

Supporting document – Effects of seasonality and classifier on the accuracy of
grazing resource and land degradation maps in a savanna ecosystem

1 Table of Contents

1 Table of Contents…………………………………………………………………...2
2 Table of Figures and Tables……………………………………………………….3
3 Introduction………………………………………………………...……………….4
4 Format of Report………………………..…………………...………………….….4
5 Software……………….……………………………………………...……………..4
6 Field Data Collection Protocol…………………………………………………….5
7 Coordinate Extraction from Google Earth Imagery…….……………………..8
8 Format Ground Reference Data…………………………….……….……………9
9 Sentinel -2 Image Selection……….…………………………………………......10
10 Image Downloading……………………………………………...….…………....12
11 Sen2Cor Processing……………………………………………...…..…………...13
12 Cloud Masking………….…………………………………...……….…………....13
13 Image Cropping and Image set Creation………………………………….…...15
14 Classification……………………………………………...…………..…………..17

14.1 Formatting Images and Reference Data……………………….17
14.2 Hyperparameter Optimisation……………………………........19
14.3 Classification Loop………………………………………………..24
14.4 Formatting OA and Kappa Accuracy Statistics….……………25
14.5 Confusion Matrix Production...…………………...…..…...……27
14.6 Class Proportions Across Grazing Areas……………….....…...29
14.7 Classification Maps……………………….………......………….31

15 Summary……………………………………………...……………………………33
16 References……………………………………………...…………………………..33
17 Appendix A: Mapping Vegetation Data Sheet……………………………...…35

Frederick Hunter Technical Report

 2

2 Table of Figures and tables

Figures Description
Figure 1 Photograph of a Prosopis shrub.
Figure 2 An illustration of a 20m by 20m plot of Prosopis and an indication

of where to take the GPS point.
Figure 3 An illustration of a large patch of Prosopis with multiple 20m by

20m areas and an indication of where to take the GPS point.
Figure 4 An illustration of a large dense patch of Prosopis with an

indication of how to take the GPS track around the patch.
Figure 5 Photograph of an Acacia tree.
Figure 6 Photograph of Sorghum bicolour grass.
Figure 7 Photograph of Cynodon plectostachyus grass.
Figure 8 Photograph of Sporobolous cordofanus grass.
Figure 9 Photograph of a Ficus sur tree.
Figure 10 Google earth imagery showing dense patch of fig trees.
Figure 11 RGB images showing the full extent of the Sentinel-2 images

selected for inclusion in the analysis.
Figure 12 An example of a reclassified Fmask raster as a cloud and water binary mask

for the image acquired on 14/05/2018. Cloud and water are shown in light
grey.

Figure 13 An example of the cropped and masked images for all nine utilised bands, in
this case for the image acquired on 14/05/2019.

Figure 14 Optimisation curves for mtry hyperparameter using Random
Forest.

Figure 15 Optimisation curves for cost hyperparameter using SVM with
linear kernel.

Figure 16 Optimisation curves for cost and sigma hyperparameter using
SVM with radial kernel.

Figure 17 Confusion matrices for all combinations of classifier and image set
Figure 18 The proportional cover of classes in the two grazing areas for all

combinations of classifier and image set.
Figure 19 Classification maps for every classifier and image set combination

showing the spatial distribution of classes across the seasonal
grazing areas.

Tables Description
Table 1 R packages and Python modules utilised in the analysis and their

description.
Table 2 Values included in the manual grid of hyperparameter values for

RF models.
Table 3 Values included in the manual grid of hyperparameter values for

SVM Linear kernel models.
Table 4 Values included in the manual grid of hyperparameter values for

SVM Radial kernel models.

Frederick Hunter Technical Report

 3

3 Introduction

This technical report is a supporting document for the research paper “Effects of
seasonality and classifier on the accuracy of grazing resource and land
degradation maps in a savanna ecosystem”. The focus of the report is to document
the methodology of the research paper in full, and to present results not found in
the research paper. The methods are outlined in such a way that all aspects of the
methodology could be repeated as this becoming increasingly important in light of
the repeatability crisis (Konkol et al., 2019).

4 Format of Report

All readable text is presented in font – Century - font size 12.
Code from all programming languages is presented in – InaiMathi - font size 10.
Annotation in code is prefixed with – #

5 Software

In as far as was possible open access software and platforms were used in
conducting the study.

The following programs were used.

• R version 3.5.3 - IDE R Studio
• Python Version 3.7.3 - IDE Spyder
• JavaScript - Google Earth Engine Code Editor
• Google Earth Pro - Version 7.3

Table 1: R packages and Python modules utilised in the analysis and their description.

Name Language Description Reference
caret R Model construction

and comparison
Kuhn et al., 2019

date Python Date time functions NA
geopandas Python

Geographic data
processing

NA

ggmap R Map production Kahle, D and
Wickham, H., 2012

ggplot2 R Graphics Package Wickham 2016
GISTools R Spatial data analysis Brunsdon and Chen

2014
numpy Python Data processing Oliphant 2006
pandas Python Data processing McKinney 2010
raster R Raster manipulation

and analysis
Hijmans 2019

rasterio Python Raster analysis Gillies 2013
rgdal R Formatting and

transformation of
geographic data

Roger et al 2019

sentinelsat Python Download Sentinel-2
imagery

NA

shapely Python Data manipulation NA

Frederick Hunter Technical Report

 4

snow R Paradelle processing Tierney et al., 2018
sp R Classes and methods

for spatial data:
points, lines,
polygons and grids

Pebesma and Bivand
2005

subprocess Python Execute terminal
commands in python

NA

tidyr R Data manipulation
and formatting

Wickham and Henry
2019

6 Field Data Collection Protocol

This data collection protocol was written for the resource assessors employed by
the South Rift Association of Land Owners, a Kenyan NGO. The resource
assessors have limited technical and scientific knowledge, and therefore the
language used in the protocol reflects this constraint in efficient communication.

Aim
To inform the resource assessors at Lale’enok Resource Centre how to collect the
data required to map several plant species.

Background
Using images taken by satellites it is possible to map species of grass, herb, shrub
and trees across large areas. Mapping these types of vegetation is important for
analysing changes in the abundance and location of plant species over time. These
maps can be used to understand livestock and wildlife movements and grazing, to
monitor grazing quality and inform land management decisions.

To map plant species ground reference data are needed. Ground reference data is
knowledge of the plant species found at a particular location. This knowledge will
allow us to match parts of the image taken from satellite with the information on
the ground vegetation.

Materials Required
GPS
Batteries
Measuring Tape
Datasheet Print Out
Vehicle

Before starting this project download all the data from the GPS to a computer and
then remove all data from the GPS. This reduces the chance of confusing data
points or running out of memory while in the field.

Method
To map the vegetation species, we need GPS coordinates of areas that are at least
20meters by 20meters and are covered by a single species. We also need GPS
coordinates of areas that contain mixed grass species, mixed herb species, mixed
tree species, mixed herb/grass/shrub/tree species, bare soil and rock.

