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Abstract: Adaptation to climate change is imperative to sustain and promote agricultural productivity
growth, and site-specific empirical evidence is needed to facilitate policy making. Therefore, this study
analyses the impact of climate change adaptation on productivity for annual crops in Central Chile
using a stochastic production frontier approach. The data come from a random sample of 265 farms
located in four municipalities with different agro-climatic conditions. To measure climate change
adaptation, a set of 14 practices was used in three different specifications: binary variable, count and
index; representing decision, intensity and quality of adaptation, respectively. The aforementioned
alternative variables were used in three different stochastic production frontier models. Results
suggest that the use of adaptive practices had a significant and positive effect on productivity; the
practice with the highest impact on productivity was irrigation improvement. Empirical results
demonstrate the relevance of climate change adaptation on farmers’ productivity and enrich the
discussion regarding the need to implement adaptation measures.
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1. Introduction

Agriculture represents a relevant economic sector for the analysis of climate change, given that
it is situated at the interface between ecosystems and society, and it is highly affected by changes in
environmental conditions [1,2]. Climate change is affecting food prices, food security, land use [3]
and raising uncertainty for crop managers [4]. According to Kahil [5], the severity of climate change
impact depends on the degree of adaptation at the farm level, farmers' investment decisions and policy
choices, and these factors are interrelated. Thus, it is necessary to recognize the effect that limitations
in natural resources will have on agriculture to build resilience to climate change at the farm level [6].

On the other hand, as natural resources available for food production become more constraining,
crop productivity is essential for fostering the growth and welfare of the agricultural sector [7]. To relax
these constraints, farmers have been modifying their practices to cope with climatic variability for
centuries; however, climate change is now threatening their livelihoods with increasing unpredictability,
including frequent and intense weather extremes such as droughts, floods and frosts [8]. According
to Zilberman et al. [9], adaptation is the response of economic agents and societies to major shocks
such as climate change. Adaptation practices are adjustments intended to enhance resilience or

Sustainability 2017, 9, 1648; doi:10.3390/su9091648 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0002-8154-5971
http://dx.doi.org/10.3390/su9091648
http://www.mdpi.com/journal/sustainability


Sustainability 2017, 9, 1648 2 of 16

reduce vulnerability to observed or expected changes in climate [10]. Nelson et al. [11] claim that
adaptation is imperative for three reasons: (i) many future environmental risks are now more apparent
and predictable than ever; (ii) even where risks are not quantifiable, environmental changes may
be very significant; and (iii) environmental change, although often the outcome of multiple drivers,
has indisputable human causes. Changes in food production affect all consumers; however, it is
producers that need to adapt to insure adequate supplies and who bear the costs involved in improving
efficiency [12].

There is a wide range of methodological approaches that have been developed over the years to
generate multiple measures of productivity and efficiency [13]. A relevant measure of productivity for
management recommendations is technical efficiency (TE) [14]. This indicator evaluates the difference
between frontier or maximum attainable output and observed output given an input bundle and
technology. Given that TE is an important component in overall productivity, the development and
implementation of public policies can be more effective if the TE of any given farming system is
known [15]. Several studies have investigated factors associated with agricultural productivity across
the globe, but the literature linking TE with climate change adaptation is scanty. One exception is the
study by Mukherjee et al. [16], which finds that heat stress in the southeastern U.S. has a significant
and negative impact on milk production, while adaptation through a fairly simple cooling technology
has a positive and significant effect on efficiency. In addition, in the same analysis, when climate
change is factored into the production function (frontier) specification, the resulting estimates are more
accurate, because they avoid possible parameter bias stemming from the omitted variable problem.

It is thus important to model the full range of interactions that might exist between productivity
and climate change [17]. Most of the scientific information related to climate change and its effects on
agriculture comes from case studies in developed countries. In developing countries, where there are
high levels of uncertainty and vulnerability to climate change, there is need to target policy instruments
to adapt the productive systems, particularly considering the lack of articulation between climate
change adaptation and agricultural policy [18].

In this work, we investigate whether adaptive practices can increase productivity in different
agricultural production systems based on annual crops in Central Chile. Major adaptation practices in
farming systems include: conserving soil, using water efficiently, planting trees, changing planting
dates and using improved varieties [19–23]. It is expected that farmers who are more aware of and
better adapted to climate change will be able to make more efficient use of their resources and thus
cope with any adversities. This study adds valuable information for agricultural policy design, as it
provides evidence of the impact of alternative adaptation strategies to climate change. Additionally,
farmer and agricultural system characteristics are linked to productivity to inform agricultural policy.

The rest of the paper is organized as follows: Section 2 gives a description of the study area, the
methodological approach and the empirical models; Section 3 presents and discusses the empirical
results; and Section 4 summarizes and concludes.

