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Abstract: Unmanned aerial vehicle (UAV) remote sensing and deep learning provide a practical
approach to object detection. However, most of the current approaches for processing UAV
remote-sensing data cannot carry out object detection in real time for emergencies, such as firefighting.
This study proposes a new approach for integrating UAV remote sensing and deep learning for the
real-time detection of ground objects. Excavators, which usually threaten pipeline safety, are selected
as the target object. A widely used deep-learning algorithm, namely You Only Look Once V3, is first
used to train the excavator detection model on a workstation and then deployed on an embedded
board that is carried by a UAV. The recall rate of the trained excavator detection model is 99.4%,
demonstrating that the trained model has a very high accuracy. Then, the UAV for an excavator
detection system (UAV-ED) is further constructed for operational application. UAV-ED is composed
of a UAV Control Module, a UAV Module, and a Warning Module. A UAV experiment with different
scenarios was conducted to evaluate the performance of the UAV-ED. The whole process from the
UAV observation of an excavator to the Warning Module (350 km away from the testing area) receiving
the detection results only lasted about 1.15 s. Thus, the UAV-ED system has good performance and
would benefit the management of pipeline safety.

Keywords: YOLOvV3; deep learning; real-time detection;, unmanned aerial vehicle (UAV);
remote sensing

1. Introduction

Object detection from remote-sensing images is useful in many fields [1]. The detection of
ground objects requires the acquisition and interpretation of remote-sensing images. Unmanned
aerial vehicles (UAVs) equipped with global positioning system modules and high-resolution
digital cameras are able to provide remote-sensing images and accurate geolocation information [2].
This technique has been demonstrated to be a very effective way to collect data for a large area
in a timely, cost-efficient and convenient way. UAV remote sensing plays an important role
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in many fields, including photographic measurements [3], environmental protection [4], search
and rescue operations [5], precision agriculture [6-9], infrastructure monitoring [10], and traffic
management [11-13]. Deep-learning algorithms, which have achieved state-of-the-art performance on
a wide range of image processing tasks, are able to interpret the remote-sensing images efficiently. These
algorithms overcome the drawbacks of the manual interpretation of remote-sensing images such as time
and high economic costs. In recent years, deep learning has been used in many fields for processing
UAV remote-sensing images, such as for pedestrian detection [14], land-cover classification [15],
ecological protection [16], and digital terrain model (DTM) extraction [17].

The conventional approach for combining UAV remote sensing and deep learning for the detection
of ground objects can be divided into two steps [18]. The first step is to capture remote-sensing images
during the UAV flight; the second step is to copy these images to the computer and then analyze them
on the computer. Many studies have been conducted successfully according to the aforementioned
workflow and have proposed a number of approaches to solve the associated problems. For example,
in disaster monitoring, a new deep learning-based wildfire identification method was proposed and
tested successfully to locate and extract core fire areas [19]. In precision agriculture, a fully automatic
method was employed for weed detection using convolutional neuronal networks (CNNSs) with an
unsupervised training dataset collected from UAV remote-sensing images [20]. The results of this
method are comparable to those of traditional, supervised training methods. An advanced method was
presented to detect vine diseases in images obtained by UAV and red green blue (RGB) sensors [21].
The proposed method combined the strength of the deep learning approach with different color spaces
and vegetation indices to obtain the best results. In livestock censuses, an in-depth study was carried
out on a large mammal census in an African savanna wildlife reserve based on UAV images and deep
learning [22]. In addition, in the continuous safety monitoring and maintenance of infrastructure, a
commercial UAV with a digital camera and convolutional neural networks was used to identify cracks
in an aging concrete bridge [23]. These studies demonstrate that deep learning has good capabilities in
processing UAV remote-sensing images.

Nevertheless, in many applications, such as fire-fighting, forest fire prevention, pipeline monitoring,
precision architecture, and search and rescue, it is necessary to detect the ground objects in UAV images
in real time and transfer the related information to the users as quickly as possible. For example, oil
and gas pipelines are threatened constantly by construction machinery such as excavators located close
by. Reports showed that in the past 20 years, more than 700 pipeline accidents occurred across the
United States. These accidents caused more than 250 fatalities and excavation was the leading cause of
pipeline breaks [24]. Thus, the real-time monitoring of excavators is an important issue in preventing
pipeline accidents. According to the law on the protection of petroleum and natural gas pipelines in
China, no excavator is allowed to work within a five meters safety margin on both sides of a pipeline.
When an excavator appears in this region, it increases the risk of a pipeline accident; in this situation,
pipeline safety managers have to response immediately. The conventional approach for excavator
monitoring is carried out in the field by laborers: workers walk along the pipeline to record the status
of the pipeline and prevent behaviors that threaten the safety of the pipeline. However, this approach
is inefficient and incurs high labor costs. In addition, installing cameras beside pipelines can allow
constant pipeline monitoring, but only a small section of pipeline can be monitored. To cover the entire
pipeline, many cameras would need to be installed along the pipeline. Considering the costs associated
with camera installation and maintenance, the power supply, and the Internet supply, it is impossible
to monitor the entire pipeline in this way [25]. In practical situations, only the key parts of the pipeline
are equipped with fixed cameras for constant monitoring. Although there are a few applications using
UAV remote sensing to monitor excavator activity along a pipeline, the conventional work flow for
processing UAV remote-sensing data cannot satisfy the real-time monitoring of excavators.