Frederick Hunter Technical Report

 5

Before data collection you will need to print out the data sheet found at the end of
this document. You may also copy the data sheet with pencil/pen on some blank
paper to use if the printer is not working.

You will also need to create a folder on the computer named - Mapping Vegetation.
At the end of each day download all of the GPS data, points and tracks, and place
them in the folder named - Mapping Vegetation. Inside the Mapping Vegetation
folder create another folder and name it with the date for which the data has been
collected. Please take a picture of the data sheet (no need to enter the data into
excel). And if there is internet send the data and picture to me by email,
(freddie_hunter@live.co.uk).

Prosopis Data Collection
Areas of Prosopis that can be used in the study need
to be at least 20meters by 20meters in size. It is very
important that the area is dense with Prosopis
(Figure 1). If you were to be looking down like a bird
on the area, you would mostly see Prosopis. No large
acacia trees/shrubs can be present. In the data
sheet there is a column where you need to estimate
the percentage covered by the species.

When you find an area that is at least 20meters by
20meteres you will need to go into the area and take
a GPS coordinates of the middle of the area. It is
very important that you are in the middle of the
20m by 20m area (Figure 2). Hold the GPS
high in the air and stand still while you
take the coordinates.

It is important that the area is at least
20m by 20m, but you do not need to
accurately measure the size of it, just be
sure that it is big enough. Use the
measuring tape to get a rough estimate if
you are unsure. You do not need to waste
time accurately measuring the size of the
area a rough estimate is fine.

Figure 2: An illustration of a 20m by 20m plot
of Prosopis and an indication of where to take
the GPS point.

Figure 1: Photograph of a
Prosopis shrub.

Frederick Hunter Technical Report

 6

If the area you have found is larger than 20m by
20m, such as 40m by 40m, please take further
GPS coordinates. But be sure to move at least 20
meters away from where you have taken previous
GPS points (see figure 3).

For areas that are very big, or are very dense with
Prosopis, you can instead of going into the middle
of each 20m by 20m part of the large area, you can
walk very closely around the edge while tracking
your path with the GPS (see figure 3).

In order to map the species between 50 and 150
GPS points for Prosopis are required. This data
can be made up of individual data points from
individual patches and
those tracks from larger
areas.

Every time you take a
new GPS point or track
please record the ID in
the data collection
sheet, along with the
species name, data type
(point or track).

Acacia
For Acacia trees (Figure 5), do exactly the
same as what is written for Prosopis.

Sorghum bicolour
For Sorghum bicolour (Figure 6) grass species, do exactly the same as is written
for Prosopis.

Figure 3: An illustration of a
large patch of Prosopis with
multiple 20m by 20m areas
and an indication of where to
take the GPS point.

Figure 4: An illustration of a large dense patch of Prosopis with
an indication of how to take the GPS track around the patch.

Figure 5: Photograph of an Acacia tree.

Figure 6: Photograph of Sorghum bicolour grass.

Frederick Hunter Technical Report

 7

Cynodon plectostachyus
For Cynodon plectostachyus (Figure 7)
grass species, do exactly the same as is
written for Prosopis.

Sporobolous cordofanus
For Sporobolous cordofanus (Figure 8) grass
species, do exactly the same as is written for
Prosopis.

Control Data
Control data are different from the individual species data and should be much
faster and easier to collect. For control data 150 GPS points or more of areas, that
do not contain Prospis spp, Acacia spp, Cynodon plectostachyus , Sorghum bicolour
or Sporobolous cordofaunus are needed. Instead of containing the focal species,
control point areas can be mixed vegetation types, mixed trees, mixed shrubs,
mixed herbs, mixed grasses, bare ground, rock, or any combination of these. The
GPS points for control data need to be a mixture of these types and the type of
control data being collected entered into the data sheet.

Please find data entry sheet in Appendix A.

End of Protocol

7 Coordinate Extraction from Google Earth Imagery.

Data for the fig tree species Ficus sur
(Figure 9) were collected via Google
Earth imagery (GEI). Only points
with a high confidence of fig tree
presence were collected.

Figure 7: Photograph of Cynodon plectostachyus
grass.

Figure 8: Photograph of Sporobolous cordofanus grass.

Figure 9: Photograph of Ficus sur tree.

Frederick Hunter Technical Report

 8

The fig trees are clearly identifiable in
comparison to other vegetation, which is
an essential requirement for collecting
reference data remotely by this method
(Figure 10).

Point coordinates obtained remotely via
GEI were exported as KML. The
following Python function extracts

coordinates from KML files containing, points or lines and writes a csv file with
two columns one for latitude and another for longitude.

from osgeo import ogr
import pandas as pd

def get_coords(kml): # get all coordinates from kml.
 coords = [] # open list to save coordinates in
 for layer in kml:
 for feature in layer:
 geometry = feature.GetGeometryRef()
 if geometry != None:
 for i in range(0, geometry.GetPointCount()):
 coords.append(geometry.GetPoint(i))
 df = pd.DataFrame(coords)
 return df.to_csv (r'output.csv', index = None, header=True)
path to .kml file/
kml=ogr.Open('Dissertation/SORALO_data/control_data/Mixed_veg/Mixed_veg.kml')

get_coords(kml)

Columns containing the relevant data class and date of data collection
information is then added to the reference data along with class information.

8 Format Ground Reference Data

Ground reference data were formatted and transformed to Sentinel-2 image
coordinate reference system using the SP R package (Roger et al 2013). All data
consisting of row ID, latitude, longitude, class and data of data collection where
combined to a single csv file.

The reference data was formatted and transformed with the following R code.

libraries
library(GISTools)
library(rgdal)

Figure 10: Google Earth imagery showing a dense
patch of fig trees (Ficus sur). The polygon encloses
a particularly large patch of fig trees. Stars
indicate examples of locations where Ficus sur
training data was collected.

Frederick Hunter Technical Report

 9

import data.
df<-read.csv("All_Reference_Data.csv", stringsAsFactors = FALSE)

structure of data
str(df)

number of classes
levels(df$Class)

number of samples in each class
Summary(df$Class)

get coordinate columns
coords <- df[,c(3,4)

create spatial points object
spatpoint<- SpatialPoints(coords, proj4string=CRS("+proj=longlat"))

transform CRS to UTM
transoformed_spatpoint<- spTransform(spatpoint, CRS("+proj=utm +zone=36 +south +datum=WGS84 +units=m
+no_defs +ellps=WGS84 +towgs84=0,0,0"))

get new coords
coords_df_T<-as.data.frame(transoformed_spatpoint @coords)

add to data frame
df$Easting <- coords_df_T$lon
df$Northing <- coords_df_T$lat

write new csv file with transformed coords
write.csv(df, "Ground_Ref_Data_Transformed.csv")

9 Sentinel-2 Image Selection

Selection of images with acceptable levels of cloud cover over the study site
(<10%) was accomplished by viewing the full extent and resolution of an S1
image in the Google Earth Engine code editor.