2. Materials and Methods

2.1. Study Area and Data

The study area covers 8,958 farms in four municipalities of the Maule Region, in Central Chile, a
Mediterranean transition zone between the arid north and the rainy south. Projections for the study
area comprise a decrease in precipitation of up to 40% and a rise in temperatures between 2 ◦C and
4 ◦C in the next 40 years [24,25]. This region is a major contributor to the agricultural output of the
country and, despite rapid technological progress in recent years, the cultivation of annual crops,
fruits and vegetables is not changing fast enough to counteract the predicted adverse effects of climate
change [26,27]. Specific adverse effects expected in the near future concern losses in the quality of the
environment for agricultural production [28].
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The four municipalities selected for the study were: Pencahue, San Clemente, Cauquenes and
Parral. Pencahue and Cauquenes are dryland areas; San Clemente is primarily composed of irrigated
land near the Andes Mountains; and Parral is in the central irrigated valley. San Clemente has a total of
226,826 hectares (ha) dedicated largely to the production of forage, cereals and seeds. Cauquenes and
Parral have 128,017 and 125,630 ha, respectively, with a significant area devoted to vineyards, cereals
and forage. Pencahue is the smallest municipality, with 65,118 ha dedicated mostly to vineyards,
orchards and cereals [26]. Table 1 presents some key characteristics of the four municipalities and the
main cropping systems for each one.

Table 1. General information for the study area.

Municipality Area Rainfall
(mm/Year) Farms Farms

Interviewed

Main Crop System (%)

Wheat
and Oat

Spring
Crops a

Spring
Vegetable b Rice Others

Crops c

Pencahue Irrigated
dryland 709 1129 40 12.5 35.0 52.5 0.0 0.0

Cauquenes Non-irrigated
dryland 670 3026 81 97.5 2.5 0.0 0.0 0.0

San
Clemente

Irrigated
Andean
foothill

920 2990 89 40.4 42.6 12.4 0.0 4.6

Parral
Irrigated
central
valley

900 1813 89 54.5 7.3 1.8 36.4 0.0

Total 8958 265 56.6 77.4 12.5 7.5 1.5
a Spring crops are: maize, beans and potatoes. b Spring vegetables are: peas, onion, tomato, melon, watermelon,
cucumber and squash. c Other crops are: tobacco and cabbage.

During August and November of 2011, a random survey was conducted that involved
274 interviews, representing 3.06% of the farmers in the study area. This survey targeted farmers that
specialized in annual crops. The surveys with missing information were excluded from the analysis,
leaving 265 valid surveys. Previous work in the study area inquired about the perception of and
adaptation to climate change [24,26]; however, this article goes further by linking adaptation to climate
change and productivity at the farm level.

Table 2 shows a description of the variables used in the study. The mean crop production value
is US$66,383 (MM$31.2 where MM$ is equivalent to millions of Chilean pesos; and the prevailing
exchange rate was 470 Chilean pesos per U.S. dollar when the data were collected). Farms range in size
from 0.5–595 hectares, with a mean of 55.5 hectares. The average cultivated land area is 17.1 hectares.
The mean value of purchased inputs (seeds, fertilizers, pesticides and hired machinery) is MM$11.4,
and the mean investment in labor for crop production is MM$2.2. Crop diversification is measured

using a variant of the Herfindahl index (H) calculated for each farm as: H =

(
1 −

n
∑

i=1

( ci
T
)2
)
× 100,

where ci is the area under the i-th crop and T is the total cropped area [29]. The H index for the sample
is 23.7%, ranging from 0–96.4%.

The average age for farmers is 55.5 years, while the average level of formal education is 7.2 years.
The majority (82.6%) of farmers claimed that agriculture is their main income source, accounting,
on average, for 62.1% of their total income. Eighty-one farms are in dryland areas. Meteorological
information from the Internet and mass media (radio, TV and newspaper) is used by 93.2% of the
farmers, and 52.4% of them participate in farmer associations. The mean distance from the farms to
the city of Talca, the regional capital, is 77.4 kilometers.
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Table 2. Description of the variables used in the stochastic production frontier (SPF) and inefficiency
models. MM$, millions of Chilean pesos.

Variable Name Unit Definition Mean SD

Production Function Variables

y Agricultural production MM$ Crop production value in Chilean pesos a 31.2 14.0

L Cultivated land Ha Hectares with crops 17.1 53.3

C Capital MM$ Value of seeds, fertilizers, pesticides and
machinery contracted in Chilean pesos 11.4 51.7

W Labor MM$ Value of family and hired labor 2.2 6.8

D Dryland % Dummy variable = 1 if the farm is located in a
dryland area and 0 otherwise 30.6 46.2

H Diversification % Crop diversification index 23.7 27.5

A1 Climate change adaptation Decision % Dummy variable = 1 if there are at least one
practice adopted and 0 otherwise 56.6 49.7

A2 Intensity Number Number of climate change adaptation practices
adopted in the farm 1.8 2.2

A3 Quality % Index of adaptation based on experts’ opinion 12.6 15.4

Inefficiency Model Variables

z1 Age Years Age of the head of the farm in years 55.5 14.1

z2 Schooling Years Years of schooling of the head of the farm 7.2 4.1

z3 Dependence %
Dummy variable = 1 if agriculture is the main

source of income for the household
and 0 otherwise

82.6 37.9

z4 Specialization % Percent of total income that corresponds to
income from crops 62.1 32.0

z5 Use of meteorological information % Dummy variable = 1 if the farmer is a user of
meteorological information and 0 otherwise 93.2 25.2

z5 Membership % Dummy variable = 1 if the farmer is a member of
an association and 0 otherwise 52.4 50.0

z7 Farm size Ha Total farm size in hectares 56.4 122.3

z8 Distance to market Km Distance to the regional capital city in kilometers 77.4 43.8
a Four hundred seventy Chilean pesos = US$1 for the study period.