Currently, there are some studies reporting the real-time processing of UAV remote-sensing
data. A few of them have focused on algorithms for the real-time processing of UAV images on a
computer, especially in the field of object detection [26,27]. Some studies have used commercial image
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transmission modules to transfer the UAV remote-sensing data to the computer and process the data on
the computer in order to realize the real-time processing of the data [28,29]. This approach may suffer
from the unstable and short-distance transmission of the transmission module in practical applications.
In some other studies, an embedded board is integrated on the UAV as the processing unit, such as the
NVIDIA Jetson TX2 board, the Jetson AGX Xavier board, and the Intel Neural Compute Stick [30,31].
This approach ensures that the UAV data is processed stably and in real time. Unfortunately, studies
on the real-time processing of UAV data on the UAV itself are still rare. Additional comprehensive
studies are needed to provide more references for the community. In industry, some commercial
applications have made use of real-time processing to detect and track targets, such as the Skydio
R1 [32] and the DJI Mavic 2 [33]. Recently, the Little Ripper company and the University of Technology
Sydney developed a system to enhance beach safety; this system is able to monitor the activity of
sharks and send real-time video streams to the UAV pilots on the beach [34]. However, the promotion
of these commercial applications is limited because their data transmission distance is restricted by the
transmission module. Therefore, in order to realize the real-time detection of ground objects based on
UAV remote sensing, some key functional parts need to be implemented and integrated, including a
fast and accurate object detection algorithm, integration of the algorithm, UAV, and camera, and the
transmission of the processing results to the users.

In this context, this study proposes an approach for realizing the real-time detection of ground
objects by integrating UAV remote sensing and deep learning. Furthermore, a system is constructed for
operational application. Excavators, which greatly threaten the safety of pipelines, are selected as the
ground objects to be detected. Thus, the constructed system is termed UAV-ED (i.e., UAV for excavator
detection). Several experiments in different scenarios are conducted to evaluate the performance of
the proposed approach and UAV-ED system. This study would be beneficial for preventing pipeline
accidents and similar applications in other fields.

2. Materials

2.1. Dataset

To train the deep-learning model, 350 images containing excavators were collected. Seventy percent
of these images were obtained from the Internet and the remainder were obtained by acquiring UAV
images at construction sites. Images without excavators were not collected. Because excavators often
appear at construction sites, about 15% of collected images contained other construction equipment
besides excavators, such as grab machines and cranes, which were not the detection target. About 60%
of collected images contained multiple excavators in one image. We annotated every image by drawing
bounding boxes around each excavator manually with the labeling graphical image annotation tool [35].
Examples of the annotated images are shown in Figure 1. The images collected from the Internet
were different in illumination, background and resolution; and the excavators contained in them are
different in size, shape, color, and posture to ensure the robustness of the excavator detection model.
Furthermore, a UAV equipped with a electro-optical (EO) camera was used to take videos at three
construction sites near the University of Electronic Science and Technology of China (UESTC), with
a flight height ranging from 100 m to 200 m. These videos were obtained in both vertical view and
oblique views. Each video was taken with a size of 1920 x 1080 pixels. We extracted the images
containing excavators in different postures and backgrounds from the videos. All 350 images were
combined and shuffled to form the dataset for the subsequent excavator detection model.
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Figure 1. Examples of the annotated images containing excavators of different sizes, colors, and
postures. The images were taken from different viewing directions. (a) Vertically viewed image with a
yellow excavator; (b) obliquely viewed image with two yellow excavators; (c) obliquely viewed image
with a red excavator; (d) vertically viewed image with two excavators of different colors; (e) obliquely
viewed image with three yellow excavators in different postures; and (f) vertically viewed image with
a blue excavator.

2.2. Instruments

As shown in Table 1, the instruments in this study included an UAV, a sensor (i.e., EO camera),
an embedded board, a tablet, and a computer. We used a UAV equipped with a high-resolution EO
camera to obtain the aerial images. The embedded board is used to deploy deep learning algorithms to
process the captured images in real time. The tablet and the computer are used to display the detection
result to the users.

Table 1. Instruments used in this study for excavator detection.

Instrument Model Specification
Six rotors
Image transmission module: DJI
Unmanned aerial LightBridge 2
vehicle (UAV) DJTM600 Pro Flight time: 38 min with no load

Maximum horizontal velocity: 18 m/s
Load capacity: maximum 6 kg

Resolution: 1288 x 964 pixels
Size: 29 x 29 x 30 mm
Weight: 36 g
Frame rate: 30 frames per second

Sensor FLIR BFLY-U3-1352C-CS

Graphics Processing Unit (GPU): an
NVIDIA Pascal™-family GPU
Memory: 8 GB
Memory bandwidth: 59.7 GB/s
Power consumption: 7.5 watt
Support hardware interfaces: Universal
Serial Bus and High Definition
Multimedia Interface

Tablet Apple iPad mini 4 -

Embedded board NVIDIA Jetson TX2

Computer Microsoft Surface Pro 4 -
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The UAV platform used in this study was a DJI Matrice 600 (M600) Pro because of its good support
for secondary development and its high stability. DJI M600 Pro is equipped with DJI LightBridge
2 transmission system to meet the requirement of high-definition live streaming. The image signal
transmission distance is as far as 5 km in unobstructed areas. The sensor used in this study was a FLIR
industrial camera BFLY-U3-13S2C-CS. This RGB camera is a low-cost, commercial, and off-the-shelf
product with the advantage of low power consumption and high resolution. Furthermore, it is light
weight and has a good stabilization sensor to reduce blurring of none-stable platforms, which is an
advantage for use on drones. The camera’s focal length supports manual adjustment to adapt multiple
flight altitudes.

The embedded board used in this study was a NVIDIA Jetson TX2 board, one of the fastest,
most power-efficient embedded artificial intelligence (AI) computing devices. It is built around an
NVIDIA Pascal™-family GPU and loaded with 8 GB of memory and 59.7 GB/s of memory bandwidth.
It features a variety of standard hardware interfaces that make it easy to be integrated into a wide
range of products.

The study also used the OneNET platform [36] to realize the remote, wireless, and real-time
transmission required by the UAV-ED system. The OneNET platform is an open and free cloud platform
created by China Mobile, that simplifies the access of Internet of Things (IoT) devices to the cloud.
The OneNET platform has already been applied in various business fields, such as environmental
monitoring and precision agriculture [37].