Selecting images for this project was conducted using the JavaScript code editor
from Google Earth Engine (GEE). This editor allows full extent and resolution
viewing of Sentinel-2 images. As a result, assessing cloud cover of the study area
is more effective in GEE than quick view of images via the Sentinel-2 data
repository found.

GEE is a powerful open access cloud computing service for remote sensing image
analyses (https://earthengine.google.com/). The following process outlines how
images for selected area and date range can be filtered by cloud coverage and
viewed prior to download. The image obtained within the date range with least
cloud coverage is displayed.

The following steps were followed to identify the most useful images over the 2018 growing
season.

Frederick Hunter Technical Report

 10

- The polygon tool in the code editor was used to draw an area around the

ROI. This imported a variable named geometry to the code editor.
- Searched sentinel 2 in the search bar and selected import sentinel 2 MSI:

Multi-Spectral Instrument, level 1C (note 1C means not atmospherically
corrected).

- Code below was entered into the code editor and date range of interest
modified to suit dates of interest (NB If no image is returned the date range
may be too constrained). The code overlays the least cloudy image obtained
within the date range specified.

//Function used to filter images by cloud percentage.
var image = ee.Image(imageCollection
.filterDate("2018-01-01", "2018-12-30")
.filterBounds(geometry)
.sort("CLOUD_COVERAGE_ASSESSMENT") // displays least cloudy image first.
.first());
print("A Sentinel-2 scene:", image);

var trueColour = {
 bands:["B4", "B3", "B2"],
 min:0,
 max:3000
};
Map.addLayer(image, trueColour, "True Colour Image")

The images in figure 5 were selected because they contained low cloud coverage
over the study area and because the time interval between image acquisition was
considered large enough for each image to contain different spectral information.

The image acquired on the 14/05/2018, shown in figure 11, is visibly greener than
all other images indicating that vegetation biomass is greater in this image
compared to all others. This was used in all single image classifications because
this image represents the image acquired closest to peak biomass, and images
used at peak biomass have previously been shown to produce greatest
classification accuracy in single image classification models (Feilhauer et al., 2013:
Rapinel et al., 2019: Shoko and Mutunga 2017).

Frederick Hunter Technical Report

 11

10 Image Download

Using the date of image acquisition, images were downloaded with the SentinelSat
Python package. A function was written to automate image downloading. The
function require a .geojson file (which was created and downloaded from this site
- http://geojson.io/#map=2/20.0/0.0) of the study area, image acquisition date and the
tile id. Using tile id restricts downloading of multiple scenes of the same region in
the same day. Products are downloaded to the current directory.

from sentinelsat import SentinelAPI, read_geojson, geojson_to_wkt
import os
import subprocess
import geopandas as gpd
from datetime import date
import pandas as pd
from shapely import wkt

Path to geojson
AOI_PATH =
'/Users/freddiehunter/Work/GIS_Course_Work/Dissertation/Image_Processing/CMD_Download/AOI_BOX.geojson'

Date of interest
Day = ('20180514', date(2018, 5, 24)) # format date as such.

Tile ID of interest
Tile_ID = 'T36MZC'

def get_product(AOI_PATH, Day, Tile_ID):
 api = SentinelAPI(username, 'password','https://scihub.copernicus.eu/dhus')

Figure 11: RGB images showing the date and full extent of the Sentinel-2
images selected for inclusion in the analysis. The study site is the area found
between the two lakes in the north of the images.

14/05/2018 29/05/2018 28/06/2018 07/08/2018

01/10/2018

Frederick Hunter Technical Report

 12

 footprint = geojson_to_wkt(read_geojson(AOI_PATH))
 products = api.query(footprint,
 date = Day,
 platformname='Sentinel-2',
 area_relation = 'Contains')
 df = pd.DataFrame.from_dict(products).T
 product_df = gpd.GeoDataFrame(df, geometry = df['footprint'].apply(wkt.loads))
 product_df["Product_ID"] = product_df.index
 tilename = product_df['filename']
 tile_id = str(tilename).split('_')
 tile_id = tile_id[5::6]
 product_df['Tile_ID'] = Tile_ID

 return product_df

Run function
df = get_product(AOI_PATH, Day, Tile_ID)

Download product
api.download_all(df['Product_ID'])

11 Sen2Cor Processing

Sen2Cor is an algorithm for converting Sentinel-2 images from level one products,
to level two products. The algorithm corrects for atmospheric effects, such that
reflectance values are in theory the same as those that would be obtained at the
Earth surface.

In this study the stand alone installer version 02.05.05 was used, and can be
installed with the following link (http://step.esa.int/main/third-party-plugins-
2/sen2cor/: Main-Knorn et al., 2017). After Sen2Cor instillation a terminal
command can be used to run the algorithm and parameters are available to select
the spatial resolution of the output images.

Within terminal set the directory to Sen2Cor-02.05.05 and run following code
with a path to the .safe level one directory.

bin/L2A_Process --resolution 20
/Users/freddiehunter/Work/GIS_Course_Work/Dissertation/Image_Processing/Sent2_data/Data/1C/S2A_MSIL1C_20180
524T073731_N0206_R092_T36MZC_20180524T113104.SAFE

12 Cloud Masking

There are several cloud masks available for Sentinel-2 imagery. The Fmask
developed by Zhu and Woodcock (2012) is considered the most accurate for
Sentinel 2 (Frantz et al 2018). Installing and implementing the Fmask with the
command line on a macOS can be achieved using the following commands in
terminal. The sequence requires the prior installation of Python via Anaconda or
Conda min, GDAL, RIOS, Numpy and Scipy.

Setting up an environment that contains all required libraries.

Frederick Hunter Technical Report

 13

- conda create -n senEnv rois
- source activate senEnv
- conda –add channels conda-forage
- conda install python-fmask

The environment is activated with

- Source activate senEnv.

Running the Fmask.

Set directory to where level1 products are stored. The mask requires a Sentinel-2
level1.safe directory.

- fmask_sentinel2Stacked.py -o utput_name.img --safedir --pixsize 20 --cloudbufferdistance 150 --
shadowbufferdistance 150 sentinel1c_directory.safe

Cloud and cloud shadow buffers are set to 150 pixels and pixel size to 20.