2.2. Practices Considered for Climate Change Adaptation

In recent studies, adaptive practices are identified as investment in technologies such as irrigation,
the use of drought- and heat-tolerant and early-maturing varieties [19,30] and the adoption of strategies
such as changing planting and harvesting dates, crop diversification, agroforestry and soil and water
conservation practices [20–22]. Tambo and Abdoulaye [23] highlight the relevance of adaptation and
its intensity regarding climate change. The authors just mentioned use as a first hurdle the decision to
adopt a drought-resistant variety of maize and then intensity as the degree to which they will invest in
adaptation measured as the area cultivated with the resistant variety.

A panel of experts was consulted to determine the most appropriate climate change adaptation
strategies for the farming systems of Central Chile. This expert panel was composed of 14 national
experts in agricultural systems and climate change. These experts were asked to assign a score from 0–3,
where 0 is no impact and 3 is high impact, to 14 practices according to the importance of each practice
for adaptation. These practices, described in Table 3, fall into three main categories: (1) water and soil
conservation practices (WSC); (2) changes in cropping schedule and varieties (Cr); and (3) improvement
of irrigation systems (I). These practices have been used previously in the literature [19,20,31]. We used
this list of practices in the producers’ survey to learn about what practices are being used by them.
In several quantitative studies, the adaptation to climate change has been measured as the adoption of
strategies, practices and technologies to increase the capacity of a farm to cope with changing climate
and variability ([19–23] and others), and in most studies, the adaptation variable is defined as a binary
decision. To carry out a more comprehensive analysis of adaptation, we include alternative measures
of adaptation, from a simple binary variable to a more complex adaptation quality index. Each measure
accounts for different interpretations of adaptation described as follows:
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• Binary decision: a dichotomous variable indicating that at least one practice was adopted (A1).
In this case, the aim is to analyze the impact of being able to carry out a basic strategy.

• Intensity: measured as the number of practices or technologies adopted on the farm (A2).
Compared to A1, this measure analyzes the impact of passing the first hurdle, i.e., the decision
to adapt.

• Quality: an index calculated as the sum of adaptation practices weighted by the experts’ score
(A3). The objective here is to estimate the impact of adopted practices that are more effective to
face climate change. The weights were estimated by normalizing the average scores (0–3) given
by the panel of experts to each practice, to generate a scale. The quality adaptation index (A3) was
constructed considering the sum of all the practices on a given farm multiplied by the weight
assigned by experts (Wij), divided by the sum of all weights (Wi). The formula used is as follows:

A3i =

[
∑14

j=1 Wij

∑14
j=1 Wj

]
× 100, where i are the farms (from 1–265) and j are the practices (from 1–14).)

The value of A3 ranges from 0–100% where 100% implies that the practice presents the highest
valuation assigned by the experts.

The number of farmers who have decided to adopt at least one of the practices is 150, representing
56.6% of the sample. The intensity in the number of practices adopted by farmers ranges from 0–11,
with a mean of 1.8. The quality of adaptation (average index) is 12.6%, ranging from 0–79.3% (as can
be seen in Table 2).

Table 3. Climate change adaptation practices according to the recommendation by experts.

Practice Type a Weight %
Farmers (n = 265)

No. of Respondents % of Total

Incorporation of crop varieties resistant to droughts Cr 85.7 2 0.7
Use of drip and sprinkler I 83.3 31 11.7

Incorporation of crops resistant to high temperatures Cr 80.9 2 0.7
Changes in planting and harvesting dates Cr 78.6 110 41.5

Afforestation WSC 76.2 5 1.9
Zero tillage WSC 69.0 3 1.1

Use of water accumulation systems I 66.7 38 14.3
Use of green manure WSC 66.0 33 12.4

Use of mulching WSC 61.9 24 9.0
Use of cover crops WSC 61.9 16 6.0

Other WSC practices WSC 61.9 16 6.0
Use of hoses and pumps for irrigation I 59.5 52 19.6
Implementation of infiltration trenches WSC 57.1 19 7.1

Cleaning of canals WSC 54.8 60 22.6
a Cr: changes in crops, I: improvement of irrigation systems, WSC: water and soil conservation practices.

2.3. Analytical Framework and Empirical Model

The stochastic production frontier (SPF) model developed by Battese and Coelli [32] was used to
estimate the following Cobb–Douglas frontier:

lnyi = β0 + β1lnLi + β2lnCi + β3lnWi + β4Di + β5Hi + β6 Ai + (vi − ui) (1)

where yi is the value of agricultural production of the i-th farm, including the value of the output
marketed, as well as the value of home consumption; L is the number of hectares assigned to annual
crops by the farmer; C represents capital and is the sum of seeds, fertilizers, pesticides purchased
and machinery contracted; W is the value of family and hired labor; D is a dichotomous variable that
indicates if a farm is located in a dryland area and is thus expected to have lower production; H is the
crop diversification index used to control for the intensity of agricultural activity and land use on the
farm; A is the climate change adaptation measured as explained in Section 2.2; βs are the parameters
to be estimated; and v − u = ε is the composed error term.