2.3. Unmanned Aerial Vehicle (UUAV) Remote-Sensing Experiment

The area for testing the proposed approach and UAV-ED system is located in Qu county, Sichuan
province, China (Figure 2). The length of the pipeline in Qu county is approximately 35 km. Due to the
abundant soil resources and many infrastructure constructions projects in Qu county, excavators often
work around the pipeline and, thus, seriously threaten the pipeline’s safety. Currently, the pipeline is
inspected in the field by laborers twice a day. Because the pipeline is 20 to 100 m away from the main
road, the manual monitoring approach is inefficient and time-consuming. Due to the limitation of
the flight distance of the UAYV, a part of the pipeline was selected to test the proposed approach and
UAV-ED system. The total length of the selected pipeline was about 5 km. The land-cover types of the
selected area included grassland, bare soil, built-up surface, ponds, and roads. Therefore, the selected
area was very typical for testing the proposed approach and UAV-ED system.
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Figure 2. Area for testing the proposed approach and UAV for excavator detection (UAV-ED) system
and the images with excavators taken by the UAV in the experiment. The green solid points in the map
denote the sites where the excavators were working.
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The UAV remote-sensing experiment was conducted on 15 September 2018. The weather was
cloudy all day. We found there were excavators working on two sites (Figure 2). From 10:00 am to
6:00 pm, 5 flights were conducted, once every two hours. The DJI M600 Pro UAV, equipped with a
FLIR EO camera and a Jetson TX2 embedded board, was employed. The duration of each flight was
25-30 min. Three of the five experiments were performed along the pipeline by automatic control
through the UAV ground control station, and another two experiments around the excavators were
performed by manual control with a UAV external pilot. In the three flight missions, the flight speed of
the pipeline monitor ranged from 5 m/s to 10 m/s, the flight altitude ranged from 100 m to 200 m, and
the maximum flight distance was about 5 km. The FLIR camera on the UAV was installed vertically
and oriented to the ground during pipeline monitoring; thus, the captured images were top views of
the ground objects.

3. Methodology

3.1. The Excavator Detection Model

Many neural network models for object detection have been proposed and have exhibited good
performance. These models are usually split into two categories according to their architecture:
two-stages detectors and one-stage detectors. For the two-stages detectors, such as R-CNN [38], Fast
R-CNN [39], and Faster R-CNN [40], a region proposal network is used to generate regions of interest
in the first stage. In the second stage, the objection classification and bounding box regression are
performed. Although two-stage detectors generally yield better accuracy than one-stage detectors, they
are not applicable for the real-time detection of ground objects due to their high computational costs.

Compared with two-stage detectors, one-stage detectors, such as You Only Look Once [41] and
Single Shot MultiBox Detector [42], do not require the first-step for region proposal. They treat
object detection as a simple regression problem. Therefore, one-stage detectors are generally faster
than two-stage detectors. In addition, the accuracy of one-stage detectors is acceptable in many
applications [23,43]. The You Only Look Once V3 (YOLOvV3) model [43] is one of the most widely
used one-stage detectors [38,44]. Its architecture consists of two parts, a feature extractor and an object
detector. Compared with two-stage detectors, the YOLOv3 model has several advantages. It extracts
the features under the global context of the entire image, and it is very fast since it only needs one
stage. Considering the processing speed for real-time detection of the excavators, the computational
costs, and the accuracy in detection, the YOLOv3 model was used in this study.

The 350 images with excavators described in Section 2 were used to train the excavator detection
model based on YOLOV3. Since the number of the images is not very large, the trained model may
suffer from overfitting. Thus, the excavator detection model was trained with a transfer learning
strategy based on the pretrained YOLOv3 model published by [43]. One should note that the pretrained
YOLOV3 model was trained with ImageNet, which is a large visual database designed for visual object
recognition. However, images of ImageNet were not obtained from the aerial viewpoints. Thus, the
pretrained YOLOv3 model was further trained based on the 350 collected images, with 80% of the
images for training, 10% for validating and 10% for testing. The transfer learning strategy can also
significantly decrease the time consumed in the training process.

In the training process, five parameters, including the recall rate, accuracy, precision, intersection
over union (IoU), and loss function, were selected to evaluate the model’s performance. The recall
rate, accuracy and precision were used to measure the ratio of excavators detected by the excavator
detection model in the images. IoU was used to measure the ratio of overlap between the real excavator
bounding box labeled manually and the predicted excavator bounding box given by the excavator
detection model. Loss function was used to evaluate the overall performance of the excavator detection
model from the location accuracy and detection accuracy. The formulas for these three parameters are

listed below:
TP

Recall = m

)
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. TP
Precision = TP—<FFP (2)
TP + TN
Aceuracy = e T T FP + TN ®)

where TP (true positives) denotes the number of the true excavators that are correctly identified by
the excavator detection model; and FN (false negatives) denotes the number of true excavators that
are falsely identified as background by the model; TN (true negatives) denotes the number of the
background that are correctly identified by the excavator detection model; and FP (false positives)
denotes the number of the background that are falsely identified as excavators by the excavator
detection model. Because only the excavators in images are labeled and background is not the detection
target in our experiment, TN is ignored. Accuracy can be calculated by recall rate and precision.

(4)

where AoQO is the area of overlap between the real excavator bounding box labeled manually and
the predicted excavator bounding box given by the excavator detection model; and AoU is the area
of union between the real excavator bounding box labeled manually and the predicted excavator
bounding box given by the excavator detection model.