The resulting raster contains classes, cloud, cloud shadow, water and clear sky
pixel. To reclassify and write a geo referenced raster to produce a binary raster
mask the following python function was used.

import numpy as np
import rasterio as rio

where cloud.img is your fmask
path = '../FMASK_Processing/FMASK_Python_reclass/cloud.img'

def reclassFmask(path):
 raster = rio.open(path)
 naip_meta = raster.profile
 band1 = raster.read(1)
 band1 = band1.astype(np.uint8)
 # collect index arrays
 one_or_less = band1_large <= 1
 from_2_to_5 = (1 < band1_large) & (band1_large <= 5)
 greater_6 = band1_large >= 6
 # now modify target array
 band1_large[one_or_less] = 10
 band1_large[from_2_to_5] = 20 # values classified as 20 are to be masked
 band1_large[greater_6] = 10

 with rio.open('fmask_reclass.tif', 'w', **naip_meta) as dst:
 dst.write(band1, 1)

reclassFmask(path)

Frederick Hunter Technical Report

 14

13 Image Cropping and Image Set Creation

The following R code imports the Sen2Cor corrected image bands, creates a stack
of those bands, crops to the area extent of the shapefile and masks the stack
according to the reclassified Fmask raster. Combinations of image stacks of the
same date are then stacked together to form time series image sets.

required libraries
library(raster)
library(rgdal)

import area of interest shapefile
extent<-readOGR(“Raster_Crop_Extent”)
crs(extent)

transform projection of shapefile to that of satellite image.
Extent <- spTransform(extent, CRS(“+proj=utm +zone=36 +south +datum=WGS84 +units=m +no_defs
+ellps=WGS84 +towgs84=0,0,0”))
plot(extent, axes=T)

create bounding box of AOI
extent_box<-bbox(extent)

Figure 12: An example of a reclassified Fmask raster as a cloud and water binary mask for the image
acquired on 14/05/2018. Cloud and water are shown in light grey.

Frederick Hunter Technical Report

 15

• The following section of code is representative of the process applied to
each of the five images.

import bands
May 14 2018
b02 <- raster(“L2A_2018_14_05/T36MZC_20180514T073611_B02_20m.tif”)
b03 <- raster(“L2A_2018_14_05/T36MZC_20180514T073611_B03_20m.tif”)
b04 <- raster(“L2A_2018_14_05/T36MZC_20180514T073611_B04_20m.tif”)
b05 <- raster(“L2A_2018_14_05/T36MZC_20180514T073611_B05_20m.tif”)
b06 <- raster(“L2A_2018_14_05/T36MZC_20180514T073611_B06_20m.tif”)
b07 <- raster(“L2A_2018_14_05/T36MZC_20180514T073611_B07_20m.tif”)
b8A <- raster(“L2A_2018_14_05/T36MZC_20180514T073611_B8A_20m.tif”)
b11 <- raster(“L2A_2018_14_05/T36MZC_20180514T073611_B11_20m.tif”)
b12 <- raster(“L2A_2018_14_05/T36MZC_20180514T073611_B12_20m.tif”)

create stack of bands
stack_may14<-stack(b02,b03,b04,b05,b06,b07,b8A,b11,b12)
#check crs
crs(stack_may14)

crop according to bounding box.
Crop_stack_may14_mask<-crop(stack_may14, extent_box)

import cloud fmask.
Mask_may_14 <- raster(“L2A_2018_14_05/reclass_14_05_2018_FMASK.tif”)

crop fmask to same extent as img
crop_mask_may_14_<-crop(mask_may_14, extent_box)

mask values that = 20. This is the value assigned to pixels that need to be masked.
Crop_mask_may_14_[crop_mask_may_14_ == 20] <- NA

mask stack by cloud mask
stack_may_14 <- mask(crop_stack_may14_mask, mask = crop_mask_may_14_)

#remove unnecessary objects from R environment
rm(b02,b03,b04,b05,b06,b07,b8A,b11,b12,stack_may14, crop_mask_may_14_, mask_may_14)

• For brevity only code for a single image is presented. The same process

was applied to all five images.

images to include in model – Wet season single image
datasetA <- stack_may_14

for data included in model – Wet season time series
datasetB <- stack(stack_may_14, stack_may_29)

for data included in model – Wet season time series
datasetC <- stack(stack_may_14, stack_may_29, stack_june_28, stack_august_07, stack_october_01)

Frederick Hunter Technical Report

 16

14 Classification

14.1 Formatting Images and Reference Data

The R code presented below outlines the implementation of classifications
(Random Forest and Support Vector Machine (SVM) with both linear and radial
kernel), collection of statistics, pixel counts, confidences maps and the production
of figures.

Code was obtained and modified from the following sources.
http://amsantac.co/blog/en/2016/10/22/model-stacking-classification-r.html
https://machinelearningmastery.com/tuning-machine-learning-models-using-the-caret-r-
package/
https://dataaspirant.com/2017/01/19/support-vector-machine-classifier-implementation-r-
caret-package/
https://machinelearningmastery.com/how-to-estimate-model-accuracy-in-r-using-the-caret-
package/

The example code implements RF for the wet season single image dataset. Where
svmLinear and svmRadial implementation differs from RF the alternative code is
also supplied.

Figure 13: An example of the cropped and masked images for all nine utilised bands, in this case for the
image acquired on 14/05/2019.

Frederick Hunter Technical Report

 17

• Libraries required.

library(ggplot2)
library(caret)
library(raster)
library(snow)
library(rgdal)
library(plyr)

• Reading of formatted and transformed ground reference data.

import ground ref data ----
df<-read.csv(“Ground_Ref_Data_Transformed.csv”)

check data structure
str(df)

check levels and sample sizes of classes
summary(df$Class)

turn ref data into spatial pointsdataframe
get coordinates
coords <-df[,c(2,3)]

format as spatial dataframepoints
ref_data<-SpatialPointsDataFrame(coords, proj4string=CRS(“+proj=utm +zone=36 +south +datum=WGS84 +units=m
+no_defs +ellps=WGS84 +towgs84=0,0,0”), df)

• Importing cropped and masked images.

Import image set
datasetA <- stack(stack_may_14)
crs(datasetA)

• For all wet season time series models the following code was used

datasetB <- stack(stack_may_14, stack_may_29)

• For all multi-season time series models the following code was used.

datasetC <- stack(stack_may_14,stack_may_29,stack_june_28, stack_august_07, stack_october_01)

set bands names
names(datasetA) <- c(“B2”,”B3”,”B4”,”B5”,”B6”,”B7”,”B8A”,”B11”,”B12”)

• Extract pixel values from all bands according to coordinates in ground
reference data.

Extract training data values from the image bands
ref_extracted <- as.data.frame(raster::extract(datasetA, ref_data))
ref_extracted$class<-train$Class

ensure complete cases (i.e. no broken pixels with NA values)

Frederick Hunter Technical Report

 18

ref_extracted <- train_extracted[complete.cases(ref_extracted),] # Store the complete cases subset in a new data
frame

• Split pixel value data in to training and test data.

Split data into training and testing data
Ref_split <- createDataPartition(y = ref_extracted$class, p= 0.7, list = FALSE)
training_data <- ref_extracted[Ref_split,]
testing_data <- ref_extracted[-Ref_split,]

check dimensions/size of training and testing data
dim(training_data); dim(testing_data);

14.2 Hyperparameter Optimisation

• Optimising parameters for RF.