The term v is a two-sided random error with a normal distribution (v~N [0, σv
2]) that captures the

stochastic effect of factors beyond the farmer’s control and statistical noise. The term u is a one-sided
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(u ≥ 0) component that captures the TE of the producer; in other words, u measures the gap between
observed production and its maximum value given by the frontier. This error can follow various
statistical distributions including half-normal, exponential or gamma [33–35]. A high value of u implies
a high degree of technical inefficiency; conversely, a value of zero implies that the farm is completely
efficient. According to Battese and Coelli [32], the TE of the i-th farm is given by:

TEi = exp(−ui) (2)

where u is the efficiency term specified in (1). TE for each farm is calculated using the
conditional mean of exp(−u), given the composed error term for the stochastic frontier model [36].
The maximum-likelihood method developed by Battese and Coelli [32] allows for a one-step estimation
of u and v, and u can be expressed in terms of a set of explanatory variables Znj as:

uj = δ0 +
k

∑
n=1

δnZnj + ej (3)

where δn are unknown parameters to be estimated.
The variables that affect technical inefficiency in our study (Table 2) are related to human capital

(age, schooling, dependence, specialization and the use of meteorological information); social capital
variables (membership in associations or organizations); and structural factors (distance to regional
capital and farm size).

The adoption of climate change adaptation practices is a choice variable and, as in studies related
to soil conservation adoption and credit access (e.g., [37–39]), might be correlated with the error term
in Equation (1). Instrumental variables are commonly used to address endogeneity biases, and the
Durbin–Wu–Hausman test (DWH) [40] is often the approach employed to statistically evaluate if this
is indeed a problem. This test is based on the difference between the ordinary least square (OLS) and
instrumental variables estimators [41]. The idea of the DWH test is to check whether the dissimilarity
across these estimators is significantly different from zero given the data from the available sample.
Under the null hypothesis that the error terms are uncorrelated with all the regressors against the
alternative that they are correlated with at least some of the regressors, an F-test is performed [42].
The instrumental variables approach has been used in several recent studies of agricultural production
analysis [43–47].

Therefore, to resolve the potential endogeneity of the variables A1, A2 and A3, an instrumental
variable approach was used to obtain their predicted values in a first-step regression, where A1’,
A2’, and A3’ are the predicted values for A1, A2 and A3, respectively. In the first step regression, the
predicted values were generated as follows: A1’ was estimated using a logistic regression model; A2’
was assumed to have a zero-inflated negative binomial distribution; and for A3’, a truncated regression
was applied. The models used to estimate the first step are shown in the Tables A2–A4, respectively.

To identify possible differences in TE across various technologies, we performed a Student’s t-test
comparing the mean of the expected TE for producers that did and did not adopt the following: (a) at
least one irrigation improvement, (b) change in planting and harvesting schedule, and (c) at least two
conservation practices. This simple procedure allows one to compare two independent groups by
testing the null hypothesis of equal means.

3. Results and Discussion

3.1. Production Frontiers

Table 4 shows the estimations of the three SPF models. The parameter gamma is significant at
the 1% level for the three models, with values of 0.42 for the Intensity model and 0.54 for the Decision
and Quality models. In addition, the null hypothesis that sigma is equal to zero is rejected, confirming
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that the stochastic model is superior to the model that would result from using OLS. The presence of
endogeneity is confirmed according to the DWH test implemented (as detailed in Table A1).

For the three models, the parameter for L, C and W are positive and statistically significant at
the 1% level presenting also similar values across models. Capital (C) represents the most important
production factor, with estimated coefficients around 0.60. Other studies reveal that capital is also
important in the production function, with estimated parameters between 0.3 and 0.5 [39,48,49].
The size of the area under cultivation has an estimated parameter close between 0.23 and 0.29, consistent
with those reported in other studies [50–52]. The lowest values are related to labor, L, around 0.11,
consistent with the results from Rahman et al. [53] and Mariano et al. [52].

As expected, D is significant and negative, indicating that farms located in areas with lower
quality soils and without irrigation are relatively less productive. Various agricultural production
studies have shown that less-favored areas in terms of soil fertility or irrigation have lower productivity
levels [52,54] and that this condition tends to be associated with high levels of inefficiency [48,49].

On the other hand, it is expected that crop diversification helps farmers to increase output, ceteris
paribus, by allowing the continuous and more intensive use of the available soil and labor, and other
resources. Crop diversification is one of the strategies used by farmers to minimize agricultural risk and
to stabilize income [55]. Based on the H index, our results are consistent with expectations, revealing
that higher diversification is positively associated with productivity. The Herfindahl index has been
used in several studies to measure crop concentration or diversification [29,56]. Manjunatha et al. [57]
incorporated this index in a production function for crops in India; Rahman [51] used it as a variable
explaining crop efficiency in Bangladesh, demonstrating that crop diversification is associated with
high levels of TE; and Kassali et al. [55] established a positive relation between crop diversification
and efficiency among farmers in Nigeria.

The adoption of climate change adaptation technologies, for the three specifications (A1, A2, A3)
resulted in a positive and significant effect on productivity, evidencing the importance of adaptation in
farming. As envisioned by Sauer et al. [58], over the next two decades, there will be pressing need
for new agricultural responses in the face of population and economic growth, and these responses
include increases in irrigated area and in water use intensity. Adaptation measures will need to play
an increasingly important role to equilibrate food supply and demand in a global context [11,17].

The sum of the coefficients associated with L, C and W (partial elasticities of production) is close
to one, an indication of nearly constant returns to scale for all models. This finding is consistent
with those of Nyemeck et al. [48], Karagiannis and Sarris [50], Sauer and Park [59], and Reddy and
Bantilan [49], but differs from that of Jaime and Salazar [60], who found increasing returns to scale in a
sample of Chilean wheat farmers.