Loss function consists of four terms:

Loss = Exy + Ewh + Econfidence + Eclass (5)

where Eyy is the loss of the location of the center of the predicted object; Eyy, is the loss of width and
height of the predicted bounding box; E onfidence 1S the loss of confidence of the predicted object; and
Eass is the loss between the predicted category and the real category. Since the excavator is the only
class to be detected in the detection model, Ej,¢s is equal to 0.

The architecture of the excavator detection model based on YOLOv3 is shown in Figure 3. It is
designed in [43]. It has 75 convolutional layers, with residual layers and upsampling layers. The
convolutional layers produce feature maps by convolving the input image with a specified number
of kernels. The convolutional layers with stride 2 are used to down sample the feature maps, which
reduce the loss of the low-level features compared with using the pooling layers. For the convolutional
layers with the kernel size of 3 X 3, the convolution process is carried out as follows:

1 1 c
Owna = (2, 2, D Wiiiwrinsjs) + b ©)

i=—1j=—1k=1

where Ly 1i,h+jx is the input, Oy p 4 is the output, and Wdi,j,k and b are the weights and the bias of the
d’th kernel of the convolution layer, respectively. The number of kernels is the same as the number of
channels of the ouput feature maps. c is the number of channels of the input feature maps. As k takes
1, ..., ¢, each kernel of the convolution layer works on the entire channels of the input feature maps.
The convolution process of the convolutional layer with the kernel size of 1 X 1 is similar to that of 3 X
3. An activation function, the leaky relu function, is used to perform non-linear transformation on each
output of the convolution, which enables the model to learn more complex features. The leaky relu
function is listed below:

Owna = { . 1Ow,h,d i Ow a2 0 e

A X Ow,h,d if Ow,h,d <0
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Type Filters Size Output
Input image wxh
Convolutional 32 3x3 wxh
Convolutional 64 3x3/2 wi2xh/2
Convolutional 32 1x1
1| Convolutional 64 33| One residual block
Residual w/2xh/2
Convolutional 128 3x3/2 w/4xh/4
Convolutional 64 X1
2% | Convolutional 128 33
Residual w/4xh/4
feates ) Convolutional __ 256 332 widdvB
( le k: ac)ilo;]n 9 Convolutional 128 Ix1
FAIRHEESS 8% | Convolutional 256 3x3
Residual w/8xh/8
Convolutional 512 3432 w/l6xW/16
Convolutional 256 1x1
8| Convolutional 512 3x3
Residual w/16xh/16
Convolutional 1024 3:32  wi32x<hi32
Convolutional 512 11
4| Convolutional 1024 33
Residual + w/32xh/32

Convolutional Convolutional Convelutional Set
1x1 3x3
Predict one Convolutional
Convolutional 1x1

Convolutional

Up Sampling 33
Convolutional

Concatenate 1x1
Convolutional Convolutional onvol s Convolutional

121 3%3 Convolutional Set 33

Predict two

Convolutional Convolutional

1x1

319G [FUODN[OATO))

dew 30n)eay L1949 WO SUOPIIPILY

Convolutional Convolutional . . L
Convolutional Set
1x1 3x3

Predict three

Figure 3. The architecture of the excavator detection model based on You Only Look Once V3 (YOLOV3).
It has 75 convolutional layers, with residual layers and upsampling layers. The excavator detection
model uses darknet53 as the backbone to extract the features of the input image and detects the
excavators on three different scale feature maps [43].

Residual blocks are used to address the degradation problem by learning the residual features
instead of directly learning the underlying features [36]. As depicted in Equation (6), the model gets
the desired features Oy, g by adding the input of the residual block [O-3] 1 4 and the output of the
stacked layers of the residual block [O-1]y 1, 4 (i-e., the residual features).

Owhd =[0-1] 1 q+[0-3]nq 8

The nearest neighbor algorithm was used to upsample the feature map from the size of w/32 X h/32,
w/16 X h/16 to w/16 X h/16, w/8 x h/8. The excavator detection model makes predictions on three
feature maps by the convolutional layer with the kernel size of 1 X 1 and the sigmoid function. The
sigmoid function is listed as follows:

1
W=

The flowchart of the trained excavator detection model is shown in Figure 4. During the detection
process, the darknet53 network model [45] under YOLOv3 was employed to extract the features from
the entire image and generate feature maps at three scales. The three feature maps have (w/8) x (h/8),
(w/16) x (h/16), and (w/32) x (h/32) cells, respectively (w is the width of the image and h is the height).
Cells in different feature maps have different receptive field sizes [37]. There are nine different anchor

©)



Remote Sens. 2020, 12, 182 9 of 20

boxes used to make predictions in the three feature maps in total. For each feature map, object
classification is performed in every cell to calculate the confidence of containing excavators at three
different anchor boxes with the cell as the center. In addition, the three anchor boxes are used to
perform the boundary regression to predict the bounding box of the excavator for each cell. The
predicted outputs on one anchor box of one cell contain six values, including the center coordinate
of the bounding box (tx,ty), the width and height of the bounding box (tw;,th), the confidence for the
anchor box containing the target object (P(object)), and the confidence of the detected object being
an excavator (P(excavator|object)). Since excavators are the only target object in this experiment, the
confidence of the detected object being an excavator is always 100%. Using three scales to extract
features and nine anchor boxes to perform the boundary regression makes the trained excavator
detection model able to detect excavators of different sizes and postures. To prevent the detection
of the same excavator several times, the confidence obtained and the predicted bounding box are
subjected to objectness score thresholding and non-maximum suppression (NMS) to obtain the most
likely bounding box of the detected excavator.