Table 2: Values included in the manual grid of hyperparameter values for RF models. * Mtry =
the number of randomly selected predictors available at each decision tree.

prepare training scheme
#Repeated k-fold Cross Validation – 10-fold cross validation with 3 repeats
control <- trainControl(method=”repeatedcv”, number=10, repeats=3)

create tuning grid for parameter mtry
get number of bands/predicors in the model.
noPredictors<- -1 + length(training_data)

number of trees was held constant at 500.
Grid_rf <- expand.grid(mtry=c(1:noPredictors), ntree = 500))

run model
rf_wet_season_single_image_Grid <- train(class ~., data = training_data, method =”rf”, preProcess = c(“center”,
“scale”), trControl = control, tuneGrid = grid_rf, tuneLength = 1)

• Optimising parameters for SVM linear.

Table 3: Values included in the manual grid of hyperparameter values for SVM linear kernel
models.

Grid_Linear <- expand.grid(C = c(0, 0.5, 1, 2, 5, 7, 10, 15, 20, 25))

svmLinear_wet_season_single_image_Grid <- train(class ~., data = training_data, method =”svmLinear”, preProcess
= c(“center”, “scale”), trControl = control, tuneGrid = grid_Linear)

Image Set No Tree Mtry
Wet Season Single Image 500 1 - 9
Wet Season Time Series 500 1 - 18
Multi-Season Time Series 500 1 - 45

Image Set Cost
Wet Season Single Image 0, 0.5, 1, 2, 5, 7, 10, 15, 20, 25
Wet Season Time Series 0, 0.5, 1, 2, 5, 7, 10, 15, 20, 25
Multi-Season Time Series 0, 0.5, 1, 2, 5, 7, 10, 15, 20, 25

Frederick Hunter Technical Report

 19

• Optimising parameters for SVM radial.

Table 4: Values included in the manual grid of hyperparameter values for SVM radial kernel
models. * Sigma = Reach of single training instance

Grid_Radial <- expand.grid(sigma = c(0, 0.01, 0.02, 0.025, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.25, 0.5, 0.75,
0.9),C = c(0, 0.5, 1, 2, 5, 7, 10, 15, 20, 25))

svmRadial_wet_season_single_image_Grid <- train(class ~., data = training_data, method =”svmRadial”, preProcess
= c(“center”, “scale”), trControl = control, tuneGrid = grid_Radial)

• Get Model Results.

print(rf_wet_season_single_image_Grid)

• Create plot showing relationship between accuracy and hyperparameter

value.

pdf(“RF_Wet_Season_Single_Image_mtry_tuning.pdf”)
plot(rf_wet_season_single_image_Grid, cex=2, pch=16, lab.cex=4, cex.lab=3, cex.axis=3)
dev.off()

• Find and set hyperparameter values.

set optimal mtry value
metry_value = rf_wet_season_single_image_Grid$bestTune$mtry

• For svmLinear find and set hyperparameter values.

set optimal C value
C_value = svmLinear_wet_season_single_image_Grid$bestTune$C

• For svmLinear find and set hyperparameter values.

set optimal C value
C_value = svmRadial_wet_season_single_image_Grid$bestTune$C
set optimal Sigma value
Sigma_value = svmRadial_wet_season_single_image_Grid$bestTune$Sigma

Image Set Cost Sigma
Wet Season
Single Image

0, 0.5, 1, 2, 5, 7,
10, 15, 20, 25

0, 0.01, 0.02, 0.025, 0.03, 0.04,
0.05, 0.06, 0.07, 0.08, 0.09, 0.1,
0.25, 0.5, 0.75, 0.9

Wet Season
Time Series

0, 0.5, 1, 2, 5, 7,
10, 15, 20, 25

0, 0.01, 0.02, 0.025, 0.03, 0.04,
0.05, 0.06, 0.07, 0.08, 0.09, 0.1,
0.25, 0.5, 0.75, 0.9

Multi-Season
Time Series

0, 0.5, 1, 2, 5, 7,
10, 15, 20, 25

0, 0.01, 0.02, 0.025, 0.03, 0.04,
0.05, 0.06, 0.07, 0.08, 0.09, 0.1,
0.25, 0.5, 0.75, 0.9

Frederick Hunter Technical Report

 20

• The following code sets up empty data frames and rasters with which to fill
the results of running 100 classification replicates.

#data frame for overall accuracy and kappa values
OA_mean_rf <- data.frame()

data frame for confusion matrix values
df_CM_rf_ <- data.frame()

data frame for all class specific statistics
df_byClass_rf_wet_season_single_image<-data.frame()

prepare blank raster for classification prediction
prediction_raster<-datasetA$B2
prediction_raster[prediction_raster > 0] <- 0

import shapefiles for pixel counts
wet_season <- readOGR(‘Wet_Season_Area_Only/’)
plot(wet_season)
crs(wet_season)

transform shapefile crs
wet_season<-spTransform(wet_season, CRS(“+proj=utm +zone=36 +south +datum=WGS84 +units=m +no_defs
+ellps=WGS84 + towgs84=0,0,0”))
crs(wet_season)

dry_season <- readOGR(‘Conservation_And_Buffer_Only_Merged/’)
plot(dry_season)
crs(dry_season)

transform shapefile crs
dry_season<-spTransform(dry_season, CRS(“+proj=utm +zone=36 +south +datum=WGS84 +units=m +no_defs
+ellps=WGS84 + towgs84=0,0,0”))
crs(dry_season)

dataset for storing count values
Pixel_Counts <- data.frame()

collect variable importance data
var_imp <- data.frame()

14.3 Classification Loop

• Classification loop performed 100 times. Results from each loop are stored
in the corresponding data frames created above.

set seed value to force randomisation per loop run.
Seed = 100

start of loop ----
for(I in 1:100){

 # set seed
 seed<-1+seed # seed number increased by 1 with each loop repeat.

Frederick Hunter Technical Report

 21

 Set.seed(seed) # set the seed.

 # Randomly split data into training and testing data
 intrain <- createDataPartition(y = train_extracted$class, p= 0.7, list = FALSE)
 training_data <- train_extracted[intrain,]
 testing_data <- train_extracted[-intrain,]

• Set hyperparameters as optimal values found in training and validation of

model.

 Grid_rf <- expand.grid(mtry = c(metry_value))

• For svmLinear.

 Grid_svmLinear <- expand.grid(C = c(C_value))

• For svmRadial.

 Grid_svmRadial <- expand.grid(C = c(C_value), Sigma = c(Sigma_Value))

• Training models.

 # train model with tune length = 1 (forces model fit once)
 rf_wet_season_single_image <- train(class ~., data = training_data, method =”rf”, preProcess = c(“center”,
“scale”),tuneGrid = grid_rf, tuneLength = 1, ntree = 500)

• Get Overall Accuracy and Kappa accuracies.

 OA_results<-as.data.frame(rf_wet_season_single_image_Grid_multi$results)
 OA_mean_rf<-rbind(OA_mean_rf, OA_results)

• Get classification predictions.

 # get predictions
 test_pred_grid <- predict(rf_wet_season_single_image, newdata = testing_data)

• Confusion matrix results.