3.2. Technical Efficiency

Table 4 (bottom) shows that the average values of TE for the three models accounting for
endogeneity are 67.8% (Decision), 76.4% (Intensity) and 72.3% (Quality). The mean TEs for models
of decision are statistically the same. Table 5 shows that the range of TE for the 30% most efficient
farms (the last three intervals) ranges from 53.9% to 74.1%. The average TE value is consistent with
other studies done in Latin America using SPF models. Solís et al. [39] reported an average TE of 78%,
and Bravo-Ureta et al. [14] reported a value of 70%. Table 5 also reveals high correlation coefficients
between TE levels across the various models with values exceeding 0.95. In addition, Table 5 shows
that the estimated TE values tend to be higher for models acknowledging endogeneity, indicating the
relevance of considering this issue in the analysis.

Now we go back to Table 4 to examine the results concerning the Inefficiency Model. According to
Gorton and Davidova [61], variables affecting farm efficiency can be divided into agency and structural
factors. Agency factors, such as age, experience, education, specialization and training (i.e., human
and social capital), represent the capacity of individuals to act independently and to make their own
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free choices. By contrast, structural factors, such as access to markets and credit, land tenure and farm
size, influence or limit an agent in his or her decisions.

Table 4. Cobb–Douglas parameters for the stochastic production frontiers estimated considering
endogeneity and three different specifications to measure climate change adaptation.

Variables
Climate Change Adaptation Measurement

Decision Intensity Quality

Constant (β0) 4.1356 (0.9463) *** 4.7996 (0.9253) *** 4.7690 (0.9894) ***
Land (β1) 0.2284 (0.0849) *** 0.2876 (0.0850) *** 0.2726 (0.0877) ***

Capital (β2) 0.6184 (0.0739) *** 0.5950 (0.0710) *** 0.6041 (0.0779) ***
Labor (β3) 0.1224 (0.0278) *** 0.1044 (0.0276) *** 0.1140 (0.0275) ***

Dryland (β4) −0.3485 (0.1303) *** −0.4280 (0.1222) *** −0.3882 (0.1350) ***
Diversification (β5) 0.5670 (0.1312) *** 0.5933 (0.1373) *** 0.6074 (0.1361) ***

Climate change adaptation (β6) 0.1092 (0.3012) *** 0.1656 (0.0546) *** 0.0075 (0.0052) *

Inefficiency Model

Constant (δ0) 0.2005 (0.6762) 0.3462 (0.6594) −0.3082 (0.6554) ***
Age (δ1) 0.0124 (0.0083) * 0.0171 (0.0080) ** 0.0212 (0.0084) ***

Schooling (δ2) 0.0200 (0.0175) 0.0147 (0.0270) 0.0107 (0.0296)
Dependence (δ3) −0.7099 (0.1738) *** −0.8436 (0.1797) *** −0.7310 (0.1800) ***

Specialization (δ4) −0.0085 (0.0034) *** −0.0099 (0.0034) *** −0.0112 (0.0031) ***
Use of meteorological information (δ5) −0.6258 (0.2770) ** −0.8279 (0.2463) *** −0.7480 (0.2556) ***

Membership (δ6) 0.2027 (0.1698) 0.2533 (0.1742) * 0.1915 (0.1884)
Farm size (δ7) −0.0036 (0.0008) *** −0.0028 (0.0029) −0.0035 (0.0026) *

Distance to market (δ8) 0.0085 (0.0033) *** 0.0038 (0.0031) * 0.0057 (0.0031) **

Returns to scale 0.9692 0.9870 0.9907
Maximum Likelihood Function −209.18 −209.60 −212.76

Sigma2 0.4209 (0.0731) *** 0.4203 (0.0693) *** 0.4828 (0.0747) ***
Gamma 0.5363 (0.1043) *** 0.4247 (0.1111) *** 0.5411 (0.0989) ***

TE 67.8 76.4 72.3
TE difference with models without

correcting endogeneity ns *** ***

Climate change adaptation (A) is estimated through a logit regression (A1’) in the model for Decision, a zero-inflated
negative binomial regression (A2’) in the model for Intensity and using a truncated regression (A3’) in the model for
Quality (see the Appendix A). Numbers in parentheses are standard errors. * p < 0.1; ** p < 0.05; *** p < 0.01; ns: not
significant. Estimations using Frontier Version 4.1 and STATA 11.1.

Most of the literature on TE uses human capital as the main source for explaining inefficiency [61].
Studies show that the relation of the age of farmers and TE levels varies according to geographic region
and context. A negative and significant relation was described by Jaime and Salazar [60] for Chilean
farmers; similar results were found by Mariano et al. [52] for rice producers in The Philippines and by
Bozoğlu and Ceyhan [62] for vegetable farms in Turkey. Conversely, a positive relation is described
by other authors [51,54,63]. In our study, the positive sign for age indicates that older farmers are
less efficient.

It is expected that schooling has a negative effect on inefficiency levels, as noted by Jaime
and Salazar [60], because education improves access to information, facilitates learning and the
adoption of new processes and promotes forward-looking attitudes. Other studies support this
conclusion [39,48,51,54,63–65]. However, in our study, schooling, measured by the number of years of
formal instruction, has a negative, though not significant relationship with TE.