Inputimage /

Feature extraction
(darknet 53)

(w/B)x(Iv8)x256 (W/16)%(l/16)512 (w/32)x(W/32)1024

Feature maps at
three scales

(W/16)%(h/16) cells % (w/32)%(h/32) cells %

Object
classification

(w/8)x(h/8) cells

Object
classification

Object
classification

& i & &
Boundary E Boundary Boundary
regression regression regression

Nine different ~
anchor boxes -

=
~_

e w32

Predictions on every

h/8
feature map

Predictions on one anchor bo

| Petse) Procnmries) (]

Objectness Class Box
score score  co-ordinates

w8

I Thresholding by object confidence

|

Non-maximum suppression

Detection results

Figure 4. Flowchart of the excavator detection model. The red dot is the center of the receptive field
for each cell on the original image. The red boxes are the predicted bounding boxes with confidence
beyond the object score threshold (i.e., 0.5). Among them, the red boxes in the detection results are the
most likely bounding boxes of the detected excavators.
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3.2. Construction of the UAV for Excavator Detection (UAV-ED) System

Integration of the aforementioned excavator detection model, the UAV, and related components
makes it possible to establish a system to monitor the excavators automatically. The UAV-ED system is
composed of three modules, including the UAV Module, the UAV Control Module, and the Warning
Module. The architecture of this system is shown in Figure 5. Details of these modules are presented
in the following subsections.

UAY Module UAYV Control Module
Display
UAYV (DJI M600 Pro) i i
2.4GHz radio Remote
Control
NVIDIA Jetson TX2 Board Warning Module
FLIR Visible
(o Excavator || _____ Cloud Computer
Detection Model Platform
4G ifi Java-Based
network GUIL

Figure 5. Architecture of the developed UAV-ED system. The UAV-ED system is composed of
three modules, including the UAV Module, the UAV Control Module, and the Warning Module.
The UAV Module integrated the excavator detection model, the sensor and the UAV. The UAV Control
Module and the Warning Module are used to realize the real-time transmission of the detected
excavators’ information.

3.2.1. Integration of the Excavator Detection Model, Sensor and UAV

The UAV Module is to detect the excavator, determine the geolocation, and transfer the information
to the other two modules. The main hardware components of the UAV module are the UAV (DJI M600
Pro), the EO camera (FLIR BFLY-U3-1352C-CS), and the embedded board (NVIDIA Jetson TX2 board).
In addition, the UAV has a mounting board to mount the embedded board and a gimbal to mount
the FLIR camera. Before mounting the NVIDIA embedded board on the UAV, the previously trained
excavator detection model was deployed in the embedded board. In addition, three libraries were
imported into the embedded board, including the Open Source Computer Vision (OpenCV) library in
version 3.4, the Libjpeg library, and the DJI onboard Software Development Kit (SDK). OpenCV is
an open source computer vision and machine learning software library, which was built to provide
a common infrastructure for computer vision applications [46,47]. The Libjpeg is a widely used C
library for reading and writing JPEG image files [48]. The DJI Onboard SDK is an open source software
library that enables computers to communicate directly with DJI UAVs and provides access to the
UAVs’ telemetry [49]. The data-processing flow and the relationship between the excavator detection
model and the three previously mentioned libraries are shown in Figure 6.

The OpenCV library is used to extract images from the video acquired by the camera. The extracted
images have the same resolution as the video, namely, 1288 x 964 pixels. The images are resized
simultaneously to facilitate the processing of the aforementioned excavator detection model. In the
process of image extraction and resizing, approximately 5.9 images with a size of 288 x 288 pixels or
3.7 images with a size of 416 x 416 pixels can be obtained per second. Afterward, each image is orderly
imported into the excavator detection model to identify whether there are any excavators in the image.

If an excavator is detected on the resized image, it is marked by a box through the OpenCV
library on the corresponding image before resizing. The images are compressed into the JPEG format
via the Libjpeg library to facilitate the transmission of the images with excavators to the Warning
Module. In addition, the system reads the geolocation (i.e., longitude and latitude) and time from the
flight controller of the UAV with the DJI Onboard SDK. The compressed JPEG image, the recorded
geolocation, and the acquisition time are transmitted to the Warning Module. One should note that the
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camera is mounted vertically facing the ground; thus, the geolocation of the UAV is treated closed to
that of the detected excavator.

Orginial video

1= o -

Extracted and resized image

DJI OnBoard Excavatror
SpDK |77 TTTTTT detection model

t
Compressed JPEG image

Geolocation and time Images with detected excavators

Figure 6. Data-processing flow in the UAV Module. Images are extracted from the original video and
resized by the OpenCV library. Then, each image is orderly imported into the excavator detection
model to identify if there are any excavators in the image. Images containing excavators are compressed
via the Libjpeg library and transmitted to the Warning Module along with the recorded geolocation
and acquisition time.

3.2.2. Real-Time Transmission of the Detected Excavators” Information

It is required that the users obtain the detected excavators’ information in a timely and convenient
manner to take corresponding actions and ensure the pipeline’s safety. Thus, the real-time transmission
of the associated information is crucial. Real-time transmission is realized both in the UAV Control
Module and Warning Module. The instruments of the Control Module are a tablet and a UAV
remote-control unit. With DJI Go App and DJI GS Pro App installed on the tablet, users can set the
flight missions of the UAV and control its flight state. In addition, the video formed by the orderly
extracted images (e.g., 5.9 images with a size of 288 x 288 pixels per second) can be displayed on the
tablet. In this newly generated video, users can see detected excavators within boxes generated by the
OpenCV library.

For the Warning Module, software with a Java-based Graphical User Interface (GUI) is developed
and run on a computer connected with the Internet. The software is able to receive a compressed
JPEG image, the geolocation, and time immediately an excavator is detected by the UAV Module. The
transmission between the UAV Module and the Warning Module is remote, wireless, in real-time, and
realized through the OneNET cloud platform. The UAV Module uploads the data package (namely, the
compressed JPEG image, the geolocation, and time) to the cloud platform through the 4G network; then
the cloud platform sends the data package immediately to the software of the Warning Module. The
geolocation is also linked to the digital map. Based on the image with the excavators, the geolocation,
and the time, the manager of the pipeline can respond rapidly.