 # get confusion matrix values
 cm_rf_ <- confusionMatrix(test_pred_grid, testing_data$class)
 cm_data_fame_rf_<- as.data.frame(cm_rf_$table)

 # append confusion matrix data to data frame
 df_CM_rf_<-rbind(df_CM_rf_, cm_data_fame_rf_)

• Predict classification map.

 # get classification map
 beginCluster() # parallelise the job
 loop_predictions <- clusterR (datasetA, raster::predict, args = list(model = rf_wet_season_single_image))
 endCluster()

Frederick Hunter Technical Report

 22

 # add classification prediction map as layer to stack of rasters. One layer for every run of the loop.
 Prediction_raster<-stack(loop_predictions,, prediction_raster)

• Count number of cells in grazing areas for each class for each run of the loop
and add to data frame.

 # method shown only for acacia for brevity.
 Acacia <- loop_predictions

 # acacia cells
 acacia[acacia != 1] <- NA # set all values not of focal class to NA.

 # count only dry season.
 # remove all pixels outside of dry season area
 masked_class<-mask(acacia,dry_season)

 # count number of pixels.
 Dry_masked_acacia<-as.data.frame(cellStats(masked_class, sum))
 Pixel_Counts<-rbind(Pixel_Counts,dry_masked_acacia)

 # remove all pixels outside of wet season area
 masked_class<-mask(acacia,wet_season))

 # count number of pixels
 wet_masked_acacia<-as.data.frame(cellStats(masked_class, sum))
 Pixel_Counts<-rbind(Pixel_Counts,wet_masked_acacia)

 # end of loop
}

14.4 Formatting OA and Kappa Accuracy Statistics

get mean and standard deviation of OA
mean(OA_mean_rf$Accuracy)
sd(OA_mean_rf$Accuracy)

get mean and standard deviation of Kappa
mean(OA_mean_rf$Kappa)
sd(OA_mean_rf$Kappa)

add variables to data set
add model type variable
OA_mean_rf$Model<-c(‘RF’)
add image set variable
OA_mean_rf$DataSet<-c(‘Wet Season Single Image’)

write dataframe
write.csv(OA_mean_rf, “RF_Wet_Season_Single_Image_OA_Kappa.csv”)

• Plotting OA and Kappa accuracy statistics.

#import data
OA_Ka<-read.csv("RF_Wet_Season_Single_Image_OA_Kappa.csv")
names(OA_Ka)
OA_Ka<-OA_Ka[,c(3:8)]

Frederick Hunter Technical Report

 23

OA_Kb<-read.csv("SVMLinear_Wet_Season_Single_Image_OA_Kappa.csv")
names(OA_Kb)
OA_Kb<-OA_Kb[,c(3:8)]
OA_Kc<-read.csv("SVMRadial_Wet_Season_Single_Image_OA_Kappa.csv")
names(OA_Kc)
OA_Kc<-OA_Kc[,c(4:9)]
OA_Kd<-read.csv("RF_Wet_Season_Time_Series_OA_Kappa.csv")
names(OA_Kd)
OA_Kd<-OA_Kd[,c(3:8)]
OA_Ke<-read.csv("SVMLinear_Wet_Season_Time_Series_OA_Kappa.csv")
names(OA_Ke)
OA_Ke<-OA_Ke[,c(3:8)]
OA_Kf<-read.csv("SVMRadial_Wet_Season_Time_Series_OA_Kappa.csv")
names(OA_Kf)
OA_Kf<-OA_Kf[,c(4:9)]
OA_Kg<-read.csv("RF_Multiple_season_time_series_OA_Kappa.csv")
names(OA_Kg)
OA_Kg<-OA_Kg[,c(3:8)]
OA_Kh<-read.csv("svmLinear_Multiple_season_time_series_OA_Kappa.csv")
names(OA_Kh)
OA_Kh<-OA_Kh[,c(3:8)]
OA_Ki<-read.csv("SVMRadial_Multiple_season_time_series_OA_Kappa.csv")
names(OA_Ki)
OA_Ki<-OA_Ki[,c(4:9)]

combine all data sets

OK_K_Complete<-rbind(OA_Ka,OA_Kb,OA_Kc,OA_Kd,OA_Ke,OA_Kf,OA_Kg,OA_Kh,OA_Ki)
data_long <- gather(OK_K_Complete, Accuracy_Measure, Value, Accuracy:Kappa, factor_key=TRUE)

#format combined dataset

levels(data_long$Accuracy_Measure)[levels(data_long$Accuracy_Measure)=="Accuracy"] <- "Overall Accuracy"
levels(data_long$Accuracy_Measure)
data_long$Accuracy_Measure<-as.character(data_long$Accuracy_Measure)
data_long[data_long$Accuracy_Measure == "Accuracy"] <- "Overall Accuracy"

plot as boxplots

ggplot(data=data_long, aes(x=Accuracy_Measure, y=Value)) + geom_boxplot(stat="boxplot", alpha=1, fill="grey80")
+ guides(fill=FALSE) + theme_bw() + ylab("Accuracy") + xlab("Accuracy Measure") + theme(axis.text.x =
element_text(size=12), axis.text.y = element_text(angle = 0, hjust = 1, size=12)) + theme(text =
element_text(size=15)) + facet_wrap(data_long$DataSet~data_long$Model)

14.5 Confusion Matrix Production

format confusion data matrix
names(df_CM_rf_)
unique(df_CM_rf_[,c(1,2)])

dt_rf_ <- as.data.table(df_CM_rf_)
mean_cm_rf_<-dt_rf_[, mean(Freq), by = list(dt_rf_$Prediction, dt_rf_$Reference)]
mean_cm_rf_<-as.data.frame(mean_cm_rf_)

Frederick Hunter Technical Report

 24

plot normal confusion matrix
ggplot(data = mean_cm_rf_, mapping = aes(x = mean_cm_rf_$dt_rf_, y = mean_cm_rf_$dt_rf_.1)) +
 geom_tile(aes(fill = mean_cm_rf_$V1), colour = “white”) +
 geom_text(aes(label = 24radie(“%1.0f”, mean_cm_rf_$V1)), vjust = 0.5) +
 scale_fill_gradient(low = “white”, high = “red”) +
 theme_bw() +
 theme(legend.position = “none”) +
 xlab(“”) +
 ylab(“”) +
 theme(axis.text.x = element_text(colour=”black”,size=15),axis.title.x= element_text(colour=”black”,size=15),
axis.text.y = element_text(colour=”black”,size=15), axis.title.y= element_text(colour=”black”,size=15)) +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
 scale_y_discrete(limits = rev(levels(mean_cm_rf_$dt_rf_.1))) + coord_equal()

save plot
ggsave(“rf_wet_season_single_image_con_mat.pdf”)