Our study found that the farmers who depend on agriculture as a primary source of income tend
to be more efficient than those who do not. Similarly, Jaime and Salazar [60] report that the degree
of dependence of Chilean wheat farmers on agriculture has a significant and positive relation with
efficiency. Along this same line, Melo-Becerra and Orozco-Gallo [66] found that Colombian households
that are dedicated exclusively to agricultural production are more efficient.
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A similar relationship was found between specialization and TE; producers who specialize in
crop production are more efficient than those who do not. Karagiannis et al. [67] showed that TE
depends on specialization for both organic and conventional milk farms. Guesmi et al. [68], using
the proportion of vineyard revenue to total agricultural revenue as a measure for specialization, also
observed a positive relation between specialization and TE.

The use of meteorological information also shows a positive and significant relation with TE;
farmers with access to meteorological information can be more alert about changes in weather and, in
this way, minimize negative effects on productivity at the farm level. It is to be expected that access
to information can have a positive effect on farm management and on the adoption of technologies
related to farm productivity improvements. The use of meteorological information can represent a way
to reduce uncertainty in productive operations. However, Lemos et al. [69] and Roco et al. [26] argue
that the use of forecasts in decision-making is not straightforward and that much work is required to
narrow the gap between producers and users of this kind of information.

Table 5. Distribution of TE and the correlation matrix for fitted models.

Interval TE

Farms in Interval (%)

Not-Correcting Endogeneity Correcting Endogeneity

Decision Intensity Quality Decision Intensity Quality

0–29 2.6 3.0 3.0 6.4 2.6 3.4
30–39 9.1 5.3 5.3 7.9 3.0 4.5
40–49 7.2 6.8 6.4 6.4 4.9 6.0
50–59 10.6 6.4 6.4 9.1 6.0 6.4
60–69 16.6 13.3 13.7 10.9 9.4 12.1
70–79 25.6 23.0 23.0 22.7 16.7 23.4
80–89 23.8 35.8 34.7 30.6 45.7 35.9
>90 4.5 6.4 7.5 6.0 11.7 8.3

Average TE 67.5 71.3 71.5 67.8 76.4 72.3

Correlation Matrix for TE Values

Not-correcting
for endogeneity

Decision 1 - - - - -
Intensity 0.9872 1 - - - -
Quality 0.9876 0.9999 1 - - -

Correcting for
endogeneity

Decision 0.9666 0.9779 0.9766 1 - -
Intensity 0.9532 0.9842 0.9841 0.9569 1 -
Quality 0.9874 0.9967 0.9969 0.9741 0.9839 1

Social capital is another important factor to be considered in efficiency analyses. Membership
in farmers’ organizations can help to reduce inefficiency. Dios et al. [70] relate technical efficiency to
innovation among farmers in Spain. Jaime and Salazar [60] note that in the Bío Bío Region in Chile,
producers with higher levels of participation in organizations had higher levels of efficiency. Similar
results were found by Nyemeck et al. [48] among producers in Cameroon. While in general, we found
a positive relation between membership in organizations and TE levels, our results are not conclusive.

Intra- and inter-organizational arrangements are relevant for farm efficiency [61]. Our analysis,
reveals a positive association between farm size and TE levels. There is evidence supporting the
notion that large farms have higher levels of efficiency, due to advantages derived from economies
of scale [49,53,54,60,63,66,71,72]. Considering the high percentage of small farms in the area under
study, 28.6% according to ODEPA, which is the Chilean National Service for Agricultural Policy
(the acronym stands for Oficina de Estudios y Políticas Agrarias) [72], this factor is likely a barrier to
improve productivity levels in the region.

As expected, our results indicate that distance from the regional capital city has a negative and
significant effect on TE levels. Proximity to markets, extension agencies and information coming
from the regional capital tend to enhance farmers’ TE. Tan et al. [54] claim that distance to a major
city has a negative effect on TE levels for rice producers in China. Nyemeck et al. [48] highlight
the importance of accessibility and find that TE is higher for farmers located near main roads.
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In fact, Henderson et al. [73] found a strong and statistically-significant relationship between market
participation and performance for crop-livestock smallholders in Sub-Saharan Africa.

3.3. Efficiency and Climate Change Adaptation

The analysis of efficiency in agriculture has been widely used to propose improvements in the
management of farm systems. Areal et al. [74] argue that if the information received by policy makers
concerning farm efficiency levels is harmonized with policy aims, policy measures may be targeted
to support the targeted farms. This deserves further consideration given that the literature that links
efficiency and climate change adaptation is limited.

Various t-tests were performed to relate efficiency levels and climate change adaptation (Table 6).
We found a positive relation between TE and adopting at least one irrigation technology, i.e., farmers
that adopt irrigation improvements exhibit a higher TE. In this regard, Yigezu et al. [75] argue that the
use of modern irrigation methods yields an improvement of 19% in TE for wheat farmers in Syria.

However, a comparison across municipalities shows considerable geographical variability. In San
Clemente, TE and the implementation of at least one irrigation alternative is evident regardless of the
crops involved. For Pencahue, no differences are found between groups probably because most of
the farmers in the sample (62.5%) have adopted at least one irrigation technology. In Cauquenes and
Parral, we also find no significant difference and this is probably due to the low number of adopters.
These results demonstrate the importance of climate change adaptation through the improvement
of irrigation at the farm level to increase resource use efficiency. Kahil et al. [5] argue that water
management policies, such as irrigation subsidies and efficient water markets, are key to face climate
change in agriculture. Policy measures include supply enhancements to remove the threat of immediate
water scarcity along with demand management measures and improved governance [76].