4. Results

4.1. Performance of the Trained Excavator Detection Model

The excavator detection model was trained for approximately 200 epochs based on the training
images according to the scheme in Section 3.1. In the training, the YOLOv3 parameters including
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the batch size, momentum, decay, and learning rate were initialized to 64, 0.9, 0.0005, and 0.0001,
respectively, as shown in Table 2. These values are widely used by the scientific community [44,50]
and we found that the subsequently trained excavator detection model had good accuracy. To avoid
overfitting, extensive data augmentation approaches, including random crops, rotations, flips, hue,
saturation, and exposure shifts, were used based on the training images. The training was conducted
on a Linux workstation with an Intel i7 8700 CPU and a NVIDIA GeForce GTX 2080Ti graphics card.

Table 2. The initial values of the parameters in training the excavator detection model.

Batch Size Momentum Decay Learning Rate

64 0.9 0.0005 0.0001

The three parameters (i.e., recall rate, IoU, and Loss) in the train set and validation set (see
Section 3.1) for evaluating the trained model during the training process are shown in Figure 7 and
Table 3. The validation set is verified every five iterations on the training set. Figure 7 clearly shows that
the performance of the excavator detection model improves quickly after the beginning of the training.
After 150 iterations (i.e., about 7 h), the recall rate with 0.5 as the objectness confidence threshold,
IoU, and Loss on the validation set are 94.0%, 71.0%, and 0.637, respectively. After 500 iterations (i.e.,
about 20 h), the recall rate and IoU increase to 98.1% and 82.0%, respectively, and Loss decreases to
0.208, indicating that the model has good ability in detecting excavators from the validation set. After
approximately 1000 iterations (i.e., about 40 h), the training stops with insignificant increases of the
recall rate and IoU and a very slight decrease in loss. Then, the trained model was evaluated in the test
set. In the test set, the trained model hardly omits the excavators and is able to detect the locations
of the excavators accurately as shown in Table 3, which indicates that the trained model has a good
generalization in detecting excavators. The recall rate and IoU values obtained in this study are higher
than those reported in other studies [38,41] for multiple object detection training based on published
datasets, such as the common objects in context [51] and ImageNet. The main reason is that the object
to detect in this study is only assigned to one category and the excavator has an evident shape.

Valu
Value

— train_recall

— val recall

0 200 400 600 800 1000 0 100 600 300 1000 0 200 400 600 300 1000

Iteration Iteration Iteration

(a) (b) (c)

Figure 7. The recall rate, intersection over union (IoU), and loss of the train set and validation set for
evaluating the trained model during the training process.

Table 3. Performance of the trained excavator detection model on the train set, validation set and

test set.
Dataset Recall Rate Precision Accuracy IoU
train 99.8% 98.3% 98.0% 84.4%
validation 99.4% 98.0% 97.4% 83.7%
test 99.4% 97.7% 97.2% 83.1%

As described in Section 3.2.1 and shown in Figure 6, the image inputted into the excavator detection
model is extracted from the video taken by the FLIR camera and resized simultaneously. Because the
excavator detection model based on YOLOV3 is a fully convolutional network (see Section 3.1), it is
able to take input images of different sizes and produce correspondingly sized feature maps without
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retraining the model [52]. The size of the inputted image affects the detection accuracy and processing
speed, which directly determines the practicability of the UAV-ED system in real-world applications.
Thus, the most appropriate size of the inputted image should be determined. The size of the image
required by the YOLOvV3 model should be a multiple of 32 and the default size of the published
YOLOvV3 model is 416 x 416 pixels [43]. We found such a size can obtain a very good accuracy in the
detection of the excavators; nevertheless, it can only process 3.7 images per second (namely, 0.27 s
per image). Therefore, we further examined the processing speed and the corresponding detection
accuracy for a series of sizes, ranging from 416 X 416 pixels to 288 x 288 pixels with a step of 32 x 32.
This test was conducted on both the aforementioned Linux workstation as well as the Jetson TX2
embedded board. The details are shown in Table 4.

Table 4. The processing speed and detection accuracy of images with different resolutions on the
computer and the Jetson TX2 embedded board.

Processing Speed (FPS) Detection Accuracy
Resolutions

Computer Jetson TX2 Recall IoU Loss
416 x 416 47 3.7 99.4% 83.7% 0.152
384 x 384 50 43 98.3% 82.3% 0.155
352 x 352 52 4.9 97.5% 81.0% 0.158
320 x 320 58 54 96.8% 79.2% 0.165
288 x 288 60 5.9 96.5% 78.9% 0.167

As expected, when the size of the inputted image decreases, the processing speed increases. With
a size of 288 x 288 pixels, the excavator detection model on the Jetson TX2 board can process 5.9 images
per second (namely, 0.17 s per image) as shown in Table 4. Nevertheless, the detection accuracy only
has slight variation: —2.9% for the recall rate, —4.8% for IoU, and 0.015 for Loss, suggesting that the
detection accuracy can still well satisfy the excavator detection in real world applications. Therefore,
the size of the image inputted into the excavator detection model was determined as 288 x 288 pixels.

With a size of 288 x 288 pixels, the trained excavator detection model was applied to the testing
images. Examples of the detection results are shown in Figure 7a—c). Almost all the excavators were
successfully detected, although the original images had different backgrounds, excavators of different
colors and sizes, and varying illumination conditions. A closer look at Figure 7c demonstrates that a
small yellow excavator in the upper right of the image has been detected, suggesting that the trained
excavator detection model even has good applicability in the low illumination of early morning and
evening and can distinguish the excavators from the background with a similar hue.

