting”, “Northing”) 
head(crop_mask_rf_single_image_preds) 
unique(crop_mask_rf_single_image_preds$layer) 
 
# plot classification map.  
ggplot(data=crop_mask_rf_single_image_preds) +  
  geom_tile(data = crop_mask_rf_single_image_preds, alpha = 0.8, aes(x = Easting, y = Northing, fill = layer)) + 
scale_fill_gradientn(colours=c(“grey55”,”olivedrab4”,”seagreen4”,”grey80”,”khaki”,”navajowhite1”, ‘tomato4’, 
‘orange3’, ‘yellowgreen’), breaks = c(1,2,3,4,5,6,7,8)) + 
  geom_polygon(data = GA_Boundaries_sf, aes(x = long, y = lat, group = group), colour = “black”, fill = NA) + 
  labs(fill = “Species”, size=20) + theme_bw() +  
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  theme(axis.text.x = element_text(colour=”black”,size=20),axis.title.x= element_text(colour=”black”,size=20), 
axis.text.y = element_text(colour=”black”,size=20), axis.title.y= element_text(colour=”black”,size=20)) +   
  theme(panel.background = element_rect(fill = “grey95”,colour = “grey95”,size = 0.5, linetype = “solid”), 
panel.grid.major = element_line(size = 0.5, linetype = ‘solid’,colour = “grey70”), panel.grid.minor = element_line(size 
= 0.25, linetype = ‘solid',colour = "grey70")) + 
  coord_equal()  
 

15 Summary 
 
The methodologies employed in the various components of this paper were in some 
cases lengthy and complex. Given the open source nature of the software and 
programming languages used in the study, it is hoped that this technical report 
will facilitate researchers to have confidence in conducting studies with supervised 
machine learning on remote sensing imagery (Maxwell et al., 2018).  
 
The success of this paper was to some degree dependent on an NGO operating in 
a remote region of a foreign country. The ground reference data were collected over 
eight non-consecutive days by SORALO resource assessors in Southern Kenya. 
During data collection at least two people and one vehicle were required, one 
driver and one resource assessor. The volume of resources provided by SORALO 
were therefore substantial, however the process of data collection was itself 
simple. The success of this paper demonstrates, that with a simple ground 
reference data collection protocol, the resources to carry it out and the 
technological knowledge required to carry out the methodologies outlined above 
accurate, maps of important biophysical components of the Earth’s surface can be 
produced. These maps can be produced relatively quickly with the information 
contained in this report and can be used as an important tool for monitoring and 
informing environmental sustainability practices and research.  
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17 Appendix A 
 
Mapping Vegetation Data Sheet      Date________ 
 
 
Species / Cover Type Point/Track ID Picture ID Percent 
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