In general, changes in planting and harvesting dates show no relation with TE levels; however,
in San Clemente, where the crops are highly diversified, farmers who have changed their planting
calendars appear to have higher efficiency. Thus, it appears that this strategy that a priori could be
expected to play a significant role for climate change adaptation, does not have a clear direct effect on
efficiency. Additional information is required, to understand in a deeper way, the effects of a climate
change practices portfolio on productivity and efficiency of agricultural systems.

The higher TE values detected for the groups who have more intensive adaptation strategies
and with higher quality (number of practices and quality index) substantiate the importance of
further research focusing on adaptation. It is not only necessary to adapt, but is also relevant to
determine what and how much to adapt. Therefore, it is essential to foster effective adaptation and to
improve the design of relevant programs to promote the adaptation capacity across farming systems.
In Pencahue, 65% of the sample has adopted at least one adaptation practice, and 60% is above 25% in
the adaptation index. In contrast, only 3.7% of the sample for Cauquenes has implemented at least
one adaptation practice, and none of the farmers interviewed show an adaptation index over 25%.
Based on this analysis, it seems clear that climate change adaptation in agriculture requires a complex
set of actions including technical and managerial dimensions to reduce vulnerability and improve
farmer productivity.
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Table 6. t-tests for average TE levels grouped into various categories.

Average TE Model

Grouping Criteria

Adoption of at Least One
Irrigation Improvement

Changes in Planting and
Harvesting Schedules

Adoption of at Least Two
Adaptation Practices

Value of Adaptation
Index ≥ 25%

Yes No Sig Yes No Sig Yes No Sig Yes No Sig

Complete
sample

Decision 73.5 65.3 *** 64.9 70.0 ** 81.4 65.1 *** 86.5 65.4 ***
Intensity 80.9 74.4 *** 75.1 77.3 ns 86.3 74.5 *** 88.8 74.8 ***
Quality 77.5 69.9 *** 70.9 73.3 ns 84.4 69.9 *** 87.3 70.3 ***

% 54.7 42.6 16.2 11.3

Pencahue

Decision 86.1 85.0 ns 85.7 85.7 ns 85.1 86.0 ns 86.0 85.2 ns
Intensity 88.2 88.5 ns 87.8 88.7 ns 88.2 88.5 ns 88.1 88.5 ns
Quality 86.7 86.7 ns 86.3 87.0 ns 86.8 86.6 ns 86.7 86.7 ns

% 62.5 37.5 65.0 60.0

Cauquenes

Decision 45.2 50.2 ns 47.2 50.9 ns 41.7 49.4 ns - -
Intensity 62.0 62.8 ns 62.0 63.3 ns 63.6 62.6 ns - -
Quality 55.7 58.2 ns 56.3 59.0 ns 59.6 57.6 ns - -

% 21.0 48.1 3.7 0.0

San
Clemente

Decision 82.2 77.0 *** 83.3 77.1 *** 81.6 78.2 ns 86.3 78.3 **
Intensity 86.3 81.7 *** 87.2 81.8 *** 87.6 82.5 ** 90.0 82.8 **
Quality 83.2 77.4 *** 84.4 77.6 *** 85.0 78.4 ** 87.8 78.9 **

% 31.5 24.7 13.5 4.5

Parral

Decision 66.5 64.1 ns 64.0 65.8 ns 79.5 64.0 * 93.1 63.5 ***
Intensity 80.0 76.3 ns 76.7 77.6 ns 89.0 76.6 * 94.5 76.4 **
Quality 75.7 70.9 ns 71.2 71.6 ns 86.1 71.2 * 92.9 71.0 ***

% 20.0 67.3 3.6 3.6

* p < 0.1; ** p < 0.05; *** p < 0.01, ns: not significant.

4. Concluding Remarks

This study analyzes the impact of climate change adaptation in productivity and efficiency for
producers of annual crops in Central Chile. We used three measures of adaptation: a binary choice of
adopting at least one adaptation practice or technology; an intensity measure given by the number
of practices or technologies adopted; and a quality index measure. A positive association between
productivity and climate change adaptation was observed for the three measures. The fitted stochastic
production frontier models revealed that climate change adaptation is endogenous. Incorporation
of instrumental variables allowed us to check the robustness of our results and improved the TE
estimations. The fitted models showed important levels of inefficiency, suggesting the potential for
increasing crop production using the current level of inputs and available technology.

Our results also show that factors such as dependence on annual crop production for income
and high levels of specialization in production are associated with elevated TE levels. The use of
meteorological information is also positively related with TE. In addition, our results indicate that farm
size is positively related to efficiency while distance to a major city exhibits a negative relationship.

Farmers who have adopted irrigation technologies have higher TE levels. These results suggest
that climate change adaptation is significant for agricultural production, especially for the intensity
of climate change adaptation. Our results validate the importance, of incorporating climate change
adaptation in agricultural policies designed to promote productivity growth. Our analysis also sheds
light on the relevance of using meteorological information by farmers given the positive link between
the latter variable and technical efficiency.

The connection between productivity with the implementation of specific farm-level adaptive
practices, as well as with actions that ease adoption barriers deserves additional analyses.
These analyses are essential to generate information required by policy makers to formulate robust
action plans across differing cultural, economic and agricultural environments.
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Appendix A

Table A1. Cobb–Douglas parameters for stochastic production frontiers estimated considering three different
specifications for the measurement of climate change adoption and without considering endogeneity.