• Normalising confusion matrices

normalise confusion matrix

get sample size of each class in testing data
number_testing_samples<-as.data.frame(summary(testing_data$class))

splot data frame by class
split_mean_cm_rf_<-split(mean_cm_rf_, mean_cm_rf_$dt_rf_.1)

set values as percentage
split_mean_cm_rf_$Acacia$V1<-split_mean_cm_rf_$Acacia$V1/22*100
split_mean_cm_rf_$`Cynodon plectostachyus`$V1<-split_mean_cm_rf_$`Cynodon plectostachyus`$V1/21*100
split_mean_cm_rf_$`Ficus sur`$V1<-split_mean_cm_rf_$`Ficus sur`$V1/16*100
split_mean_cm_rf_$`General Control`$V1<-split_mean_cm_rf_$`General Control`$V1/18*100
split_mean_cm_rf_$`Grass Control`$V1<-split_mean_cm_rf_$`Grass Control`$V1/22*100
split_mean_cm_rf_$`Mixed Vegetation Control`$V1<-split_mean_cm_rf_$`Mixed Vegetation Control`$V1/22*100
split_mean_cm_rf_$Prosopis$V1<-split_mean_cm_rf_$Prosopis$V1/12*100
split_mean_cm_rf_$`Sorghum bicolor`$V1<-split_mean_cm_rf_$`Sorghum bicolor`$V1/6*100
split_mean_cm_rf_$`Sporobolus cordofanus`$V1<-split_mean_cm_rf_$`Sporobolus cordofanus`$V1/22*100

reassemble dataframe
balanced_mean_cm_rf_<-unsplit(split_mean_cm_rf_, mean_cm_rf_$dt_rf_.1, drop = FALSE)

plot normalised confusion matrix
ggplot(data = balanced_mean_cm_rf_, mapping = aes(x = balanced_mean_cm_rf_$dt_rf_, y =
balanced_mean_cm_rf_$dt_rf_.1)) +
 geom_tile(aes(fill = balanced_mean_cm_rf_$V1), colour = “white”) +
 geom_text(aes(label = 24radie(“%1.0f”, balanced_mean_cm_rf_$V1)), vjust = 0.5) +
 scale_fill_gradient(low = “white”, high = “red”) +
 theme_bw() + theme(legend.position = “none”) +
 xlab(“”) + ylab(“”) +
 theme(axis.text.x = element_text(colour=”black”,size=15),axis.title.x= element_text(colour=”black”,size=15),
axis.text.y = element_text(colour=”black”,size=15), axis.title.y= element_text(colour=”black”,size=15)) +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
 scale_y_discrete(limits = rev(levels(balanced_mean_cm_rf_$dt_rf_.1))) + coord_equal()

ggsave(“rf_wet_season_single_image_normalise_con_mat.pdf”)

Frederick Hunter Technical Report

 25

14.6 Class Proportions Across Grazing Areas

• Pixel counts data formatting and plotting

format pixel count dataframe
add columns to pixel counts
Pixel_Counts$Species<-rep(c(“Acacia”, “Acacia”, “Cynodon plectostachyus”, “Cynodon plectostachyus”,”Ficus
sur”, ‘Ficus sur’, “General Control”, “General Control”, “Grass Control” , “Grass Control”, “Mixed Vegetation”, “Mixed
Vegetation”, “Prosopis”, “Prosopis”, “Sorghum bicolor”, “Sorghum bicolor” ,’Sporobolus cordofanus’ ,’Sporobolus
cordofanus’), times = 100)
Pixel_Counts$Grazing_Area<-rep(c(“Grass Bank”, “Livestock Zone”), times = 100)

reformat counts
Pixel_Counts$Counts<-Pixel_Counts$`cellStats(masked_class, sum)`

get mean and standard deviation of pixel counts.
Mean_SD_Pixel_Counts<-
ddply(Pixel_Counts,~Species+Grazing_Area,summarise,mean=mean(Counts),sd=sd(Counts))

add model information variables to data set
Mean_SD_Pixel_Counts$Model<-c(“RF Wet Season Single Image”)
Mean_SD_Pixel_Counts$Dataset<-c(“Wet Season Single Image”)

write dataset
write.csv(Mean_SD_Pixel_Counts, “Wet_Season_Single_Image_RF_Pixel_Counts.csv”)

create bar chart of pixel counts as percentage coverage of each area.

subset data for each of the grazing areas
grass_bank <- Pixel_Count_a[Pixel_Count$Grazing_Area==”Grass Bank”,]
livestock_zone <- Pixel_Count[Pixel_Count$Grazing_Area==”Livestock Zone”,]

get total number of pixels in grass bank
grass_bank<-sum(grass_bank$mean)

get total number of pixels in livestock_zone
livestock_zone<-sum(livestock_zone$mean)
get mean number of pixels of each class in each grazing area
Pixel_Count_a$Percentage <- (Pixel_Count_a$mean/(sum(Pixel_Count_a$mean)))*100

get mean value of each class pixel count as percentage coverage of grazing areas.
Pixel_Count_a$Graz_Percentage <- (Pixel_Count_a$mean/Pixel_Count_a$grazing_size)*100

plot bar graph of pixel counts as percentage with standard deviation
ggplot(data=Mean_SD_Pixel_Counts, aes(x=Mean_SD_Pixel_Counts$Species , y=mean)) +
 geom_bar(colour=”black”,stat=”identity”, alpha=1,
fill=c(“grey55”,”olivedrab4”,”seagreen4”,”grey80”,”khaki”,”navajowhite1”, ‘tomato4’, ‘orange3’,
‘yellowgreen’,”grey55”,”olivedrab4”,”seagreen4”,”grey80”,”khaki”,”navajowhite1”, ‘tomato4’, ‘orange3’,
‘yellowgreen’)) +
 guides(fill=FALSE) + theme_bw() +
 ylab(“Pixel Counts”) + xlab(“Species”) +
 theme(axis.text.x = element_text(size=20), axis.text.y = element_text(angle = 0, hjust = 1, size=20)) + theme(text =
element_text(size=20)) +
geom_errorbar(aes(ymin=mean-sd, ymax=mean+sd), width=.2, position=position_dodge(.9)) +

Frederick Hunter Technical Report

 26

facet_wrap(~Grazing_Area+Model) +
 theme(axis.text.x = element_text(angle = 55, hjust = 1))

save plot
ggsave(“RF_Wet_Season_Single_Image_Pixel_Counts.pdf”)

• .
14.7 Classification Maps

• Production of classification map

take most frequent value of each cell in stack of classification predictions and create raster containing those
values only.

function for collecting most frequent value of each pixel in each layer of prediction stack of rasters.
Mode <- function(x) {
 ux <- unique(x)
 ux=ux[!is.na(ux)]
 ux[which.max(tabulate(match(x, ux)))]
}

apply function to classification prediction stack of rasters
rf_wet_season_single_image_prediction=calc(prediction_raster, fun=Mode)

write raster of predicted values.
writeRaster(rf_wet_season_single_image_prediction, “RF_Wet_Season_Single_Image_Raster.tif”, overwrite=TRUE)

shape file for plotting
GA_Boundaries_sf <- readOGR(‘Only_conservation_merge_and_dry_season’)