Users may require broader viewing extents with obliquely mounted cameras. Thus, the train
excavator detection model was further applied to obliquely taken images, the spatial extents of which
are larger than that of vertically taken images at the same flight height. Examples are shown in
Figure 8d—f, which also have different backgrounds for the excavators. All the excavators were detected,
indicating that the trained excavator detection model also has good performance for obliquely taken
images. This finding suggests that the UAV-ED system would be valuable for users that require broad
viewing extents and less accuracy for the locations of the excavators.

In the application of oil pipeline inspection, missed excavator detection may cause serious
accidents. Therefore, the excavator detection model should detect all possible excavators, which may
cause false alarms. Because the detection strategy of YOLOvV3 (described in Section 3.1) is able to
obtain negative samples from images containing excavators [43], images without excavators are not
collected in our dataset (as mentioned in Section 2.1). In the test phase, it is found that not only
excavators are detected by the trained excavator detection model, but similar objects are also detected.
As shown in Figure 9, the grab machine and the crane in images, which do not harm the pipeline,
may mistakenly be detected as excavators. This problem can be addressed by collecting more data,
improving loss function [53] or the user’s further judgement. When images containing suspicious
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targets are transmitted to users, users will further determine whether the detected targets are harmful
to the pipeline.

Figure 8. The excavators detected from the testing images by the trained excavator detection model.
The original images of (a—c) were taken vertically by the UAV and that of (d—f) were taken obliquely.

Figure 9. The images mistakenly detected as containing excavators. (a) Containing a grab machine;
(b) containing a crane.

4.2. Performance of the UAV-ED System

During the UAV remote-sensing experiment, several flights were conducted around the pipeline
to evaluate the performance of the UAV-ED system. Before the experiment, a ground survey was
conducted in the morning along the pipeline through walking to identify whether there were any
excavators. We found there were four excavators working at two sites, approximately 10-15 m away
from the pipeline as shown in Figure 2. Since the excavators were working and moving, we recorded
the geolocations of the two sites. The detection scope of the UAV-ED ranges from 40 m to 100 m on each
side of the pipeline according to the flight height. Although the distance from the excavators detected
by the UAV-ED to the pipeline may be beyond the lowest limitation (namely, 5 m; see Section 1),
the staff of the Gas Transmission Management Division of PetroChina should be vigilant about this
situation. The geolocation of the UAV is the approximation of the location of the detected excavator,
but it is easy to find the detected excavator in the area specified by the UAV’s geolocation because the
excavator is noticeable.

To better test the performance of the UAV-ED system in the transmission of the detection results
to the Warning Module, the computer with the Warning Module was placed in UESTC, which is
approximately 350 km away from the testing area. During the flights, the real-time video processed by
the UAV module could be displayed in the UAV Control Module as shown in Figure 10a. In addition,
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the detection results (i.e., the images of the detected excavators, the latitudes/longitudes, and time)
were transmitted to the Warning Module as shown in Figure 10b.
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Figure 10. Interfaces of the UAV Control Module and the Warning Module. (a) The UAV Control
Module is able to display the real-time video processed by the UAV module; (b) the Warning Module is
able to display the detection results (i.e., the images of the detected excavators, the latitudes/longitudes,
and time) of the UAV-ED system.

The results showed that the UAV-ED system accurately detected all the excavators around the
pipeline with different backgrounds and flight altitudes. Some examples are shown in Figure 11. The
images displayed were acquired in different situations and accurate detection results were obtained
from images with multiple excavators in Figure 11a, small excavators in Figure 11b, and those even
containing only a portion of an excavator in Figure 11d. Furthermore, the flight altitudes in Figure 11e,f
and the location of the excavator in Figure 11c did not affect the detection results. The detected
geolocations of the excavators also agreed well with the geolocations of the sites recorded previously
in the ground survey.

Figure 11. Images with detected excavators transmitted to the Warning Module during the UAV remote
sensing experiment. The images were in different situations: (a) containing two excavators at Site A;
(b) containing a small excavator at Site A; (c¢) containing an excavator in the corner of the image at
Site A; and (d) containing a portion of an excavator at Site B. (e,f) containing the same excavators but
acquired at different flight altitudes at Site B. All images were acquired at flight altitudes of 120 m,
except (f), the altitudes of which was 60 m.

To test the time required to transmit the detection results to the Warning Module, two dedicated
flights (i.e., flights I and II) were conducted at the two sites. The details of these two flights are shown
in Table 5. The average consuming time from the UAV-ED system capturing an image to the Warning
Module receiving the corresponding detection result is defined as the speed of the UAV-ED system.
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Table 5. The number of the transmitted images and the corresponding durations of the two dedicated
flights for testing the time required to transmit the detection results to the Warning Module.

Flight Site Number of Images Duration (s) Speed (s)
I A 86 96 (10:47:17-10:48:53) 1.11
B 70 72 (10:50:26-10:51:38) 1.02
I A 148 173 (13:38:44-13:41:37) 1.16
B 124 151 (13:45:32-13:48:03) 1.21
Overall 428 492 s 1.15

Flight I was in the morning. The UAV first hovered over Site A for 96 s; then, it flew to Site B and
hovered there for 72 s. The Warning Module received 86 images with detected excavators as well as
the corresponding geolocations for Site A and 70 images for Site B. The speeds were 1.11 s and 1.02 s,
respectively. Flight II was in the afternoon. The UAV hovered over Site A for 173 s and Site B for 151 s.
The speeds were 1.16 s and 1.21 s, respectively. For both of these flights, the 4G network was good
and the overall speed was 1.15 s. Therefore, the transmission of the detection result based on the 4G
network is fast enough for the user of the UAV-ED system to respond in real-time in areas with good
4G network.