Variables
Climate Change Adaptation Measurement

Decision Intensity Quality

Constant (β0) 4.0218 (0.9857) *** 4.6682 (0.9741) *** 4.6090 (0.9891) ***
Land (β1) 0.2314 (0.0887) *** 0.2654 (0.0869) *** 0.2602 (0.0857) ***

Capital (β2) 0.6828 (0.0764) *** 0.6206 (0.0754) *** 0.6255 (0.0758) ***
Labor (β3) 0.1043 (0.0283) *** 0.1112 (0.0283) *** 0.1110 (0.0270) ***

Dryland (β4) −0.4204 (0.1334) *** −0.3578 (0.1270) *** −0.3614 (0.1314) ***
Diversification (β5) 0.5990 (0.1381) *** 0.5957 (0.1357) *** 0.6054 (0.1349) ***

Climate change adaptation (β6) 0.0331 (0.0735) 0.0035 (0.0017) *** 0.0046 (0.0024) **

Inefficiency Model

Constant (δ0) 0.2035 (0.6194) 0.2166 (0.5937) 0.1591 (0.7713)
Age (δ1) 0.0189 (0.0072) *** 0.0177 (0.0075) *** 0.0185 (0.0096) **

Schooling (δ2) 0.0097 (0.0250) 0.0129 (0.0259) 0.0130 (0.0262)
Dependence (δ3) −0.4878 (0.1697) *** −0.7657 (0.1776) *** −0.7480 (0.2117) ***

Specialization (δ4) −0.0099 (0.0031) *** −0.0098 (0.0034) *** −0.0099 (0.0032) ***
Use of meteorological

information (δ5) −0.7010 (0.2326) *** −0.7406 (0.2423) *** −0.7420 (0.2981) ***

Membership (δ6) 0.0877 (0.1701) 0.2591 (0.1773) * 0.2663 (0.1970) *
Farm size (δ7) −0.0040 (0.0026) * −0.0035 (0.0010) *** −0.0034 (0.0009) ***

Distance to market (δ8) 0.0056 (0.0029) ** 0.0053 (0.0029) ** 0.0051 (0.0030) **
Returns to scale 1.0185 0.9972 0.9967

MLF −218.13 −211.14 −211.51
Sigma2 0.4588 (0.0611) *** 0.4516 (0.0652) *** 0.4493 (0.0725) ***
Gamma 0.5632 (0.0996) *** 0.5222 (0.1044) *** 0.5178 (0.1144) ***

TE 67.52 71.34 71.50
Endogeneity (F value) 4.868 *** 14.266 *** 13.012 ***

Climate change adaptation (A) is measured as: the adoption of at least one practice (A1) in the model for decision;
the number of practices adopted (A2) in the model for intensity; the number of practices weighted according to
experts’ opinion (A3) in the model for quality. Numbers in parentheses are standard errors. * p < 0.1; ** p < 0.05;
*** p < 0.01. Estimations using Frontier Version 4.1 and STATA 11.1.

Table A2. Logit regression estimation.

Variable Name Description Coefficient

A1 Dependent Variable

ExpAgIndep Years of independent experience in agriculture. −0.0153 * (0.0087)

SanClemente Dummy variable = 1 if the farm is located in San Clemente and 0 otherwise −0.9189 *** (0.2886)

TTPropia Dummy variable = 1 if the farmer is owner and 0 otherwise 0.3590 (0.2821)

Internet Dummy variable = 1 if the farmer has access to meteorological information
principally form the Internet and 0 otherwise 0.9667 *** (0.3290)

Constant 0.5849 ** (0.3012)

Log-likelihood −170.73

N 265

Pseudo R2 5.86

Correctly classified values by Logit (%) 62.2

Numbers in parenthesis are standard errors. * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table A3. Zero inflated negative binomial regression estimation.

Variable Name Description Coefficient

A2 Dependent Variable

ExpAgIndep Years of independent experience in agriculture. −0.0121 *** (0.0034)

RXP Dummy variable = 1 if the farmer has adopted any irrigation improvement
and the location is in Pencahue municipality and 0 otherwise 0.7731 *** (0.1324)

SupProd Surface designated to production in hectares 0.0003 (0.0003)

Internet Dummy variable = 1 if the farmer has access to meteorological information
principally form the Internet and 0 otherwise 0.2233 * (0.1329)

Constant 1.0172 *** (0.1362)

Log-likelihood −411.76

N 265

Correlation of predicted values (A1’) with A1 (%) 53.51

Numbers in parenthesis are standard errors. * p < 0.1; *** p < 0.01.

Table A4. Truncated linear regression estimation.

Variable Name Description Coefficient

A3 Dependent Variable

ExpAgIndep Years of independent experience in agriculture. −0.2518 *** (0.0893)

RXP Dummy variable = 1 if the farmer has adopted any irrigation improvement
and the farm location is Pencahue and 0 otherwise 18.445 *** (4.2773)

SupProd Surface designated to production in hectares 0.0173 * (0.0105)

Internet Dummy variable = 1 if the farmer has access to meteorological information
principally form the Internet and 0 otherwise 3.4477 (3.1870)

Constant 20.1456 *** (2.8415)

Log-Likelihood −574.27

N 265

Correlation of predicted values (A2’) with A2 (%) 51.35

Regression was truncated in values with 0 as the lower limit and 100 as the upper limit. Numbers in parenthesis are
standard errors. * p < 0.1; *** p < 0.01.
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