Check crs of shp file
crs(GA_Boundaries_sf)

check crs of raster
crs(rf_wet_season_single_image_prediction)

crop and mask raster to shapefile (bounding box only)
26radien_rf_single_image_preds <- crop(rf_wet_season_single_image_prediction, GA_Boundaries_sf)
#mask raster to shape file
crop_mask_rf_single_image_preds <- mask(26radien_rf_single_image_preds, GA_Boundaries_sf)
#convert raster to dataframe
crop_mask_rf_single_image_preds <- as.data.frame(rasterToPoints(crop_mask_rf_single_image_preds))

change variable names and check data
names(crop_mask_rf_single_image_preds)[1:2] <- c(“Easting”, “Northing”)
head(crop_mask_rf_single_image_preds)
unique(crop_mask_rf_single_image_preds$layer)

plot classification map.
ggplot(data=crop_mask_rf_single_image_preds) +
 geom_tile(data = crop_mask_rf_single_image_preds, alpha = 0.8, aes(x = Easting, y = Northing, fill = layer)) +
scale_fill_gradientn(colours=c(“grey55”,”olivedrab4”,”seagreen4”,”grey80”,”khaki”,”navajowhite1”, ‘tomato4’,
‘orange3’, ‘yellowgreen’), breaks = c(1,2,3,4,5,6,7,8)) +
 geom_polygon(data = GA_Boundaries_sf, aes(x = long, y = lat, group = group), colour = “black”, fill = NA) +
 labs(fill = “Species”, size=20) + theme_bw() +

Frederick Hunter Technical Report

 27

 theme(axis.text.x = element_text(colour=”black”,size=20),axis.title.x= element_text(colour=”black”,size=20),
axis.text.y = element_text(colour=”black”,size=20), axis.title.y= element_text(colour=”black”,size=20)) +
 theme(panel.background = element_rect(fill = “grey95”,colour = “grey95”,size = 0.5, linetype = “solid”),
panel.grid.major = element_line(size = 0.5, linetype = ‘solid’,colour = “grey70”), panel.grid.minor = element_line(size
= 0.25, linetype = ‘solid',colour = "grey70")) +
 coord_equal()

15 Summary

The methodologies employed in the various components of this paper were in some
cases lengthy and complex. Given the open source nature of the software and
programming languages used in the study, it is hoped that this technical report
will facilitate researchers to have confidence in conducting studies with supervised
machine learning on remote sensing imagery (Maxwell et al., 2018).

The success of this paper was to some degree dependent on an NGO operating in
a remote region of a foreign country. The ground reference data were collected over
eight non-consecutive days by SORALO resource assessors in Southern Kenya.
During data collection at least two people and one vehicle were required, one
driver and one resource assessor. The volume of resources provided by SORALO
were therefore substantial, however the process of data collection was itself
simple. The success of this paper demonstrates, that with a simple ground
reference data collection protocol, the resources to carry it out and the
technological knowledge required to carry out the methodologies outlined above
accurate, maps of important biophysical components of the Earth’s surface can be
produced. These maps can be produced relatively quickly with the information
contained in this report and can be used as an important tool for monitoring and
informing environmental sustainability practices and research.

16 References

Bivand, R., Keitt, T., and Rowlingson, B., 2019. rgdal: Bindings for the 'Geospatial'
Data Abstraction Library. R package version 1.4-3. https://CRAN.R-
project.org/package=rgdal

Brunsdon, C and Chen, H., 2014. GISTools: Some further GIS capabilities for R.
R package version 0.7-4. https://CRAN.R-project.org/package=GISTools

Feilhauer, H., Thonfeld, F., Faude, U., He, K.S., Rocchini, D. and Schmidtlein, S.,
2013. Assessing floristic composition with multispectral sensors—A comparison
based on monotemporal and multiseasonal field spectra. International Journal of
Applied Earth Observation and Geoinformation, 21, pp.218-229.

Gillies, S., 2013. Rasterio: geospatial raster I/O for Python programmers}, url =
https://github.com/mapbox/rasterio

Hijmans, J., (2019). raster: Geographic Data Analysis and Modeling. R package
version 2.8-19. https://CRAN.R-project.org/package=raster

Frederick Hunter Technical Report

 28

Hunter, J.D., 2007. Matplotlib: A 2D graphics environment. Computing in science
and engineering, 9(3), pp.90–95.

Kahle, D and Wickham, H., 2012. ggmap: Spatial Visualization with ggplot2. The
R Journal, 5(1), 144-161. URL http://journal.r-project.org/archive/2013-1/kahle-
wickham.pdf

Konkol, M., Kray, C. and Pfeiffer, M., 2019. Computational reproducibility in
geoscientific papers: Insights from a series of studies with geoscientists and a
reproduction study. International Journal of Geographical Information Science,
33(2), pp.408-429.

Kuhn, M., Wing, J. Weston, Williams, A., Keefer, C., Engelhardt, A., Cooper, T.,
Mayer, Z., Kenkel, B., the R Core Team, Benesty, M., Lescarbeau, R., Ziem, A.,
Scrucca, L., Tang, Y., Candan C, and Hunt, T., 2019. caret: Classification and
Regression Training. R package version 6.0-84.https://CRAN.R-
project.org/package=caret

Maxwell, A.E., Warner, T.A. and Fang, F., 2018. Implementation of machine-
learning classification in remote sensing: An applied review. International
Journal of Remote Sensing, 39(9), pp.2784-2817.

McKinney, W., 2010. Data structures for statistical computing in python. In
Proceedings of the 9th Python in Science Conference. pp. 51–56.

Oliphant, T.E., 2006. A guide to NumPy, Trelgol Publishing USA.

Pebesma, E.J., R.S. Bivand, 2005. Classes and methods for spatial data in R. R
News 5 (2), https://cran.r-project.org/doc/Rnews/.

Rapinel, S., Mony, C., Lecoq, L., Clément, B., Thomas, A. and Hubert-Moy, L.,
2019. Evaluation of Sentinel-2 time-series for mapping floodplain grassland plant
communities. Remote Sensing of Environment, 223, pp.115-129.

Shoko, C. and Mutanga, O., 2017. Examining the strength of the newly-launched
Sentinel 2 MSI sensor in detecting and discriminating subtle differences between
C3 and C4 grass species. ISPRS journal of photogrammetry and remote sensing,
129, pp.32-40.

Tierney, L., Rossini, A., Li, N., and Sevcikova, H,, 2018. snow: Simple Network of
Workstations. R package version 0.4-3. https://CRAN.R-project.org/package=snow
Wickham, W., 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag
New York.

Wickham, H., and Lionel Henry, L., 2019. tidyr: Easily Tidy Data with 'spread()'
and 'gather()' Functions. R package version 0.8.3. https://CRAN.R-
project.org/package=tidyr

Frederick Hunter Technical Report

 29

17 Appendix A

Mapping Vegetation Data Sheet Date________

Species / Cover Type Point/Track ID Picture ID Percent

Cover