5. Discussion

To the best of our knowledge, an evident difference of this study compared to other studies [8,12,22]
is that the detection of excavators using UAV remote sensing is performed in real-time. The approach
proposed in this study realized the entire process for real-time object detection based on UAV remote
sensing, including the excavator detection algorithm, the real-time processing of the remotely sensed
data, and the real-time transmission of the detection results. Once the sensor onboard the UAV
platform observes the excavator(s), the excavator detection model deployed on the embedded board
can identify the excavator(s) in a very short time and the user can receive the related information in
about 1.15 s. Such a fast response can strongly support timely decision-making. From this aspect,
the approach developed in this study would outperform traditional approaches for processing UAV
remote-sensing data. A possible alternative way for realizing the real-time processing is to transmit the
UAV remote-sensing data to the cloud platform and then perform the processing. However, this way
is limited by the transmission capability of the communication network due to the large size of the
remote-sensing data. In contrast, the approach developed in this study has much a lower requirement
on the transmission and thus, is faster and more economical.

Compared with the current method of excavator detection that is carried out in the field by laborers,
the proposed approach is more economical. As shown in Table 6, the UAV inspection cost of 50 km of
pipeline is approximately 141,000 yuan per year, which is less than half of that of manual inspection.

Table 6. The inspection cost of 50 km of oil pipeline per year using two different methods.

Cost (x10,000 RMB)

Inspection
Labor Electricity n Communication Equipment Depreciation Total
Manual 28 0.1 0.5 0.4 29.0
UAV 4 0.5 0.1 9.5 14.1

In practical applications, the UAV inspection frequency can be changed to satisfy different needs.
Users can perform multiple UAV inspections during a day in areas with high risk. In fact, this UAV
inspection strategy is widely used in power line maintenance [54] and forest fire prevention [55].

The approach developed in this study can be extended easily to the detection of other objects in
applications that requires the real-time processing of UAV remote-sensing data, such as the search
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and rescue of missing persons, the dynamic monitoring of power lines, the fighting of forest fires,
and transportation management. Furthermore, it is reasonable to expect that the proposed real-time
approach may be extended to the real-time estimation of surface parameters when the corresponding
retrieval algorithms can be deployed on similar embedded boards and the UAV system can be adapted
to other sensors (e.g., thermal infrared sensors, airborne-lidar, and multispectral sensors). The real-time
estimation of surface parameters would be a benefit in fields such as precision agriculture, hydrology,
and environmental science.

Nevertheless, there are some limitations in this study. First, the YOLOv3 model was selected in
this study for excavator detection because it has low computational costs and is able to process images
in real time on the embedded board. Although very high accuracy in detection has been obtained in
this study, the accuracy may decrease for other target objects. In addition, due to the evident shape of
the excavator, good accuracy can be obtained in the training of the excavator detection model based on
only 350 images. For other complicated target objects, many more images may be required. Second,
one should keep in mind that not all neural networks can be deployed on the embedded board used
in this study and not every neural network deployed on the embedded board is able to process the
UAV remote-sensing data in real time. Some neural networks are computationally heavy. Considering
the computational ability of the current embedded board, it is difficult to process images in real time.
Therefore, our future work will focus on deploying more neural networks, such as SegNet [56] and
U-Net [57], on the embedded board to test their performance in practical applications. Third, the
developed UAV-ED system is not able to realize continuous monitoring of the pipeline due to the
short duration of the UAV flight. Nevertheless, the approach can be extended to ground cameras for
continuous monitoring at fixed sites. Another issue is that when the signal of 4G network is not good
enough, the transmission of the warning messages may be slower. Nevertheless, areas with poor 4G
networks usually have fewer human activities and the pipelines suffer fewer security threats. Thus,
these areas can be inspected with fewer times by laborers.

6. Conclusions

Taking pipeline protection as an example, this paper proposed an approach to integrate UAV
remote-sensing and deep-learning algorithms in order to realize the real-time detection of ground
excavators. A system, termed UAV-ED, was further constructed for operational application. The
UAV-ED system is composed of a UAV Control Module, a UAV Module, and a Warning Module.
The UAV Control Module sets the flight missions of the UAV and controls its flight state. The UAV
Module detects the excavator through the embedded board, determines the geolocation, and transfers
the information to the other two modules. The Warning Module receives the real-time images of the
excavator, its geolocation, and the time of acquisition.

The excavator detection model based on YOLOV3 is trained and deployed on the Jetson TX2
embedded board carried by the UAV. The excavator detection model reached 83.7% on average IoU
and 99.4% for the recall rate with a threshold of 0.5 and 5.9 FPS for the detection speed on the Jetson
TX2 embedded board. The excavator detection model and three other libraries, including the OpenCV
library, the Libjpeg library, and the DJI Onboard SDK, are integrated with the UAV to form the UAV
Module of the UAV-ED system. The UAV module is able to process the UAV remote-sensing data
in real time. The processed UAV remote-sensing data, including the compressed JPEG image, the
geolocation, and time are shown on the Warning Module of the UAV-ED system within about 1.15 s
once the sensor mounted on the UAV module observes the excavator(s). The transmission between
the UAV Module and the Warning Module is remote, wireless, and functions in real-time. The UAV
Control Module of the UAV-ED system can display the video formed by the orderly extracted images
with boxes on the detected excavators. The proposed approach and UAV-ED system were tested in
different scenarios. The experimental results demonstrated that the UAV-ED system is able to detect
excavators in real time and send the related results to users quickly. Thus, the UAV-ED system had
good performance and would be a benefit for the management of pipeline safety.
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The proposed approach can be easily extended to other applications that require real-time
processing of UAV remote-sensing data. Further research will focus on three points to extend the
application of UAV remote sensing: (i) the improvement of the network model for object detection with
lower computational costs and higher accuracy; (ii) the implementation of the semantic segmentation
network model on the Jetson TX2 embedded board, which is very useful in precision agriculture; and
(iii) the labeling of the bounding box of the target with orientation, which is beneficial to reveal the
direction of the object’s motion and predict dynamic objects in videos [58].
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